Please use this identifier to cite or link to this item:

A dual state variable formulation for ordinary differential equations

File Description Size Format  
uhm_phd_9629849_r.pdf Version for non-UH users. Copying/Printing is not permitted 3.99 MB Adobe PDF View/Open
uhm_phd_9629849_uh.pdf Version for UH users 3.94 MB Adobe PDF View/Open

Item Summary

Title:A dual state variable formulation for ordinary differential equations
Authors:Post, Alvin M.
Keywords:Differential equations
Date Issued:1996
Abstract:This dissertation defines a new state variable formulation for ordinary differential equations. The formulation allows the systematic identification of eigenvalues for any ordinary differential equation, and leads to parallels with other concepts from linear algebra as well. Furthermore, the eigenvalues described here are generally defined by ordinary differential equations, and as such, the proposed state variable formulation can be reapplied to them. This results in the identification of nested, subsidiary eigenvalues. As a simple example of its utility, the formulation is applied to the oscillatory motion of the nonlinear pendulum. By modeling the behavior of the eigenvalues for this equation, an approximate solution can be obtained for the period of the pendulum and for its motion. The results are excellent when compared to those of other non-numerical approximation methods.
Description:Thesis (Ph. D.)--University of Hawaii at Manoa, 1996.
Includes bibliographical references (leaves 175).
x, 175 leaves, bound ill. 29 cm
Rights:All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Appears in Collections: Ph.D. - Mechanical Engineering

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.