Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/71382

Machine Learning Systems in Clinics – How Mature Is the Adoption Process in Medical Diagnostics?

File Size Format  
0617.pdf 926.06 kB Adobe PDF View/Open

Item Summary

Title:Machine Learning Systems in Clinics – How Mature Is the Adoption Process in Medical Diagnostics?
Authors:Pumplun, Luisa
Fecho, Mariska
Wahl-Islam, Nihal
Buxmann, Peter
Keywords:Promises and Perils of Artificial Intelligence and Machine Learning: Disruption, Adoption, Dehumanisation, Governance, Risk, and Compliance
adoption
artificial intelligence
diagnostics
hospital
show 2 moreimplementation
machine learning
show less
Date Issued:05 Jan 2021
Abstract:In a world with a constantly growing and aging population, health is a precious asset. Presently, with machine learning (ML), a technological change is taking place that could provide high quality healthcare and especially, improve efficiency of medical diagnostics in clinics. However, ML needs to be deeply integrated in clinical routines which highly differs from the integration of previous health IT given the specific characteristics of ML. Since existing literature on the adoption of ML in medical diagnostics is scarce, we set up an explorative qualitative study based on a conceptual basis consisting of the technological-organizational-environmental framework (TOE) and the healthcare specific framework of non-adoption, abandonment, scale-up, spread, and sustainability (NASSS). By interviewing experts from clinics and their suppliers we were able to connect both frameworks and identify influencing factors specific to the adoption process of ML in medical diagnostics.
Pages/Duration:10 pages
URI:http://hdl.handle.net/10125/71382
ISBN:978-0-9981331-4-0
DOI:10.24251/HICSS.2021.762
Rights:Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections: Promises and Perils of Artificial Intelligence and Machine Learning: Disruption, Adoption, Dehumanisation, Governance, Risk, and Compliance


Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.

This item is licensed under a Creative Commons License Creative Commons