Please use this identifier to cite or link to this item:

WRRCTR No.125 Numerical Modeling of Liquid Waste Injection into a Two-Phase Fluid System

File Size Format  
wrrctr125.pdf 4.15 MB Adobe PDF View/Open

Item Summary

Title:WRRCTR No.125 Numerical Modeling of Liquid Waste Injection into a Two-Phase Fluid System
Authors:Wheatcraft, Stephen W.
Peterson, Frank L.
Keywords:waste disposal
show 5 morenumerical analysis
sandbox model
fluid transport equation
convective dispersion equation
show less
LC Subject Headings:Groundwater -- Pollution -- Hawaii -- Mathematical models.
Injection wells -- Hawaii.
Waste disposal in the ground -- Mathematical models -- Hawaii.
Date Issued:Aug 1979
Publisher:Water Resources Research Center, University of Hawaii at Manoa
Citation:Wheatcraft SW, Peterson FL. 1979. Numerical modeling of liquid waste injection into a two-phase fluid system. Honolulu (HI): Water Resources Research Center, University of Hawaii at Manoa. WRRC technical report, 125.
Series:WRRC Technical Report
Abstract:The injection of liquid wastes into a groundwater environment saturated with density-stratified fluid is simulated by a finite-difference numerical model. The fluid transport equation is simultaneously solved with the convective-dispersion equation for salinity. The migration of the injected liquid waste effluent is then tracked by solving a second convective-dispersion equation for an ideal tracer dissolved in the effluent. The convective-dispersion equation for the ideal tracer is solved with the flow velocities obtained from the simultaneous solution of the fluid transport and the salinity convective-dispersion equations.
The equations are solved for the two-dimensional case of a line of injection wells set close together parallel to the coastline. Total length of the line of injection wells is considered to be much longer than the distance to the ocean so that any vertical cross section taken normal to the coastline will appear the same. Results are presented in a time-series of contour maps in the vertical plane: one map for each time-step, with lines of equal concentration for the salinity (isochlors); and the effluent tracer (isopleths). The more concentrated effluent is found to migrate vertically upward around the injection well due to buoyant force, while dilute effluent solutions migrate horizontally, displaying very little buoyant rise.
Pages/Duration:ix + 103 pages
Appears in Collections: WRRC Technical Reports

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.