Support vector machines and wavelet packet analysis for fault detection and identification

Date

2006

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This thesis examines a data driven fault detection and identification (FDI) method which uses Support Vector Machines (SVM) and the Wavelet Packet Transform (WPT). The primary focus of this thesis is to present a robust data driven fault diagnosis scheme. The investigated scheme has the capability to detect and identify faulty components of a given system through examination of its output due to a specified input The use of the wavelet packet transform serves to draw out those features of the output response which best characterize each of the fault classes for the various components. Support vector machines are used as the diagnosis phase to detect and isolate faults of a given system.

Description

Keywords

Electric fault location--Data processing

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Master of Science (University of Hawaii at Manoa). Electrical Engineering; no. 4067

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.