Protein-rich fungal biomass production on sugarcane vinasse for animal feed applications with concomitant water reclamation

Date
2012-12
Authors
Nitayavardhana, Saoharit
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [December 2012]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The sugar-to-ethanol production process generates a significant amount of lowvalue residue known as vinasse. Vinasse has a high organic content measured as chemical oxygen demand (COD) of over 100 g/L, and its direct disposal has a negative impact on the environment. This research investigated the feasibility of fungal technology as a cost effective and environment-friendly approach in utilizing the vinasse as a sole substrate for producing a protein-rich edible fungus, Rhizopus microsporus (var. oligosporus) with concomitant wastewater reclamation. Optimization studies showed prolific fungal growth at pH 5.0 on vinasse with nutrient (nitrogen and phosphorus) supplementation. The fungus grew exponentially during the first 24 hours using reducing sugar as a major constituent to support its growth. Ethanol at concentrations greater than 5.0% (v/v) adversely affected the fungal growth through change in mycelial morphology. Fungal fermentation in an airlift bioreactor (2.5-L working volume) under various aeration rates (0.5, 1.0, 1.5, and 2.0 volumeair/volumeliquid/min (vvm)) was investigated for the potential large-scale fungal biomass production. The fungal biomass yield was found to depend on the aeration rate, and the aeration rate of 1.5 vvm resulted in the highest fungal biomass yield of 8.04 ± 0.80 (gbiomass increase/ginitial biomass) with significant reduction in organic content ~ 80% (or 26 g/L) measured as soluble chemical oxygen demand (SCOD). Vinasse-derived fungal biomass contained approximately 50% crude protein with 84% in vitro protein digestibility. Essential amino acids contents of the fungal biomass were comparable to commercial protein sources (fishmeal and soybean meal) for animal feeds, with the exception of methionine and phenylalanine. Importantly, the fungal biomass contained high lysine (~ 8% on protein basis), which is the most critical amino acid required in animal feed. Moreover, fungal biomass had essential fatty acids including linoleic, linolenic, eicosapentaenoic (EPA), and docosahexaenoic (DHA), which could further benefit fungal biomass as an aquatic feed. The integration of innovative fungal technology with sugar-based ethanol production could provide an opportunity for producing food-grade fungal protein for animal feed application with simultaneous wastewater reclamation for in-plant use or for land applications.
Description
Ph.D. University of Hawaii at Manoa 2012.
Includes bibliographical references.
Keywords
concomitant water reclamation, fungal biomass production, biomass production, sugarcane vinasse, animal feed
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Molecular Biosciences and Bioengineering.
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.