Please use this identifier to cite or link to this item:

Geometry and singularities of spatial and spherical curves

File Description Size Format  
uhm phd 4553 r.pdf Version for non-UH users. Copying/Printing is not permitted 3.14 MB Adobe PDF View/Open
uhm phd 4553 uh.pdf Version for UH users 3.14 MB Adobe PDF View/Open

Item Summary

Title:Geometry and singularities of spatial and spherical curves
Authors:Xiong, Jianfei
Conics, Spherical
Date Issued:2004
Abstract:In the first part of this dissertation the spherical evolute, the spherical involute, the spherical orthotomic and the spherical antiorthotomic are investigated and their local diffeomorphic types are determined. The concept of the spherical conic is introduced. It is proven that the incident angle and reflection angle are equal for the spherical conic. The necessary and sufficient conditions for the spherical conic to be a circle are given. In the second part of this dissertation the ruled surfaces of normals and binormals of a regular space curve are locally classified under the left-right action according to the types of the curve. For this purpose some results are obtained on the relationship of the powers of terms in the Taylor series of an invertible function and its inverse.
Description:Mode of access: World Wide Web.
Thesis (Ph. D.)--University of Hawaii at Manoa, 2004.
Includes bibliographical references (leaves 113-114).
Electronic reproduction.
Also available by subscription via World Wide Web
show 1 morevii, 114 leaves, bound ill. 29 cm
show less
Rights:All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Appears in Collections: Ph.D. - Mathematics
Ph.D. Dissertations- Mathematics Department

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.