Dual linear spaces generated by a non-Desarguesian configuration

Date

2005

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

A dual linear space is a partial projective plane which contains the intersection of every pair of its lines. Every dual linear space can be extended to a projective plane, usually infinite, by a sequence of one line extensions. Moreover, one may describe necessary conditions for the sequence of one line extensions to terminate after finitely many steps with a finite projective plane. A computer program that attempts to construct a finite projective plane from a given dual linear space by a sequence of one line extension has been written by Dr. Nation. In particular, one would like to extend a dual linear space containing a non-Desarguesian configuration to a finite projective plane of nonprime- power order. This dissertation studies the initial dual linear spaces to be used in this algorithm. The main result is that there are 105 non-isomorphic initial dual linear spaces containing the basic non-Desarguesian configuration.

Description

Keywords

Vector spaces, Projective planes

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Mathematics; no. 4601

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.