Distributions and activities of chemolithoautotrophic bacteria in aphotic waters of the North Pacific Subtropical Gyre

Date
2014-05
Authors
Thomas, Sara Elizabeth
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [May 2014]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The dark, interior waters of the world's oceans form some of the largest habitable space on Earth, yet knowledge of deep-sea biology and biogeochemistry remains rudimentary. In this thesis, I quantified and sequenced form II cbbM ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) genes in seawater samples from the surface through the bathypelagic (0-4000 m) of the North Pacific Subtropical Gyre (NPSG) to determine the distributions of chemoautotrophic bacteria in the ocean. In addition, I conducted two substrate addition experiments to determine whether an increase in a reduced sulfur substrate (thiosulfate) would change rates of carbon fixation (based on assimilation of 14C-bicarbonate), bacterial production (based on incorporation of 3H-leucine), or the abundance of cbbM genes. Polymerase chain reaction (PCR) amplification and sequencing of cbbM genes revealed a diverse assemblage of bacteria, including members of γ-and δ-proteobacteria, in the mesopelagic waters of the NPSG. Quantitative PCR (qPCR) analyses of cbbM genes revealed low abundances in the epipelagic transitioning to high abundances throughout the meso-and bathypelagic. Results from the thiosulfate addition experiments indicated that in one of the two experiments, elevated concentrations of thiosulfate stimulated rates of both 14C-bicarbonate assimilation and 3H-leucine incorporation, but resulted in no significant changes in cbbM abundances. Such results hint that mixotrophy may be a common strategy among chemoautotrophic bacteria dwelling in the energy-limited waters of the deep sea. Moreover, my results indicate that largely unexplored chemoautotrophic microbial metabolisms may play an important role in biogeochemical transformations of the dark ocean.
Description
M.S. University of Hawaii at Manoa 2014.
Includes bibliographical references.
Keywords
deep-sea biology, biogeochemistry, ocean
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Oceanography.
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.