Acceptance of AI for delegating emotional intelligence: Results from an experiment

Date
2021-01-05
Authors
Aysolmaz, Banu
Leyer, Michael
Iren, Deniz
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6307
Ending Page
Alternative Title
Abstract
Detecting emotions of other humans is challenging for us humans. It is however important in many social contexts so that many individuals seek help in this regard. As technology is evolving, more and more AI-based options emerge that promise to detect human emotions and support decision making. We focus on the full delegation of detecting emotions to AI to contribute to our understanding how such AI is perceived and why it is accepted. For this, we conduct an online scenario-based experiment in which participants have the choice to delegate emotion detection to another human in one group and to an AI tool in the other group. Our results show that the delegation rates are higher for a human, but surprisingly high for AI. The results provide insights that should be considered when designing AI-based emotion-detection tools to build trustworthy and accepted designs.
Description
Keywords
Promises and Perils of Artificial Intelligence and Machine Learning: Disruption, Adoption, Dehumanisation, Governance, Risk, and Compliance, artificial intelligence, attachment theory, emotion detection, emotions, experiment
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.