A Network-Based Deterministic Model for Causal Complexity

Date
2018-01-03
Authors
Poon, Simon K.
Henry, Su
Gorji, Niku
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Despite the widespread use of techniques and tools for causal analysis, existing methodologies still fall short as they largely regard causal variables as independent elements, thereby failing to appreciate the significance of the interactions of causal variables. The prospect of inferring causal relationships from weaker structural assumptions compels for further research in this area. This study explores the effects of the interactions of variables in the context of causal analysis, and introduces new advancements to this area of research. In this study, we introduce a new approach for the causal complexity with the goal of making the solution set closer to deterministic by taking into consideration the underlying patterns embedded within a dataset; in particular, the interactions of causal variables. Our model follows the configurational approach, and as such, is able to account for the three major phenomena of conjunctural causation, equifinality, and causal asymmetry.
Description
Keywords
Soft Computing: Methods and Applications, logical synthesis, qualitative comparative analysis, causal complexity, configuration analysis
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.