Improving Stability Estimates in Adversarial Explainable AI through Alternate Search Methods
Loading...
Files
Date
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Interviewee
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
7027
Ending Page
Alternative Title
Abstract
Advances in the effectiveness of machine learning models have come at the cost of enormous complexity resulting in a poor understanding of how they function. Local surrogate methods have been used to approximate the workings of these complex models, but recent work has revealed their vulnerability to adversarial attacks where the explanation produced is appreciably different while the meaning and structure of the complex model’s output remains similar. This prior work has focused on the existence of these weaknesses but not on their magnitude. Here we explore using an alternate search method with the goal of finding minimum viable perturbations, the fewest perturbations necessary to achieve a fixed similarity value between the original and altered text’s explanation. Intuitively, a method that requires fewer perturbations to expose a given level of instability is inferior to one which requires more. This nuance allows for superior comparisons of the stability of explainability methods.
Description
Citation
Extent
9
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Catalog Record
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
