Please use this identifier to cite or link to this item:

Energy-Efficient Mobile Sensing

File Size Format  
Mo hawii 0085A 10706.pdf 5.72 MB Adobe PDF View/Open

Item Summary

Title:Energy-Efficient Mobile Sensing
Authors:Mo, Tianli
Contributors:Lim, Lipyeow (advisor)
Computer Science (department)
Keywords:Computer science
energy efficient
mobile sensing
Date Issued:2020
Publisher:University of Hawai'i at Manoa
Abstract:Mobile sensing has emerged rapidly in the past few years as a promising avenue for collecting, leveraging and querying various information around users. One reason is that mobile devices have increasingly become central computing devices in people's daily lives. The other reason is that more affordable sensors have been embedded in smartphones. Since the mobile devices are battery-powered devices, we have to face the critical problem of how to reduce the energy consumption of mobile sensing, especially the processing of continuous queries on the sensed data, in order to extend the operational lifetime of mobile devices.
In this dissertation, we first propose the ACQUA framework to reduce the energy overhead of sensor data acquisition and processing for individual mobile devices. ACQUA reduces the energy consumption of individual mobile devices by modifying both the ordering and the segments of data streams that are retrieved by the continuous query evaluation. Then we propose CloQue, a framework that exploits correlation among the different sensing data streams. It can 1) reorder the order of predicate processing to preferentially select predicates, and 2) intelligently propagate the query evaluation results to dynamically update the confidence values of other correlated context predicates, in order to maximally reduce the energy consumption on individual mobile devices.
For energy savings on multiple mobile devices, we propose a collaborative query processing framework called CQP. CQP exploits the overlap (in both the sensor sources and the query predicates) across multiple executing queries, and then reduces the energy consumption of repetitive execution and data transmissions by having a set of `leader' mobile device nodes execute and disseminate these shareable partial results. CQP also utilizes lower-energy short-range wireless links to disseminate such results directly among proximate mobile devices. We also propose an improved framework called C2QP, that can exploit not only the correlation among multiple mobile devices and their sensed data streams, but can also process the continuous queries collaboratively by sharing partial results and shareable sensed data.
Pages/Duration:139 pages
Rights:All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Appears in Collections: Ph.D. - Computer Science

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.