"Leadership in Action: How Top Hackers Behave" A Big-Data Approach with Text-Mining and Sentiment Analysis

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper examines hacker behavior in dark forums and identifies its significant predictors in the light of "leadership theory" for "communities of practice." We combine techniques from online forum features as well as text-mining and sentiment-analysis of messages. We create a multinomial logistic regression model to achieve role-based hacker classification and validate our model with actual hacker forum data. We identify "total number of messages," "number of threads," "hacker keyword frequency," and "sentiments" as the most significant predictors of expert hacker behavior. We also demonstrate that while disseminating technical knowledge, the hacker community follows Pareto principle. As a recommendation for future research, we build a unique keyword lexicon of the most significant terms derived by tf-idf measure. Such investigation of hacker behavior is particularly relevant for organizations in proactive prevention of cyber-attacks. Foresight on online hacker behavior can help businesses save losses from breaches and additional costs of attack-preventive measures.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media, hacker forums, community of practice, multinomial logistic regression, sentiment analysis, text-mining

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.