Ratio of Energy and Nutrient Fluxes Regulates Symbiosis between Zooxanthellae and Corals

Date
1994-07
Authors
Dubinsky, Z.
Jokiel, P.L.
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii Press
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Ambient irradiance levels determine the rate of carbon influx into zooxanthellae at any given time, and thereby the energy available for the whole coral symbiotic association. Long-term photoacclimation of zooxanthellae to the time-averaged light regime at which the host coral grows results in optimization of light harvesting and utilization. Under high irradiance light harvesting is reduced, thereby avoiding photodynamic damage, whereas under low light, photon capture and quantum yield are maximized. Most of the photosynthate produced by the algae is respired. However, the capability of the zooxanthellae and the coral to retain carbon beyond that required to meet their respiratory needs depends on the availability of the commonly limiting nutrients, nitrogen and phosphorus. Therefore, the ratio of the flux of these nutrients into the colony to that of the photosynthetically driven carbon flux will regulate the growth of the zooxanthellae and of the animal. Nutrients acquired by predation of the coral on zooplankton are available first to the animal, whereas those absorbed by the zooxanthellae from seawater as inorganic compounds lead first to growth of the algae.
Description
Keywords
Citation
Dubinsky Z, Jokiel PL. 1994. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48(3): 313-324.
Extent
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.