Dynamic Composition of Cyber-Physical Systems

Date
2019-01-08
Authors
Jakobs, Christine
Werner, Matthias
Tröger, Peter
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Future cyber-physical systems must fulfill strong demands on timeliness and reliability, so that the safety of their operational environment is never violated. At the same time, such systems are networked computers with the typical demand for reconfigurability and software modification. The combination of both expectations makes established modeling and analysis techniques difficult to apply, since they cannot scale with the number of possible operational constellations resulting from the dynamics. The problem increases when components with different non-functional demands are combined to one cyber-physical system and updated independent from each other. We propose a new approach for the design and development of composable, dynamic and dependable software architectures, with a focus on the area of networked embedded systems. Our key concept is the specification of software components and their non-functional composition constraints in the formal language TLA+. We discuss how this technique can be embedded in an overall software design workflow, and show the practical applicability with a detailed resource scheduling example.
Description
Keywords
Cyber-physical Information Systems, Software Technology, composition, dynamic, real-time, safety, temporal logic
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.