Please use this identifier to cite or link to this item:

Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics

File SizeFormat 
paper0169.pdf5.02 MBAdobe PDFView/Open

Item Summary

Title: Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics
Authors: Eaglin, Todd
Cho, Isaac
Ribarsky, William
Keywords: Analytics
Issue Date: 04 Jan 2017
Abstract: We present a GPU-based implementation of the Space-Time Kernel Density Estimation (STKDE) that provides massive speed up in analyzing spatial- temporal data. In our work we are able to achieve sub- second performance for data sizes transferable over the Internet in realistic time. We have integrated this into web-based visual interactive analytics tools for analyzing spatial-temporal data. The resulting inte- grated visual analytics (VA) system permits new anal- yses of spatial-temporal data from a variety of sources. Novel, interlinked interface elements permit efficient, meaningful analyses.
Pages/Duration: 10 pages
ISBN: 978-0-9981331-0-2
DOI: 10.24251/HICSS.2017.165
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections:Interactive Visual Decision Analytics Minitrack

Please contact if you need this content in an ADA compliant alternative format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.