The potential role of hypoxia inducible factor 1 alpha in multipotent germ cells and neural stem/progenitor cells

Date
2014-12
Authors
Takahashi, Natsumi
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2014]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Hypoxia inducible factor 1 alpha (HIF1α) is a key transcription factor which transcriptionally activates an array of genes involved in adaptive responses to physiological hypoxia. HIF1α has been implicated in many disease conditions as well as normal development of many organs including the heart, the brain and the bones. In recent years, a number of studies have revealed that HIF1α also maintains undifferentiated state of many types of stem cells such as embryonic stem cells, hematopoietic stem cells and mesenchymal stem cells. In this study, we sought to investigate whether HIF1α is localized in intestinal stem cells, hair follicle stem cells and germline cells, in which HIF1α expression has not yet been reported. Although we did not detect any HIF1α signal in intestinal and hair follicle stem cell compartments, we observed a clear expression of HIF1α in both male and female germ cells. Furthermore, our results showed the presence of HIF1α throughout the fetal and neonatal development of both male and female germ cells, raising a possibility that HIF1α may play a role as a transactivator of glycolytic genes in highly proliferative cells such as primordial germ cells and spermatogonial cell as those cell types heavily depend on glycolysis for energy production. Lastly, we investigated whether HIF1α regulates telomerase activity in the cultured neural stem/progenitor cell (NSPCs) population, as our previous study revealed that HIF1α transactivates mTert and subsequently regulates telomerase activity in mouse embryonic stem cells. Our shRNA-mediated Hif1α knockdown assay resulted in the decreased levels of telomerase activity, strongly suggesting that HIF1α transactivates mTert in NSPCs. Regulation of telomerase activity may be important to ensure the long term survival of NSPCs and continuous neurogenesis throughout the life of an organism. Together, the results of this study illustrate the involvement of HIF1α in normal development and maintenance of types of stem/progenitor cells in which the localization and function of HIF1α was never extensively discussed, pointing out that further investigation may lead to better understanding of the roles of HIF1α in multipotent cells.
Description
Ph.D. University of Hawaii at Manoa 2014.
Includes bibliographical references.
Keywords
HIF1α
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Developmental and Reproductive Biology.
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.