Novel Methods for Weak Physiological Parameters Monitoring.

Date
2017-05
Authors
Xu, Jia
Contributor
Advisor
Department
Electrical Engineering
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Physiological monitoring systems that monitor vital sign parameters associated with physiological activities are important for health condition prognosis and diagnosis. These systems use transducers to detect weak physiological parameters, such as electrical signals (potential, impedance, capacitance) and mechanical variations (displacement), for interpretation of vital signs. Continuous heart rate monitoring is one of the most important practices by physicians. It assesses the cardiovascular condition of a subject and is normally carried out on special medical devices by personnel with specified training in hospitals, such as 12-lead electrocardiogram (ECG). Though it provides reliable readings of heartbeat signal, the wiring configurations may interfere cardiovascular activity pattern as well as refrain subject’s daily activities. And it is hard to be used in non-clinical environment without the help of professional personnel. In this work, a bio-impedance analysis (BIA) based contact method and Wi-Fi band Doppler radar based non-contact method are proposed. The BIA system was able to estimate heart rate from the subject’s wrist with only four electrodes. The BIA results agree with the reference, which validates the feasibility of the proposed system. To the best of our knowledge, this is the first reported BIA heartbeat monitoring system in the wristband configuration. In addition, an assessment of a variety of conventional biosensors for vital sign sensing was conducted, which evaluated their capabilities of acquiring heart rate or respiration rate from non-conventional locations. The extensive data collected and analyzed provided in-depth understanding of each sensor’s performance and potential application in wearable healthcare devices. The Doppler radar system was intended to detect small displacements on the body surface resulting from cardiac activities. Such time dependent variations indicate the impact of the heartbeat on the surface of chest wall, thus applicable for heart rate extraction. The lead-free feature of radar sensor eliminates any wiring configuration to the subject, and is a good candidate of non-contact physiological monitoring.
Description
Keywords
Physiological monitoring, bio-impedance analysis, Doppler radar
Citation
Extent
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.