A dual state variable formulation for ordinary differential equations

Date

1996

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This dissertation defines a new state variable formulation for ordinary differential equations. The formulation allows the systematic identification of eigenvalues for any ordinary differential equation, and leads to parallels with other concepts from linear algebra as well. Furthermore, the eigenvalues described here are generally defined by ordinary differential equations, and as such, the proposed state variable formulation can be reapplied to them. This results in the identification of nested, subsidiary eigenvalues. As a simple example of its utility, the formulation is applied to the oscillatory motion of the nonlinear pendulum. By modeling the behavior of the eigenvalues for this equation, an approximate solution can be obtained for the period of the pendulum and for its motion. The results are excellent when compared to those of other non-numerical approximation methods.

Description

Keywords

Differential equations, Pendulum

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Mechanical Engineering; no. 3331

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.