A biologically inspired methodology for multi-disciplinary design optimization

Date
2010-12
Authors
Nunes, Miguel Alexandre
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2010]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Optimization problems in engineering are of major importance for the development of new structures, new materials, and even for new ways of improving engineering that are so demanding in today's industry. The development of a biologically inspired methodology brings new ways for topology optimization to be applied in a multidisciplinary design approach. The process developed in this thesis extends the methodology proposed by Kobayashi for engineering designs to multiply connected regions. The methodology is based on a cellular division model for developing the design topology. The topology generated is then improved using a Genetic Algorithm. The methodology is demonstrated in the design of a structural panel from a satellite at launching conditions. Software was developed to illustrate the applicability of the proposed design approach. The results show how the method improves a given structural problem and compares it to a traditional engineering design.
Description
M.S. University of Hawaii at Manoa 2010.
Includes bibliographical references.
Keywords
Multidisciplinary Design Optimization, Map L-system, Biologically Inspired Structures, Satellites
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Mechanical Engineering.
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.