Dendrobium flower color : histology and genetic manipulation

Date
2003
Authors
Mudalige, Rasika Geethanjali
Contributor
Advisor
Kuehnle, Adelheid R
Department
Horticulture
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Dendrobium is the most important cut flower orchid in the world. Understanding the chemical, histological and molecular aspects of flower color is crucial for the development of breeding strategies for novel colors. The objectives of this research were to examine the histology of flower color, cloning and characterization of flavonoid biosynthetic genes, and metabolic engineering of Dendrobium flavonoid pathway to obtain new colors. In Dendrobium, anthocyanins can be confined to a single layer of cells (epidermal or suepidermal) in pale flowers. More intensely colored flowers had anthocyanin in several cell layers. Striped patterns on the perianth were due to the restriction of pigment to cells surrounding the vascular bundles. Color perception is markedly influenced by the presence or absence of carotenoids. Four types of epidermal cells were found in Dendrobium: flat, dome, elongated dome, and papillate. Epidermal cell shape and cell packing in the mesophyll affected the visual texture. Perianth parts with flat cells and a tightly packed mesophyll had a glossy texture, whereas dome cells and loosely packed mesophyll contributed a velvety texture. The labella in the majority of flowers examined had a complex epidermis with more than one epidermal cell shape, predominantly papillate epidermal cells. We were able to isolate a full clone of Dendrobium dihydroflavonol 4-reductase (dfr), and partial clones of chalcone synthase (chs), flavonoid 3'-hydroxylase (f3'h) and flavonoid 3', 5'-hydroxylase (f3'5'h), from Dendrobium Jaquelyn Thomas 'Uniwai Prince' (UH503). Expression data indicated that dfr and chs were expressed to the greatest degree in unopened buds. Amount of f3'h and f3'5'h mRNA was too small to detect. Southern analysis has shown that f3'h and f3'5'h is represented by 2 copies each in UH503. These clones will be extremely useful in future for flower color manipulation. Two different color genes, dfr and f3'5'h from two non-orchid plants, under the constitutive promoter ubiquitin3, were inserted into Dendrobium Icy Pink 'Sakura' with the intention of creating orange-red and blue shades, which are absent in commercial Dendrobium. Presence of the transgene in two sets of transformants was confirmed by PCR. Expression of the transgene from a few plants was indicated by RT-PCR and northern analyses.
Description
Thesis (Ph. D.)--University of Hawaii at Manoa, 2003.
Includes bibliographical references (leaves 148-153).
Mode of access: World Wide Web.
Also available by subscription via World Wide Web
xix, 153 leaves, bound ill. 29 cm
Keywords
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Horticulture; no. 4307
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.