WRRC Project Reports

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 43
  • Item
    WRRCPR No.94-07 Impact of Kawainui Canal on the Recreational Water Quality of Kailua Bay (KB-4)
    (Water Resources Research Center, University of Hawaii at Manoa, 1993-10) Ahuna, Lina ; Fujioka, Roger
    The microbiological criteria for recreational water quality have been directed toward the protection of water users from possible microbial pollution which may pose public health hazards. In Hawaii, all streams are classified as recreational waters. Elevated concentrations of indicator bacteria recovered in Oahu's streams that do not receive sewage or other wastewater effluents and discharges indicate, by present standards, that they are polluted with sewage and pose public health hazards. However, environmental sources of fecal bacteria, such as soils and plants, and fecal sources of non-human origins, such as animals, commonly occur in the environment and appear to be responsible for the elevated concentrations of bacteria found in streams, during both wet and dry weather conditions. High concentrations of bacteria recovered in the upper watershed of Maunawili and the Kawainui Marsh and Canal suggest that bacterial nonpoint source pollution has a significant impact on the recreational water quality of Kailua Bay. Salinity changes at sites compared to the concentrations of fecal indicator bacteria indicate that dilution alone could not account for the reductions in bacterial number; reductions were also affected by other factors such as sunlight. These bacteria in stream recreational waters ultimately impact the ocean receiving waters, suggesting a need for the further studies to assess the origins of environmental sources of bacteria, as well as their impact on the health and well-being of the user population.
  • Item
    WRRCPR No.94-08 Kailua Bay Circulation (KB-5)
    (Water Resources Research Center, University of Hawaii at Manoa, 1993-10) Krock, Hans-Jurgen ; Sundararaghavan, Hari
    The objective of this study is to describe the transport characteristics of Kailua Bay, Oahu, Hawaii. This will allow a comparison of the relative importance of the wastewater discharged through the Mokapu Ocean Outfall with land-derived discharges on the bacteriological conditions in the recreational area of Kailua Bay. Measurements were made with current meters and drogues and dye. The results show that land-derived discharges have a much greater influence on the bacteriological water quality off Kailua Beach than does the Mokapu outfall discharge. The outfall discharge transport is primarily in the northerly direction and away from Kailua Bay. However, when the wind is directly from the north or from north by northeast, a portion of the surface layer from the Mokapu diffuser area can be transported to the reef area off south Kailua Beach and off Lanikai. Even under these conditions, the resulting bacteriological effect on the waters is less than 1% of that from land-derived discharges.
  • Item
    WRRCPR No.94-05 Assessing The Impact of Mokapu Sewage Outfall on the Shoreline Water Quality of Kailua Bay (KB-2)
    (Water Resources Research Center, University of Hawaii at Manoa, 1993-10) Fujioka, Roger S. ; Wu, Chunmei ; Fujioka, Carrie K.
    The discharge of secondary treated sewage effluent from the Mokapu Ocean Outfall into Kailua Bay, Oahu, Hawaii, represents a point source of pollution to the bay. Public health considerations are therefore of significant importance due to bodily contact and the possible ingestion of recreational water. The impact of the Mokapu outfall on the shoreline water quality at Kailua Bay was assessed in 1990 and 1991. The concentrations of fecal indicator bacteria (E. coli, enterococci, C. perfringens) were determined in sewage effluent samples and in water samples collected from the zone of mixing (ZOM) sites, offshore sites, nearshore sites, and shoreline sites of Kailua Bay. The indicator bacterial loads discharged from the outfall were on the orders of 106 E. coli/100 ml, 105 enterococci/100 ml, and 104 C. perfringens/ 100 ml. Within the ZOM, some of the sewage surfaced, however most of it was transported submerged and in a northerly direction. The sewage was also transported submerged to the two offshore sites located north and south of the ZOM but preferentially north. The nearshore data also suggested the movement of sewage in a direction north-northwest of the outfall. The absence or recoveries of only very low numbers of bacteria from the nearshore sites closest to the Kailua shoreline did not provide evidence that sewage from the outfall was possibly impacting the quality of the shoreline recreational waters. The geometric means of the seven true shoreline sites all met Hawaii's marine recreational water quality standard. The two other shoreline sites which equaled or exceeded the standard are actually the mouths of land-based fresh water sources which are known to contain high concentrations of indicator bacteria. The overall results suggested that the quality of shoreline water is more likely impacted by land-based sources such as rainfall events which increase surface runoff.
  • Item
    WRRCPR No.94-06 Microbiological Assessment of Kaelepulu Stream and the Impact of Discharge in Kailua Bay (KB-3)
    (Water Resources Research Center, University of Hawaii at Manoa, 1993-10) Roll, Bruce M. ; Fujioka, Roger S.
    Kaelepulu Pond is an inland brackish water pond (20 ppt salinity) which is under tidal influence and is fed by rainfall. Water from this pond flows via canals and streams (Kaelepulu Stream) for approximately 2 miles through a residential community (Kailua) and discharges into the ocean at Kailua Beach, the most popular beach on the windward side of Oahu, Hawaii. Water in the Kaelepulu pond and stream system has been classified for recreational use and must meet the State standard of 200 fecal coliform/100 ml. A sewage pumping station located next to this stream has been documented to occasionally discharge untreated sewage into the stream. The bacterial quality of the water in this stream system has been previously determined to be poor, and citizens of this community have concluded that the sewage from the pumping station is responsible for the poor water quality. The objective of this study was to determine the sources of fecal indicator bacteria entering the Kaelepulu Stream system and to assess the impact of this stream on the water quality of water at Kailua Beach. Water from throughout the stream system, soil, and duck feces were analyzed for indicator bacteria (fecal coliform, enterococci, E. coli, and C. perfringens). Storm drains and tributary streams (especially during rainfall, soil, and duck feces) were the major sources of fecal indicator bacteria Kaelepulu Stream. Analysis of stream water samples showed the, of the three recreational water quality standards, the enterococci standard was exceeded most frequently, followed by the E. coli and the fecal coliform standard.
  • Item
    WRRCTR No. 94 Water Recycling of Sewage Effluent by Irrigation: A Field Study on Oahu
    (Water Resources Research Center, University of Hawaii at Manoa, 1975-03) Lau, L. Stephen ; Ekern, Paul C. ; Loh, Philip C.S. ; Young, Reginald H.F. ; Burbank, Jr. ; Nathan C. ; Dugan, Gordon L.
    The specific project objectives were to: (1) evaluate by field lysimeters and pilot plots and augment by laboratory studies the feasibility of utilizing water reclaimed from sewage for irrigation under Hawaiian conditions; (2) assess the probable effects of surface-applied reclaimed water on groundwater quality particularly in terms of potential viral transmission and long-term buildup of solids; (3) evaluate the effects of various water quality parameters on the soil, percolation, and vegetative growth when grassland or sugarcane is irrigated with sewage effluents; (4) explore any problem in sugarcane culture, either in technology or in crop quality that might be involved in the irrigation of sugarcane with water reclaimed from sewage. The central Oahu project site area is located near the Mililani Sewage Treatment Plant (STP) which, in 1975, received approximately 3217 m3/ day (0.85 mgd) of essentially domestic sewage from the nearby expanding Mililani Town development. The STP utilizes the Rapid Bloc activated sludge process (secondary treatment) that achieves a suspended solids and BOD5 removal rate that averages 90%. The location of the project site was chosen in part because the adjacent field soils are of the Oxisol order similar to that on which approximately 90% of the sugarcane cultivated under irrigated conditions on Oahu is grown. The general project site area receives an average annual rainfall of approximately 102 cm (40 in.), and is situated at an elevation approaching 152 m (500 ft). The research activities were grouped into three major areas: soils and irrigation, viral analysis, and water quality analysis. In general, the values of guideline chemical parameters for the Mililani STP effluent are below the maximum value for irrigation of sensitive crops. Pesticides and heavy metal concentrations were either below the level of concern or level of detectability. Nitrogen was given special emphasis for several reasons: its use as a major component of most fertilizers; its known adverse effect (lowered sugar yields) on matured sugarcane; its essential solubility in the nitrite and nitrate form; its relationship in concentrations above 10 mg/l as N to methomoglobinemia, the disease of infants; and its potential rote in the eutrophication of open bodies of water receiving excessive nitrogen loads. Commencing in August 1971, the project activities consisted of: the installation of field grass-sod, bare soil, and field lysimeters at the Mililani STP; coordinating laboratory facilities and analytical capabilities for determining the constituents in water, waste water, and soils; development of virus culturing and assaying techniques under field conditions, and studying the application of secondary effluent to maturing sugarcane in OSC Field No. 240, located approximately 3.2 km (2 miles) from the Mililani STP. The results of these studies helped establish procedures and guidelines for the principal focus of the project, the sequential application of sewage effluent, ditch water, and combinations thereof, to sugarcane in 30 test plots with uniform areas of 0.04 ha (0.1 acre) each in the newly planted (February 1973) OSC Field No. 246, located approximately 1.6 km (1 mile) from the Mililani STP. The test plots were divided into three basic irrigation schemes of ten plots each: A, B, and C. Plots "A" were scheduled to received only ditch water for the 2-yr growth cycle, "B" plots to receive secondary effluent for the first half of the growth cycle and ditch water thereafter, and "C" plots to have only effluent irrigation applications for the full growth cycle. Fifty ceramic point samplers were installed in representative "A", "B", and "C" plots at depths of 23 to 30 cm and 46 to 53 cm (9 to 12 in. and 18 to 21 in.). which resulted in the shallower points being positioned in the tillage zone and the deeper points being positioned approximately 15 cm (6 in.) below the tillage zone. Thus leachate collected by the shallower points represented liquid available to the sugarcane root zones whereas, leachate collected from the deeper points is assumed to be generally unavailable to the sugarcane and potentially may percolate to the groundwater table. Two 1.52-m (5 ft) deep field lysimeters were also installed in a furrow row adjacent to the test plot. The sugarcane growing on one lysimeter was irrigated with ditch water while sugarcane on the other lysimeter received secondary effluent. Sugarcane parameters were monitored periodically throughout the culture cycle. Field No. 246 was harvested in March 1975 and the associated laboratory analysis of the yields was completed and evaluated in April 1975. The Mililani STP secondary treated and chlorinated domestic and municipal sewage effluents containing insignificant amounts of toxic chemicals represent a generally usable irrigation supply for sugarcane and grasslands in central Oahu. Application of sewage effluent for the first year of a 2-yr cane crop cycle increased the sugar yield by about 6% compared with the control plots. However, when sewage effluent was applied for the entire 2-yr crop cycle, sugar yield was reduced by about 6% and the cane quality by about 16% even though the total cane yield increased by about 11%. There was no apparent evidence of significant surface clogging of the soil or of soil chemical properties impairment resulting from sewage effluent irrigation during the first full 2-yr sugarcane crop cycle. Under a no moisture stress condition, a 1-mgd supply is sufficient to irrigate 61 to 81 ha (150 to 200 acres) of sugarcane by the furrow method. The quality of percolate from the effluent-irrigated sugarcane-cultured soil was of acceptable concentration from the standpoint of groundwater quality protection: the only possible concern was for nitrogen which sporadically exceeded the 10 mg/l limit for drinking water during the first 6 to 7 months of cane growth. However, similar exceedance occurred in the ditch water-irrigated sugarcane plots and the plots irrigated with effluent during the first year and with ditch water during the second year. Furthermore, there was no major difference in the total quantity of nitrogen produced in the percolate among the three different treatments. Phosphorus, potassium, suspended solids, biochemical oxygen demand, total organic carbon, and boron were removed effectively from the applied effluent by means of irrigation; however, chloride in the percolate was essentially unaffected except for a transient increase during fertilization. Both total dissolved solids and chloride in the percolates met drinking water standards. Human enteric viruses have been shown to be present in the majority of effluent samples examined and hence, can be assumed to be present in the effluent applied to the irrigated field. However, the absence of these viruses in all sugarcane and grass percolates sampled over a 2-yr period, plus other project virus studies conducted, suggest strongly that the possibility of contaminating deep underground water sources is extremely remote. Survival of poliovirus was minimal in an open field area which was exposed to direct sunlight, high temperature, and dessication. In contrast, the viability of the virus was maintained for up to two months in a field of mature sugarcane where the virus was protected from the physical elements. Bermudagrass, with periodic cutting and harvesting, proved to be an excellent utilizer of sewage effluent applied nitrogen and, thus, excelled sugarcane from the standpoint of groundwater protection. Essentially no nitrogen was recovered from the percolate at the 1.52-m (5 ft) depth below the grassed surface, whereas nearly 25% of the total nitrogen applied from chemical fertilizers and sewage effluent was recovered at the same depth in sugarcane percolate. Up to 40.47 ha (100 acres) of grassland may be irrigated with 1 mil gal/day of effluent under a no moisture stress condition. However, it has been demonstrated that fallow or bare soil appears incapable of removing significant amounts of nitrogen from the applied effluent. Disinfected sewage effluent, similar in composition to that used in the Mililani study, may be used for irrigation of sugarcane in the first year followed by irrigation with surface water in the second year, however, when used for the entire 2-yr crop cycle without added treatment, poorer sugar yield will result. Establishing a virus monitoring and quality control program for the treated sewage effluent before application is an essential part of an irrigation recycling program. Furthermore, development of more effective methods of virus inactivation prior to recycling is highly recommended. Precautionary sanitation measures for field workers should be practiced. Further research on the use of effluent for irrigation sugarcane would be desirable, specifically: 1. Repeat test plot studies for a ratoon crop cycle to confirm the yield and to assess Long-term effects on the soil 2. Test with various dilutions of sewage effluent and with chemical ripeners to improve the yield 3. Investigate plugging of drip orifices in irrigation tubings in anticipation of extensive future use.