Multi-Domain Named Entity Recognition for Robotic Process Automation

dc.contributor.authorGanzha, Maria
dc.contributor.authorDenisiuk, Aleksander
dc.contributor.authorSowiƄski, Piotr
dc.contributor.authorWasielewska-Michniewska, Katarzyna
dc.contributor.authorPaprzycki, Marcin
dc.date.accessioned2022-12-27T18:56:05Z
dc.date.available2022-12-27T18:56:05Z
dc.date.issued2023-01-03
dc.description.abstractTo make Robotic Process Automation more attractive, it needs to become more ``intelligent''. In this context, a modification of the Form-to-Rule approach, based on identifying data types of form fields, is proposed. Moreover, multi-domain named entity recognition is used, for field value identification. These techniques, used jointly, allow software robots to adapt to interface changes. Experimental results are reported and verify viability of the proposed approach.
dc.format.extent10
dc.identifier.doi10.24251/HICSS.2023.117
dc.identifier.isbn978-0-9981331-6-4
dc.identifier.urihttps://hdl.handle.net/10125/102746
dc.language.isoeng
dc.relation.ispartofProceedings of the 56th Hawaii International Conference on System Sciences
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectData, Text, and Web Mining for Business Analytics
dc.subjectform-2-rule
dc.subjectname entity recognition
dc.subjectrobotic process automation
dc.titleMulti-Domain Named Entity Recognition for Robotic Process Automation
dc.type.dcmitext
prism.startingpage940

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0091.pdf
Size:
415.91 KB
Format:
Adobe Portable Document Format