Optimum Network of Battery Storage to Support Electric Vehicle Charging Infrastructure in Smart Cities

Date
2019-01-08
Authors
Zhao, Dong
Thakur, Navwant
Chen, Jiayu
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Smart mobility and transportation is a critical component of smart cities. One barrier to the smart transportation is a lack of charging stations that can empower a huge amount of electric vehicles, especially the autonomous one. Battery storage technology provides an opportunity; however, how battery storage can serve a crucial role in enabling fast-charging stations to fulfill customer demand and providing a profit for charging station operators is unclear. This paper reports a discrete event simulation (DES) model to determine the optimum network of battery storage system considering costs and charging stations. A case study of Detroit Area in the State of Michigan is provided to demonstrate the usage of the model. Results show that lithium-ion batteries cost the most whereas zinc-air batteries cost the least. Findings suggest that a highly condensed charging station network provide higher benefit and result in lower total cost through battery units connected to a microgrid.
Description
Keywords
Smart City Digital Twins, Decision Analytics, Mobile Services, and Service Science, Battery storage, Charging station, Construction management, Infrastructure, Simulation
Citation
Extent
8 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.