Adaptive and Concurrent Garbage Collection for Virtual Machines

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

An important issue for concurrent garbage collection in virtual machines (VM) is to identify which garbage collector (GC) to use during the collection process. For instance, Java program execution times differ greatly based on the employed GC. It has not been possible to identify the optimal GC algorithms for a specific program before exhaustively profiling the execution times for all available GC algorithms. In this paper, we present an adaptive and concurrent garbage collection (ACGC) technique that can predict the optimal GC algorithm for a program without going through all the GC algorithms. We implement this technique in the Java virtual machine and test it using standard benchmark suites. ACGC learns the algorithms’ usage pattern from different training program features and generates a model for future programs. Feature generation and selection are two important steps of our technique, which creates different attributes to use in the learning step. Our experimental evaluation shows improvement in selecting the best GC. Additionally, our approach is helpful in finding better heap size settings for improved program execution.

Description

Keywords

Soft Computing: Theory Innovations and Problem Solving Benefits, adaptive garbage collection, machine learning, matrix factorization, memory management, virtual machines

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.