Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/71001

A Distributed Scheme for Stability Assessment in Large Scale Structure-Preserving Models via Singular Perturbation

File Size Format  
0310.pdf 704.26 kB Adobe PDF View/Open

Item Summary

Title:A Distributed Scheme for Stability Assessment in Large Scale Structure-Preserving Models via Singular Perturbation
Authors:Sun, Andy
Gholami, Amin
Keywords:Monitoring, Control and Protection
distributed control
singular perturbation
small signal stability
structure preserving model
Date Issued:05 Jan 2021
Abstract:Assessing small-signal stability of power systems composed of thousands of interacting generators is a computationally challenging task. To reduce the computational burden, this paper introduces a novel condition to assess and certify small-signal stability. Using this certificate, we can see the impact of network topology and system parameters (generators’ damping and inertia) on the eigenvalues of the system. The proposed certificate is derived from rigorous analysis of the classical structure-preserving swing equation model and has a physically insightful interpretation related to the generators’ parameters and reactive power. To develop the certificate, we use singular perturbation techniques, and in the process, we establish the relationship between the structure-preserving model and its singular perturbation counterpart. As the proposed method is fully distributed and uses only local measurements, its computational cost does not increase with the size of the system. The effectiveness of the scheme is numerically illustrated on the WSCC system.
Pages/Duration:9 pages
URI:http://hdl.handle.net/10125/71001
ISBN:978-0-9981331-4-0
DOI:10.24251/HICSS.2021.386
Rights:Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections: Monitoring, Control and Protection


Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.

This item is licensed under a Creative Commons License Creative Commons