Please use this identifier to cite or link to this item:

Measuring Confidence of Assurance Cases in Safety-Critical Domains

File Size Format  
0628.pdf 1.36 MB Adobe PDF View/Open

Item Summary

Title:Measuring Confidence of Assurance Cases in Safety-Critical Domains
Authors:Lin, Chung-Ling
Shen, Wuwei
Cheng, Betty
Keywords:Cybersecurity and Software Assurance
dempster-shafer theory
software certification
software traceability
vector space model (vsm)
Date Issued:07 Jan 2020
Abstract:Evaluation of assurance cases typically requires certifiers’ domain knowledge and experience, and, as such, most software certification has been conducted manually. Given the advancement in uncertainty theories and software traceability, we envision that these technologies can synergistically be combined and leveraged to offer some degree of automation to improve the certifiers’ capability to perform software certification. To this end, we present DS4AC, a novel confidence calculation framework that 1) applies the Dempster-Shafer theory to calculate the confidence between a parent claim and its children claims; and 2) uses the vector space model to evaluate the confidence for the evidence items using traceability information. We illustrate our approach on two different applications, where safety is the key property of interest for both systems. In both cases, we use the Goal Structuring Notation to represent the respective assurance cases and provide proof of concept results that demonstrate the DS4AC framework can automate portions of the evaluation of assurance cases, thereby reducing the burden of manual certification process.
Pages/Duration:10 pages
Rights:Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections: Cybersecurity and Software Assurance

Please email if you need this content in ADA-compliant format.

This item is licensed under a Creative Commons License Creative Commons