Dissolved iron and aluminium cycling in the Indian Ocean : from high-resolution shipboard sections to the prospect of miniaturized autonomous determinations

Date
2014-12
Authors
Grand, Maxime Marcel
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2014]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The development of a mechanistic understanding of the Fe cycle in the ocean requires assembling a global database of observations with adequate spatial and temporal resolution. This first part of this dissertation is concerned with more than 2,000 measurements of dissolved Iron (Fe) and Aluminium (Al) collected at ~60 nautical miles intervals during four sections of the US CLIVAR-CO2 Repeat Hydrography Program in the upper 1000m of the Indian Ocean. These data are used to explore the effects of circulation, dust deposition, riverine inputs, fluxes from margin sediments and remineralization processes on the biogeochemical cycles of Fe and Al. Along the 4 transects, the surface distribution of Al reflects the deposition of mineral dust and is used to produce 155 estimates of deposition. Below the surface, the distribution of Al is mainly influenced by the large-scale circulation of the Indian Ocean with additional inputs from sediments. In the Indian sector of the Southern Ocean, elevated subsurface Fe concentrations are sourced from topographic upwelling of Fe-rich deep waters and sedimentary inputs from the Kerguelen Plateau. In the Northern Indian Ocean, elevated subsurface Fe concentrations are sustained by remineralization of settling organic matter combined with sedimentary inputs. In the South Indian Subtropical Gyre along 32ºS, the zonal distribution of N* and aeolian Fe inputs are coupled, suggesting that Fe inputs from dust deposition regulate nitrogen fixation rates. The second part of this dissertation explores the applicability of micro-Sequential Injection Lab-On-Valve (μSI-LOV) for trace element analysis and describes the development and validation of a novel μSI-LOV method for Zn determinations. This technique exploits the attributes of μSI-LOV and a novel fluorescent probe to measure Zn with high precision and detection limit of 0.1nM. This low detection limit is achieved without pre-concentration, using 50μL of reagent and 75μL of sample and an analytical cycle of ~1min in a compact, fully automated system that requires little maintenance. This work may facilitate the development of a new generation of miniaturized analytical systems, which, when deployed on moorings and other platforms, will provide a much-needed temporal dimension to the current observational database of biogeochemically active trace elements.
Description
Ph.D. University of Hawaii at Manoa 2014.
Includes bibliographical references.
Keywords
Fe cycle
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Oceanography.
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.