Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/59661

A Latent Dirichlet Allocation Approach using Mixed Graph of Terms for Sentiment Analysis

File Size Format  
0221.pdf 1.04 MB Adobe PDF View/Open

Item Summary

Title:A Latent Dirichlet Allocation Approach using Mixed Graph of Terms for Sentiment Analysis
Authors:Casillo, Mario
Clarizia, Fabio
Colace, Francesco
De Santo, Massimo
Lombardi, Marco
show 1 morePascale, Francesco
show less
Keywords:Data Analytics, Data Mining and Machine Learning for Social Media
Digital and Social Media
Information Extraction, Latent Dirichlet Allocation, Mixed Graph of Terms, Relations Learning, Sentiment Analysis, Structure Learning.
Date Issued:08 Jan 2019
Abstract:The spread of generic (as Twitter, Facebook orGoogle+) or specialized (as LinkedIn or Viadeo) social networks allows to millions of users to share opinions on different aspects of life every day. Therefore this information is a rich source of data for opinion mining and sentiment analysis. This paper presents a novel approach to the sentiment analysis based on the Latent Dirichlet Allocation (LDA) approach. The proposed methodology aims to identify a word-based graphical model (we call it a mixed graph of terms) for depicting a positive or negative attitude towards a topic. By the use of this model it will be possible to automatically mine from documents positive and negative sentiments.Experimental evaluation, on standard and real datasets, shows that the proposed approach is effective and furnishes good and reliable results.
Pages/Duration:9 pages
URI:http://hdl.handle.net/10125/59661
ISBN:978-0-9981331-2-6
DOI:10.24251/HICSS.2019.270
Rights:Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections: Data Analytics, Data Mining and Machine Learning for Social Media


Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.

This item is licensed under a Creative Commons License Creative Commons