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Abstract

Customer satisfaction is crucial for the long term
success of any travel service provider. Therefore,
identifying situations that can lead to customer
dissatisfaction is critical. The strongest evidence of
customers dissatisfaction are their complaints. While
complaints do not occur very often, they almost always
lead to loss of customer goodwill which can cost travel
providers millions of dollars in future revenues. In this
paper, we describe an approach to proactively identify
customers that have the highest propensity to complain
as they encounter a travel disruption event. These
are invaluable insights that can empower customer
service teams with information to deliver a more timely,
relevant and impactful service experience. We use
three key aspects in this approach: (i) specialized
feature engineering for the travel industry; (ii) handling
extremely imbalanced data and (iii) adaptation of
binary classification, anomaly detection and learning
to rank models to our specific task. This research
is an important step towards more individualized
understanding of customer behavior, and potential
service enhancements to further increase customer
satisfaction.

1. Introduction

During a typical year there are more than 40
million commercial flights worldwide, carrying more
than 5 billion customers.1 Airlines around the world
are competing for passengers’ demand which makes
the airline industry extremely competitive. From
a customer’s perspective, there often is very little
distinction in travel choices between a given origin and
destination. Similar flights are offered by multiple
carriers, in many cases departing and arriving within
minutes of each other. In addition, the difference in
pricing between companies is often minimal. Therefore

1Data obtained from https://www.statista.com/statistics/
564769/airline-industry-number-of-flights/

airlines increasingly strive to provide differentiation
in customer service to ensure a superior customer
experience.

While every flight or travel moment cannot be
personalized, acknowledging people as individuals and
customized messaging to customers is an easy way to let
passengers know that they are seen beyond a price point.
In particular, personalizing the experience for customers
who are confronted with service disruptions such as
arrival delays, flight cancellation or missed connections
can avert a decline in the airline’s Net Promoter Score
(NPS)2 and improve customer loyalty.

We worked with a major legacy airline on a proof of
concept to proactively identify customers that have the
highest propensity to complain as they encounter a flight
disruption, thereby providing customer-facing teams
with information to deliver a more timely, relevant and
impactful service experience. The airline operates as the
dominant carrier at several major hub airports and fields
a substantial staff of customer service representatives
to address customer issues. Ideally the airline would
like to dedicate staff to respond to customers who
have experienced flight disruptions on the spot. In
order to deploy the available customer service staff
most effectively, the airline sought a solution enabling
a two step response: (1) identify flights with the
highest propensity to generate complaints and dispatch
representatives to greet those flights, and (2) identify
customers on those flights with the highest need of
attention. This two-step approach is reflected in our
solution described below.

The task of learning patterns that lead to a complaint
from historical booking and flight data is challenging
because the occurrence of complaints is relatively rare
compared to the total passenger count. From a machine
learning point of view, the available data is highly
imbalanced, where complaints represent less than 1%
of all the data. In this work we tackle this issue by
splitting the problem into two parts: at first we identify

2NPS is a metric used in customer experience programs to measure the
loyalty of customers to a company
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flights which are most likely to generate a customer
service issue, and then we learn a ranking for passengers
on those flights where the top-scoring travelers are
predicted as most likely to complain. In each of these
two steps we introduce a number of technical novelties.

The major contributions of this work are threefold.
First and foremost, we design a feature engineering
pipeline which is specific for the travel industry. To the
best of our knowledge, there are no publicly available
guidelines to prepare such data. We then design the
problem as a “divide and conquer strategy” to handle
imbalanced data, and experiment with state of the art
machine learning models - including neural models
and ranking models - for the specific task. Lastly,
we adapt an existing learning to rank model, typically
used in information retrieval, for the task of ranking
customers on a flight based on their propensity to
complain. We employ DBSCAN clustering to identify
important customer clusters, which are then used for
feature weighting in the learning to rank model. We
evaluate the approaches on an actual flight data set
from 2019, achieving precision@1% of 95.9% at the
flight level, and precision@1 of 63.2% at the customer
level. We would like to stress that, more than technical
novelties, the main contribution of this work is the
methodology for effectively solving a real business
problem through careful combination and adaptation of
the right state-of-the art algorithms.

We give an overview of related work in Section
2, and formally define the problem and describe our
solution in Section 3. We present our results in an offline
test in Section 4 and discuss the pilot implementation
in Section 5. Lastly, we draw conclusions and discuss
potential future work in Section 6.

2. State of the art

In the highly competitive airline industry, the
importance of customer satisfaction is paramount for
customer engagement and retention [1], and travelers’
perception of service quality has been the subject of
studies for years. Gan et al. [2] identified seven
dimensions which are positively related to perceived
service quality: timeliness, assurance, convenience,
helpfulness, comfort, meals, and safety. The perception
will differ according to passengers’ age, gender, income,
occupation and marital status. According to [3, 4]
perception will also differ between business and leisure
travelers, where demographic variables such as gender,
income and education are statistically significant for
one group of passengers but not for another. Similarly,
Climis et al. [5] concluded that models for customer
retention are affected depending on which group the

travelers belongs to, according to the purpose of
their travel: business, education, vacation or family
visit. We ground our work on these findings and pay
close attention to passenger features when developing
customer-level models.

Regardless of how well an airline is doing, there
will always be a percentage of customers who complain.
Complaints can be a tremendous source for learning
pain points and improving the business and ultimately
avoid or minimize customer churn, i.e. the loss of
existing customers to a competitor. Many studies
tried to analyse the causes of complaints for the
airline industry. Chow et al. [6] analyzed customer
complaints from twelve large and small Chinese airline
carriers, and found that on-time performance indeed
plays a role in customer complaints depending on
the difference between actual and expected on-time
performance. Passengers’ loyalty status plays a role
in customers’ expectations about the handling of a
complaint [7]: higher loyalty tier customers were
found to be more likely to expect airline personnel
to comply with their demands, even when demands
are unreasonable. Nonetheless, correctly handling
complaints will increase customer satisfaction and
customer engagement [8].

Following these guidelines, we focus our work
on proactively identifying customers who are more
likely to complain when problems arise. These
insights are invaluable when devising customer care
policies that implement proactive actions to maximise
travellers’ satisfaction. To the best of our knowledge
there are no known models in the literature that
predict the propensity of a customer to complain,
especially in the travel industry. On the other
hand, there is an abundance of classification models
proposed for churn prediction, including: Support
Vector Machines, Naı̈ve Bayes, Decision Trees
and Neural Networks [9]; Support Vector Data
Description (SVDD) with random under-sampling and
SMOTE oversampling [10]; combinations of random
under-sampling and boosting algorithm [11]; random
forest combined with random oversampling [12];
Multilayer Perceptron (MLP) neural network [13];
Reverse Nearest Neighborhood and One Class support
vector machine (OCSVM) [14]; hybrid combination
of well known oversampling technique SMOTE with
under-sampling technique [15]; ensemble learning [16]
and transfer learning methods [17]. Both complaints
and churn are relatively rare events, and building
statistical patterns to predict them is extremely difficult
due to the imbalance of the data sets: one class
(the complaints/churn) is much smaller than the other
classes. Recent methods apply machine learning
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techniques and address the class-imbalance problem
with over/under sampling techniques [18, 19].

The rate of customer complaints in the data set
used in this study is less than 0.3%, which makes
the data set extremely imbalanced. In a pre-study
we found that standard over sampling of the minority
class alone fails to achieve satisfactory classification
results. Therefore, we look at the class imbalance
problem from a different angle and propose a divide
and conquer strategy. First, we identify which flights
will likely generate some complaints. Second, we
model each customer propensity to complain within
the scope of each flight as a ranking problem, which
significantly reduces the problem of dealing with class
imbalances (with the trade-off of potentially missing
customers on regular flights who have a high propensity
to complain). In terms of predicting flights which
are likely to generate some complaints we rely on
binary classification models. In terms of predicting
the customer propensity to complain, we model it as
a ranking problem using learning to rank models with
feature weighting. To the best of our knowledge it is
the first time that customer propensity to complain is
modeled locally and addressed as a ranking problem.

3. Method

The input of the system is a set of flights F =
{f1, f2, ..., fm}, where each flight is represented with
features Xf = {xf1, xf2, ..., xfk} of size k. On
each flight f there is a set of n customers Cf =
{c1, c2, ..., cn}, where each customer is represented with
features Xc = {xc1, xc2, ..., xcl} of size l.

Our approach follows a two-step method: (i) given
a list of flights Ft in a time period t it ranks the flights
in descending order based on the probability of a given
threshold number of customers on the flight to complain;
(ii) given a flight f and the list of customers on the flight
Cf = {c1, c2, ..., cn} the approach ranks the customers
in descending order based the probability to complain,
such that the probability to complain of the first ranked
customer is higher than the probability to complain of
the second customer P (c1|f) > P (c2|f), or in general
P (cn−1|f) > P (cn|f) and P (c1|f) >> P (cn|f).

A flow diagram of the overall methodology is shown
in Figure 1. In the first module of the system, the
data is pre-processed and flight and customer features
are extracted. In the second module, we develop a
flight-based model, which ranks the input flights based
on the probability for a given threshold number of
customers on a flight to complain. The third module
receives a list of flights from the previous module,
and ranks the customers on each flight based on the

probability to complain. The machine-learned ranking
model aims to produce an optimal ranking of customers
per flight relative to their probability to complain,
using different customer segments that are derived from
booking and loyalty features. The output of the system
is a ranked list of passengers per flight, based on a
”customer dissatisfaction score”, normalized between 0
and 100.

3.1. Flight-Level Model

To train a machine learning model for flight-level
complaint prediction, we first extract a set of features
for each flight instance Xc = {xf1, xf2, ..., xfl}. We
consider 5 types of flight level features for training and
one type of feature for labelling:

• Aggregated customer & loyalty program
features include an aggregated view of the
customers on the flight such as the percentage
mix of loyalty customers among the boarding
passengers. Aggregated customer information
can have a substantial differentiating effect among
similarly delayed and otherwise operationally
affected flights, for example, flights with higher
degrees of loyalty customers tend to have fewer
complaints.

• Scheduling features such as the scheduled and
actual departure time, arrival times, duration,
day-part, day-of-week, season as well as
equipment capacities and fill-rates (“crowding”)
have a substantial effect on complaint propensity.
For example, flights scheduled for arrival later
in the day can be seen to have higher complaint
rates. Additionally, differentials in these values
can be used to train a “surprise” factor.

• Operational features relate to the actual
operational aspects of a flight, such as departure
and arrival delays, delays in the air (e.g.
re-routings due to weather), and taxi-in and
taxi-out times. In some cases the flight is outright
canceled. Additionally important are various
measures of controllability. In many cases it
is found that passengers are more sensitive to
one type of operational problem but not to its
symmetric counterpart (for example, delays in
taxi-out time are found to be more important
than delays in taxi-in time).We also found that
complaint propensities are often mitigated by
both qualitative and quantitative perceptions of
controllability.

• Historical flight complaint rates are established
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Figure 1: Flow diagram of the overall modeling approach.

by a reverse analysis of the training data set,
keyed across various dimensions, e.g. by the
flight number (e.g. “Flight 7”), origin-destination
pairings (e.g. “LAX-SFO”) or combinations
of the route and time of departures (e.g.
“LAX-SFO-Morning”).

• Origin and destination features use aspects of
the originating and arriving cities as a feature, as
well as a measure of “hubiness” which is higher
for certain interchange points and lower in cases
of terminals used both for interchange and as
a destination. Highly hub-like destinations, for
example, place substantial connection pressure on
passengers and can cause higher complaint rates.

The final set of features is a mixture of categorical
and numerical features. The numerical features are
standardized with mean 0 and standard deviation 1. The
categorical features are converted to one-hot encoding
representations.

We consider the task of flight-level complaint
prediction as a binary classification task, for which
we used Logistic Regression (LR), Random Forests
of Decision Trees (RF), and Gradient Boosted Trees
(GBT) model. To further improve the performance, we
employed a “data lensing” approach in which we altered
the conditions which determine the target variable of the
classification method. With this technique, we redefine
the definition of the positive case (the ”Y variable”) to
be true only for instances of flights that produced 3 or
more complaints rather than 1 or more complaints – this
higher threshold was empirically determined. Note that
this process only affects the internal training of the flight
model and does not introduce a limitation of how the
flight model can be applied.

3.2. Customer-Level Model

To train a machine learning model for customer
ranking, we first extract a set of features for each
customer Xc = {xc1, xc2, ..., xcl}. In addition
to the Flight operations features explained in the
previous section, we consider two additional types of
customer features. The Customer & loyalty program
features include demographics such as age group or
preferred language, and airline loyalty features such as
membership status, lifetime flown miles, lifetime spent
money, airline awards etc. These features are updated
after each new flight. The Booking features are related
to each booked flight by the customer and include:
leg origin, leg destination, type of flight (domestic
or international), booking channel, number of hops,
ticket type, etc. as well as: advance purchase in
days (which often correlates with type of travel, i.e.
leisure or business), number of previous complaints,
amount of compensation received on previous flights,
number of disrupted flights in the past and number
of travel companions (all good indicators of customer
satisfaction). Concatenating the flight features to the
customer features allows us to identify different patterns
and combination of customer and flight features that
might lead to increased propensity to complain. As with
the flight-level model, we standardize the numerical
features, and convert the categorical features to one-hot
encoding representations.

Next, we model the task of predicting customer
propensity to complain using 3 different approaches: (i)
binary classification problem; (ii) anomaly detection and
(iii) learning to rank.

3.2.1. Binary Classification We consider the task
of ranking customers on a flight as a standard binary
classification problem, where we use the classification
model confidence score for ranking the customers on
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each flight. To address the extreme imbalance in the
data set, we under-sample the majority (negative) class,
and over-sample the minority class. We build four
different binary classification models: Random Forest
(RF), Logistic Regression (LR), Gradient Boosted
Trees (GBT), Multilayer Feedforward Neural Network
(MFNN).

3.2.2. Anomaly Detection In extremely imbalanced
data sets, anomaly detection approaches can be used. In
this case, we consider the negative class (customers that
do not complain) as the “normal” data, while the positive
class (customers that complain) is the outlier/anomaly.
Such outlier approaches aim to model the distribution of
the “normal” class during training time, and all instances
that do not fall under the learned distribution will be
considered as outliers, i.e., we expect that there are
some irregularities and patterns in the feature vectors
of the positive instances that make them differ from
the most of the data in the data set. Autoencoder
neural networks [20] can be used for anomaly detection,
and have shown outstanding performance in the past
[21]. An autoencoder is a feed forward neural network,
which represents the state-of-the-art for unsupervised
representation learning tasks. Autoencoders consists
of two parts, an encoder and a decoder. The encoder
takes the data on the input and tries to compress it to a
much smaller vector representation, which retains only
the most important features. The decoder learns how
to reconstruct the original data from the compressed
encoded representation, producing a representation of
the data that is as close as possible to the original input
data. The autoencoder is trained only on the majority
(negative) class, in order to learn how to compress and
re-create the “normal” data in the data set. By doing
so, it is expected that the autoencoder won’t be able
to compress and recreate the positive class as good as
the negative, i.e., the reconstruction error is expected
to be high for the positive instances and therefore
identify them as anomaly. We use the autoencoder
reconstruction error to rank the customers on each flight,
i.e., the higher the reconstruction error, the higher the
probability to complain.

3.2.3. Learning to Rank Traditional ML models
(e.g. binary classification models) build a single
model, or a set of models, to make a prediction on
a single customer at a time, by assigning a numeric
score of the likelihood of the positive class. On the
other hand, learning to rank models aim to produce
an optimal ranking of customers per flight, based on

their probability to complain. Instead of optimizing
the numeric score for each customer, the model tries
to optimize the rank of the complete list of customers,
where the model tolerates fewer errors at higher ranked
positions, i.e., the top N ranked customers are expected
to be the customers with a higher probability to
complain.

While there are many learning to rank algorithms in
the literature, for this task we use the LambdaMART
[22] ranking algorithm with boosted trees, which uses
the pairwise-ranking approach to minimize the pairwise
loss by sampling many pairs of instances in the data set.

To be able to use learning to rank models, first we
have to define groups. We create a group for each
origin-destination pair. For example, for the flight Los
Angeles to San Francisco we create a group LAX-SFO.
To train the model, we group the customers based on
the flight groups, and assign the complaint score, i.e.,
0 if they did not complain and 1 if they complained.
Each customer is represented with a feature vector, as
explained before.

One of the drawbacks of such an approach is that
the flight-level features are exactly the same for all the
customers on the same flight. However, the flight-level
features can have significantly different effect on the
customers. For example, on a delayed flight, customers
traveling for leisure would have a higher propensity to
complain than frequent fliers. To support this claim
we perform clustering on the customers, based on the
Customer & Loyalty program and Booking features. To
do so, we use the density-based DBSCAN clustering
algorithm [23], which clustered all the customers in
6 clusters. With manual analysis we were able to
assign a descriptive label to each cluster, i.e., “Elite
Customers”, “Corporate Customers”, “Corporate Elite
Customers”, “Leisure Single Customers”, and “Leisure
Couple/Family Customers”.

Figure 2 shows the distribution for the flight arrival
delay (in minutes), which differs significantly across
the three clusters of customers. We integrate such
information in the learning to rank model: (i) calculate
the distribution for each flight-level feature for each
of the customer clusters and calculate the mean and
standard deviation; (ii) assign the customers on each
flight to one of the existing customer clusters; (iii) for
each customer in each group in the learning to rank
model weight the flight-level feature based on the cluster
to which the customer belongs, i.e., the feature value
xc is replaced with a weighted value xcw equal to the
number of standard deviations the value falls to the right
or to the left of the mean of the feature distribution Xd

in the given cluster Cc using Equation 1.
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a) Elite customers b) Corporate elite customers c) Leisure single customers

Figure 2: Value distributions for the arrival delay feature for different customer clusters. The black dashed lines represent the mean, and the red dashed lines represent
the standard deviation.

xcw =
xc −mean(Xd)

std(Xd)
(1)

For example, if a flight is being delayed for 200
minutes, based on the distributions shown in Figure 2,
the feature will have value -0.38, -0.28 and 3.08, for each
cluster respectively. This means that such a delay will
have a much bigger impact on the likelihood to complain
for a leisure customer than for an elite customer.

4. Experiments

The data set used in our evaluation is based on
twelve months of booking data from domestic and
international markets served by the airline with over
280 million flown flight segments. The primary
focus of this work is to study customer dissatisfaction
caused by travel disruptions such as flight delays,
cancellations or missed connecting flights. As such,
the data set only contained customer complaint cases
where the reason was categorized as “flight disruption”.
Complaints caused by to other incidents (such as
poor onboard experience, airline staff behavior, or
information handling issues) were not considered. The
data set contains over 500,000 flight segments that were
delayed or cancelled, out of which 9.26% flights had
at least one customer complaint. The total number of
customers on all flights in the data set is more than
35 million customers, of which only 0.269% customers
complained. This makes the data set extremely
imbalanced. We use this data set to evaluate both the
flight-level model and customer-level model.

4.1. Flight-Level Model

To evaluate the flight-level model we use two sets of
metrics. First, considering the problem as a standard
binary classification problem, to evaluate the models
we use Precision (P), Recall (R) and F-score (F) on
the positive class. Second, considering it as a ranking

problem, i.e., ranking the flights based on the propensity
to complain per day, we use precision@N and recall@N,
calculated as the average precision@N and recall@N
per day. The average number of flights per day is
over 2,000, therefore we report precision and recall at
top 1%, 3% and 5%, addressing a rate of attention of
approximately 100 flights per day.

The results are calculated using stratified 10-fold
cross validation. We make sure that all the flights
in a single day are either in the training or test set
exclusively. The final results for each model are shown
in Table 1.

To calculate the F-score, we perform threshold
moving used to map probabilities to class labels. In
each validation fold, we use a hold out data sets to
identify the optimal probability threshold by analyzing
the precision-recall curve, i.e., we choose the threshold
that yields the best trade-off between precision and
recall on the hold out data set. From the results we can
observe that the GBT model significantly outperforms
the rest. We note that based on the real application of our
system, achieving high precision is crucial compared to
recall, as there is only a constrained number of flights
that can be recommended for attention. Therefore the
model needs to output highly precise recommendations
at the top-most positions.

4.2. Customer-Level Model

We evaluate all three types of customer-level models,
i.e., binary classification models, autoencoders for
anomaly detection (AE) and learning to rank model
(LTR). To train the binary models, we first re-sample
the data set, i.e., we over-sample the minority class
by a factor of 5, and we under-sample the majority
class to have the same size as the minority class
after over-sampling. The multilayer feedforward neural
network consists of an input layer, and 4 dense layers
with size 200, 100, 50 and 30, respectively, using ReLU
activation function. The output is calculated using a
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Table 1: Results for the flight-level model for boosted trees binary classification models using data lensing.

Method P R F P@1% P@3% P@5% R@1% R@3% R@5%
LR 48.5 52.2 49.6 85.0 80.8 76.3 4.4 11.7 18.3
RF 49.8 57.7 52.9 92.1 83.9 79.1 5.1 12.3 18.5
GBT 52.4 59.4 55.2 95.9 88.9 83.7 5.0 13.0 19.7

Table 2: Results for the customer-level model for binary classification models, autoencoder and learning to rank model.

Method P R F P@1 P@3 P@5 R@1 R@5 R@10
RF 9.10 13.74 10.94 31.21 19.04 13.75 31.21 53.75 62.16
LR 6.09 15.64 8.76 27.55 17.36 13.26 27.55 50.67 59.98
GBT 11.71 15.76 13.43 32.78 19.62 14.93 32.78 54.21 64.81
MFNN 8.64 31.67 13.58 29.28 13.44 9.63 29.28 33.18 47.30
AE 7.90 14.48 10.23 32.43 13.98 12.32 32.43 54.46 59.82
LTR / / / 63.18 29.93 20.85 63.21 79.88 85.25

softmax layer. The architecture of the autoencoder is
as follows: the encoder consist of an input layer with
a size of the number of features, 4 dense layers with
ReLU activation function with 200, 100, 50 and 40
units in each layer, respectively; the decoder consist
of 4 dense layers with ReLU activation function with
50, 100 and 200 units in the first three layers, and the
last layer has the same size as the input layer in the
encoder. For the learning to rank model we tune the
tree-based parameters and the regularization parameters
to achieve best performance. To implement the binary
classification models, we use the scikit-learn library3; to
implement the neural network and the autoencoder, we
use the Keras API4; to implement the learning to rank
model we use the XGBoost library5.

To evaluate the models we use two sets of
performance metrics. First, considering the problem
as a standard binary classification problem, to evaluate
the models we use Precision (P), Recall (R) and
F-score (F) on the positive class. For these metrics
we use the complete data set, i.e., including flights on
which no customer complained. Second, considering
it as a ranking problem, the metrics that we use
to evaluate the model are: Precision@N, which is
the average Precision@N of all the flights, where
precision@N on a single flight is the fraction of
correctly identified customers that complained in the top
N ranked passengers; Recall@N, which is the average
recall@N of all the flights, where recall@N is the
fraction of all the customers that complained identified
by the model. Calculating precision@N and recall@N
for flights on which no customer complained will always
yield 0, therefore, for these metrics we use only the

3https://scikit-learn.org/
4https://keras.io/
5https://xgboost.readthedocs.io/en/latest/

flights on which at least one passenger complained, i.e.,
we assume perfect performance from the flight-level
model in identifying all the flights with at least 1
complaint. This data set consists of more than 50,000
flights with around 4 million passengers, of which only
2.26% passengers complained. The average number
of passengers per flight is over 65, therefore we report
precision at 1, 3 and 5, and recall at 1, 5 and 10.

For the binary classification models and the
autoencoder we calculate both metrics, while for the
learning to rank model only the second set of metrics.
The results are calculated using stratified 10-fold cross
validation. We make sure that all the passengers on
the same flight are either in the training or test set
exclusively. The final results for each model are shown
in Table 2.

For the binary classification models and the
autoencoder we perform threshold moving used to
map probabilities to class labels, as done for the
flight-level model.The results show that the multilayer
neural network achieves the best results among all
binary classification models and the autoencoder, when
considering the task as a binary classification task.
However, when we consider it as a ranking task, the
learning to rank model significantly outperforms all the
other approaches. The gradient boosted trees model
shows promising results, followed by the autoecoder.

Besides achieving high performance, for such
applications it is of great value to provide interpretability
of the model predictions. To do so, we use SHAP
(SHapley Additive exPlanations) analysis [24]. SHAP
analysis can be used for global and local interpretability.
In global interpretability, SHAP values indicate how
much each feature contributes, either positively or
negatively, to the target variable while in local
interpretability, the SHAP values indicate how each
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Figure 3: SHAP analysis for the L2R model.

feature contributed for the model prediction for a single
instance.

Figure 3 shows the SHAP value plot for the L2R
model. The plot shows the positive and negative
relationships and importance of the features with the
target variable. For example, the total miles flown by
a customer, the arrival delay, the number of complaints
in the past and the number of travel companions have a
high impact on the model and are positively correlated
with the target variable. In Section 5 we show how
SHAP analyses are used to provide local interpretability,
and how they can help customer care agents with their
handling of customer complaints.

5. Solution Architecture and Customer
Care Insights

Next we describe a hybrid cloud platform that was
developed in this proof of concept. Figure 4 shows
the integration architecture of the hybrid cloud solution.
The platform enables the collaborative building of AI
models on large customer data sets and the hosting of
analytical solutions that leverage services and patterns
offered by the platform. A web-based dashboard allows
customer care agents to search flights (or passengers)
and visualize the results of the underlying propensity
models. For each customer, the dashboard provides a
customer dissatisfaction score in the context of a specific
journey, i.e., the propensity to complain resulting from
the customer’s travel experience on that journey. It also
displays flight-level complaint scores that represent the
estimated propensity of a flight to have one or more
passenger complaints. In addition, the dashboard views
illustrate the main drivers of customer dissatisfaction as
derived from the local interpretability model described

in section 4.2.
The raw data is transferred from a data lake hosted

in the airline’s IT environment into the landing zone of a
Big Data analytics cloud platform where the raw data is
processed to obtain basic flight and passenger features.
Additional calculated features are derived from the data
in the raw and unified zones and stored as feature vectors
for machine learning. A training data set is prepared and
used to train the flight propensity model, and another
data set is prepared and used to train the passenger
propensity model. The results from each model together
with the SHAP analysis results are stored in the insight
zone.

The web-based dashboard consists of five main
components. The Summary View serves as a landing
page and provides a compacted view of historical
data and model prediction results. The Flight Search
and Passenger Search components allow the user
to search for flights or passengers using various
search parameters. Common search parameters in
Flight Search include flight origin airport code, flight
destination airport code, date range, operating carrier,
and flight number. Once a flight record is retrieved, the
user interface shows a Flight Dashboard which includes
a summary of flight data (such as flight number, number
of enplaned passengers, and delay statistics), the flight
complaint propensity score, and a list of booking records
for passengers boarded on that flight. Passenger Search
allows to query a passenger’s flight activity using a
unique passenger identifier or a record locator.

Once a passenger record is selected, the user
interface displays the Passenger Dashboard shown
in Figure 5 which contains a summary view of the
passenger data in the context of a selected flight
segment, the passenger complaint propensity score, past
flight disruption records, and a chart that illustrates the
top-scoring features with positive and negative impact
on the customer’s complaint propensity based on their
SHAP values. Features with positive SHAP values are
shown with a horizontal bar chart oriented to the right
side, and features with negative SHAP values are shown
with a bar chart oriented to the left side. The length of
each bar represents the magnitude of the corresponding
SHAP value.

The customer shown in Figure 5 is travelling on a
domestic flight that has an arrival delay of 70 minutes.
The predicted dissatisfaction score of 91 is among the
highest scores of all passengers that boarded this flight.
Features that contribute positively to the customer’s
dissatisfaction score (“aggravation effects”) include:
past complaint activity (the customer complained on
three previous occasions and received compensation),
experience of a moderate delay, and travel on an inbound
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Figure 4: Hybrid cloud solution architecture.

connecting flight. Factors that contribute negatively
to the propensity score (“mitigation effects”) include:
elite frequent traveler status, short advance booking
window and travel without a companion (the customer
is a high-tier loyalty program member, late booker, and
traveling alone which are features typically associated
with business travellers).

6. Conclusions and Future Work

Understanding customer dissatisfaction is important
because customers are more likely to remember negative
experiences as opposed to the positive encounters
they’ve had with a service provider. Therefore an ability
to anticipate when a customer is likely to complain
about a service experience plays an important role
in delivering a personalized experience and increasing
customer loyalty and retention. This work focuses on
the airline industry. We described a novel method
to predict the likelihood of a traveler to complain
and showed how we tested it. More specifically, we
proposed a two-step approach where we first identify
flights with an elevated risk of a service disruption, and
subsequently rank passengers on each flight according
to their propensity to complain. We validated the
approach in a proof of concept with a global legacy
airline, and performed a formal evaluation of the
method on a large-scale travel data set. The results
revealed far superior prediction results of our method
when compared to conventional approaches based on
classification models and auto-encoders.

The model insights can be an effective means for
proactive customer engagement, rather than simply

reacting to customer complaint issues. Personalized
messaging in the context of a travel disruption, or
proactively compensating a customer as a situation
warrants, shows that the airline is customer-focused, and
always striving to address issues as promptly as possible.
This maximizes customer loyalty and increases the
long-term value of customers as they continue to
engage. In addition, insights from the customer-level
models could be utilized to more efficaciously optimize
compensation for disrupted customers during pre-travel
(off-boarding in oversold situations) or post-travel
(flight delays or cancellations) stages of a customer
journey.

In future extensions of this work, we will investigate
the use of time-series models to better assess each
traveler and as a result create an even more personalized
user experience and more customized frontline services.
Most customers understand that things can and will go
wrong. Making sure that customer care teams have
all the relevant insights to provide apt resolution for
customer grievances will only foster customer lifetime
value and loyalty.
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