Please use this identifier to cite or link to this item: http://hdl.handle.net/10125/59485

Divergence Based Non-Negative Matrix Factorization for top-N Recommendations

File Size Format  
0045.pdf 566.21 kB Adobe PDF View/Open

Item Summary

Title:Divergence Based Non-Negative Matrix Factorization for top-N Recommendations
Authors:Haque, Md. Enamul
Zobaed, SM
Tozal, Mehmet Engin
Raghavan, Vijay
Keywords:Data Science and Digital Collaborations
Collaboration Systems and Technologies
K-L divergence
Matrix factorization
Top N recommendation
Date Issued:08 Jan 2019
Pages/Duration:10 pages
URI:http://hdl.handle.net/10125/59485
ISBN:978-0-9981331-2-6
DOI:10.24251/HICSS.2019.055
Rights:Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections: Data Science and Digital Collaborations


Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.

This item is licensed under a Creative Commons License Creative Commons