Sustainability framework for urban transportation modes and exploratory applications

Date
2011-12
Authors
Mitropoulos, Lampros
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2011]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Increasing environmental concerns as well as economic and social impacts of transportation in communities necessitate the incorporation of sustainability into the planning process. The common approach for sustainability assessment in transportation considers only personal vehicles or all modes present on a section of a network using aggregate measures of performance. The accelerated development and introduction of vehicles with alternative propulsion systems compel a detailed breakdown of vehicle components and characteristics for the proper understanding of their sustainability performance and impacts over their entire life cycle. This study develops a long-term sustainability-based comprehensive framework for the life cycle assessment of any urban transportation mode. In developing a life cycle sustainability framework (LCSF), the generic structure components of a transportation system and the restrictions that may be faced in its development and implementation are considered. LCSF consists of seven fundamental dimensions that govern transportation systems: (1) Environment; (2) Technology; (3) Energy; (4) Economy, (5) Users and other stakeholders, (6) Legal framework, and (7) Local restrictions. LCSF is used to assess the sustainability performance of 11 vehicles with a variety of propulsion technology. The vehicles are ranked based on their performance per sustainability dimension, and overall sustainability. Gasoline pickup truck (GTP) and gasoline SUV are the most energy demanding vehicles. Hybrid electric are the least energy demanding vehicle per vehicle mile traveled over its life cycle, with 44% lower energy requirements than an internal combustion engine vehicle. Car Share and BRT have the lower energy consumption per passenger mile traveled (PMT). Vehicle-specific results were combined in a tool to perform a sustainability assessment of Atlanta, Chicago and OPTIMUS--a hypothetical metropolitan area with superior transportation sustainability elements. Normalized indicators per metropolitan area are aggregated into a sustainability dimension index (SDI) and an overall sustainability index (OSI). Both SDI and OSI are used to reveal dimension specific and overall sustainability tradeoffs for each alternative when different characteristics, policies, scenarios and assumptions are used. The sustainability LCSF with its proposed indicators provides a workable method both for sustainability assessment in transportation planning and for facilitating policy analysis and decision-making.
Description
Ph.D. University of Hawaii at Manoa 2011.
Includes bibliographical references.
Keywords
urban transportation modes
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Civil Engineering.
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.