Please use this identifier to cite or link to this item:

Identification and quantification of submarine groundwater discharge in the Hawaiian islands

File Description Size Format  
Kelly_Jacque_r.pdf Version for non-UH users. Copying/Printing is not permitted 32.91 MB Adobe PDF View/Open
Kelly_Jacque_uh.pdf Version for UH users 42.3 MB Adobe PDF View/Open

Item Summary

Title:Identification and quantification of submarine groundwater discharge in the Hawaiian islands
Authors:Kelly, Jacque Lynn
Keywords:submarine groundwater discharge
thermal infrared
dissolved inorganic nutrients
show 1 morePearl Harbor
show less
Date Issued:Aug 2012
Publisher:[Honolulu] : [University of Hawaii at Manoa], [August 2012]
Abstract:Submarine groundwater discharge (SGD) is a fundamental pathway for nutrient and contaminant entry to the world's coastal zones from terrestrial aquifers. The distribution and scale of SGD vary spatially and temporally, necessitating use of multiple methodologies for its study. High-resolution aerial thermal infrared (TIR) remote sensing was employed to map the distribution of cold SGD around much of Oahu, Hawaii, and a dual infrared thermography and in situ tracer (222Rn, temperature, salinity, and dissolved inorganic nutrient) study in Pearl Harbor was conducted to determine locations and fluxes of groundwater discharge to the harbor. Surface water surveys of the natural tracer 222Rn in Pearl Harbor confirmed point source and diffuse seepage areas identified in SST maps. Conservative estimates of groundwater fluxes derived from 222Rn inventories of surface water indicate that between 119,400 and 322,030 m3/d of groundwater enters the harbor along its shoreline. Recently discharged groundwater contributes at least 51,600 mol/d of nitrate, 4,500 mol/d of phosphate, and 835,000 mol/d of silica to the harbor. Isotopic analyses of dissolved nitrate suggest that multiple water sources exist in the harbor and that these sources mix within the aquifer.
Chlorofluorocarbon groundwater apparent ages in Kona Hawaii were investigated to determine groundwater residence times and potential implications of the residence times on discharging groundwater. A single water-source model indicates that groundwater recharged four supply wells during the mid-1960s and mid-1970s. Recharge occurred between the mid-1970s and mid-1980s for several coastal wells and ponds using the same model. Alternately, a simple binary mixing model, with one water source recharged prior to 1940 (young water) and the other after 1940 (old water), indicates recharge of the young water fraction from between the mid-1970s to mid-1980s for several wells and coastal ponds. Water supply wells contain greater proportions of relatively old groundwater than coastal wells and ponds, consistent with sampling depths, complex aquifer geometries, and varied flow networks that cause mixing of old water with younger water within the aquifers. Furthermore, CFCs may be used to identify water from different aquifers.
Description:Ph.D. University of Hawaii at Manoa 2012.
Includes bibliographical references.
Appears in Collections: Ph.D. - Geology and Geophysics

Please email if you need this content in ADA-compliant format.

Items in ScholarSpace are protected by copyright, with all rights reserved, unless otherwise indicated.