Please use this identifier to cite or link to this item:
http://hdl.handle.net/10125/50100
A Multi-Scale Correlative Approach for Crowd-Sourced Multi-Variate Spatiotemporal Data
File | Size | Format | ||
---|---|---|---|---|
paper0213.pdf | 3.58 MB | Adobe PDF | View/Open |
Item Summary
Title: | A Multi-Scale Correlative Approach for Crowd-Sourced Multi-Variate Spatiotemporal Data |
Authors: | Gorko, Thomas Yau, Calvin Malik, Abish Harris, Matt Tee, Jun Xiang show 5 moreMaciejewski, Ross Qian, Cheryl Afzal, Shehzad Pijanowski, Bryan Ebert, David show less |
Keywords: | Collective Intelligence and Crowds Geospatial Aggregation, Multivariate Categorical Data, Soundscape Ecology, Visual Analytics, Visual Correlation. |
Date Issued: | 03 Jan 2018 |
Abstract: | With the increase in community-contributed data availability, citizens and analysts are interested in identifying patterns, trends and correlation within these datasets. Various levels of aggregation are often applied to interpret such large data schemes. Identifying the proper scales of aggregation is a non-trivial task in this exploratory data analysis process. In this paper, we present an integrated visual analytics environment that facilitates the exploration of multivariate categorical spatiotemporal data at multiple spatial scales of aggregation, focusing on citizen-contributed data. We propose a compact visual correlation representation by embedding various statistical measures across different spatial regions to enable users to explore correlations between multiple data categories across different spatial scales. The system provides several scale-sensitive spatial partitioning strategies to examine the sensitivity of correlations at varying spatial extents. To demonstrate the capabilities of our system, we provide several usage scenarios from various domains including citizen-contributed social media (soundscape ecology) data. |
Pages/Duration: | 10 pages |
URI: | http://hdl.handle.net/10125/50100 |
ISBN: | 978-0-9981331-1-9 |
DOI: | 10.24251/HICSS.2018.213 |
Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ |
Appears in Collections: |
Collective Intelligence and Crowds |
Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
This item is licensed under a Creative Commons License