What Symptoms and How Long? An Interpretable AI Approach for Depression Detection in Social Media

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2455

Ending Page

Alternative Title

Abstract

Depression is the most prevalent and serious mental illness, which induces grave financial and societal ramifications. Depression detection is key for early intervention to mitigate those consequences. Such a high-stake decision inherently necessitates interpretability. Although a few depression detection studies attempt to explain the decision, these explanations misalign with the clinical depression diagnosis criterion that is based on depressive symptoms. To fill this gap, we develop a novel Multi-Scale Temporal Prototype Network (MSTPNet). MSTPNet innovatively detects and interprets depressive symptoms as well as how long they last. Extensive empirical analyses show that MSTPNet outperforms state-of-the-art depression detection methods. This result also reveals new symptoms that are unnoted in the survey approach. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study contributes to IS literature with a novel interpretable deep learning model for depression detection in social media.

Description

Keywords

Data Analytics, Data Mining, and Machine Learning for Social Media, depression detection, interpretability, multi-scale, prototype learning, social media mining

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.