Please use this identifier to cite or link to this item:

The Influence of Short-Term Solar Activity on the Proton Flux Measured by AMS during Solar Cycle 24.

File Size Format  
2017-08-phd-whitman.pdf 53.35 MB Adobe PDF View/Open
File under embargo until 2020-03-20

Item Summary Whitman, Kathryn 2019-05-28T20:28:41Z 2019-05-28T20:28:41Z 2017-08
dc.subject AMS-02
dc.subject solar energetic particles
dc.subject Forbush decreases
dc.subject solar activity
dc.title The Influence of Short-Term Solar Activity on the Proton Flux Measured by AMS during Solar Cycle 24.
dc.type Thesis
dc.contributor.department Physics
dc.embargo.liftdate 2020-03-20
dcterms.abstract The Alpha Magnetic Spectromer (AMS), a particle detector onboard the International Space Station (ISS), measures cosmic rays (CR) in the rigidity range of 0.8 GV to the TV ( 300 MeV/nuc into the TeV) with unprecedented precision and high statistics. The particle flux in the lower part of this rigidity range is influenced by short-term solar activity resulting from the most explosive events on the sun, M and X-class flares and fast coronal mass ejections (CME) with velocities > 800 km/s. The primary responses are temporary decreases in the galactic cosmic ray (GCR) flux which last on the order of days, called Forbush decreases (FD), and temporary increases in flux which last on the order of hours to days due to the arrival of solar energetic particles (SEP). It is still an open question as to how FDs behave with rigidity and how this behavior is related to disturbances measured in the solar wind. In this thesis, we present high-precision AMS proton fluxes for selected FDs with detailed information about FD behavior with rigidity and search for new correlations between FD characteristics and solar wind parameters. In addition, the background fluctuations in the AMS daily proton flux due to variability in the solar wind are quantified and the modified Force-Field Approximation from Corti et al. (2015) is compared with data. The second major portion of this thesis work is the measurement and analysis of SEP protons in an energy range and at a precision that have never before been available. We present AMS SEP proton fluxes for nine SEP events in solar cycle 24 that accelerated particles to rigidities above 0.8 GV. These AMS measurements are combined with SOHO and GOES-13 data to create SEP spectra between 0.1 - 2 GV which are compared with physics-based models and functions that represent different SEP acceleration mechanisms. This research program has taken advantage of AMS’s innovative technology and location above the atmosphere to provide brand new information to the heliophysics community about SEPs, which is currenty unavailable in the public domain from any other satellite.
dcterms.description Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017.
dcterms.language eng
dcterms.publisher University of Hawaiʻi at Mānoa
dcterms.rights All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
dcterms.type Text
Appears in Collections: Ph.D. - Physics

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.