Matching Possible Mitigations to Cyber Threats: A Document-Driven Decision Support Systems Approach

Date
2020-01-07
Authors
Mcneil, Martha
Noteboom, Cherie
Liu, Jun
El-Gayar, Omar
Llanso, Thomas
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Despite more than a decade of heightened focus on cybersecurity, the threat continues. To address possible impacts, cyber threats must be addressed. Mitigation catalogs exist in practice today, but these do not map mitigations to the specific threats they counter. Currently, mitigations are manually selected by cybersecurity experts (CSE) who are in short supply. To reduce labor and improve repeatability, an automated approach is needed for matching mitigations to cyber threats. This research explores the application of supervised machine learning and text retrieval techniques to automate matching of relevant mitigations to cyber threats where both are expressed as text, resulting in a novel method that combines two techniques: support vector machine classification and latent semantic analysis. In five test cases, the approach demonstrates high recall for known relevant mitigation documents, bolstering confidence that potentially relevant mitigations will not be overlooked. It automatically excludes 97% of non-relevant mitigations, greatly reducing the CSE’s workload over purely manual matching.
Description
Keywords
Cybersecurity and Software Assurance, cyber security, machine learning, mitigation, risk assessment, threat
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.