COST AND RETURN OF CHINESE TARO PRODUCTION IN THE HILO AREA

Ping Sun Leung
Department of Agricultural & Resource Economics
University of Hawaii at Manoa

Dwight Sato Cooperative Extension Service University of Hawaii - Hawaii County CES

Abstract

This study provides an update of the cost and return of Chinese taro production in the Hilo area. Return to management is estimated to be \$5,575 per acre per crop. Total fixed costs and variable costs are \$1,573 and \$4,602 respectively. Estimated breakeven price is 20.6 cents (per lb of taro corm) to cover total costs. For a newly established operation which has to purchase hulis, return to management is reduced by the cost of hulis of \$1,245 to \$4,219, and breakeven price to cover total costs is estimated to be 25.1 cents. Using an optimal fertilization schedule as derived from a recent experiment, return to management can be increased by \$2,500 per acre per crop and breakeven price to cover total costs is estimated to be 19.2 cents.

Introduction

This publication serves as an update to the Farm Management Report No. 17 entitled "Cost and Return of Dry Land Taro Production in Hawaii: 1984" (Marutani, 1984). In addition, the economics of applying the optimal fertilization schedule as derived from a recent experiment will be analyzed.

Because of the assumptions and sources of information used in this study, the data in this publication should be viewed as representative of what a farmer would anticipate for a well-managed Chinese taro enterprise. The data does not represent any particular grower nor does it represent the average. Therefore, many factors may alter the cost and return figures reported here when compared to a particular individual's operation. The primary purpose of this publication is to identify the type of production practices and management program considered to be typical of a well-managed Chinese taro enterprise.

Sources of Information

Data was collected from three growers in the Hilo area. These growers were considered to be representative of having well-managed Chinese taro enterprises. The data was collected with the aid of the "Vegetable-Crop Budget Template" (Cox et al., 1988). The growers were asked to fill in a blank budget template with our assistance. The data were then processed and checked by the respective growers for accuracy. We then used these data as the baseline in generating what we believe would be the typical or representative well-managed Chinese taro enterprise.

Assumptions

The following assumptions were made in developing the enterprise budget:

- 1. This typical farm has ten acres in production with five acres devoted to Chinese taro.
- Growing period per crop is nine months and the land is plowed only once a year.
- 3. Total yield per acre per crop consists of 25,000 pounds of grade A and 5,000 pounds of off-grade taro.
- 4. The grower receives 40 cents per pound for grade A taro and 35 cents for off-grade taro.
- 5. The wage rates are \$8.00 and \$4.50 per hour for skilled and unskilled labor respectively.
- 6. Land is rented at \$400.00 per acre per year.
- 7. Prices for gasoline and diesel fuel are \$1.55 and \$1.50 per gallon respectively.
- 8. Interest on operating loans is 12 percent.
- 9. This typical farm has a 2000 sq. ft. structure valued at \$2000.
- 10. Machinery and equipment are valued at cost which would be incurred if replaced.
- 11. Farm overhead cost is charged at 1 cent per pound of production.

Budget Analysis (based on per acre per crop)

Case 1: Typical Operation

Table 1 shows the machinery and labor requirements by operation while Table 2 shows the material requirements by operation. Table 3 lists all the machinery and equipment necessary for a typical taro enterprise along with the derivations of their per hour fixed and variable costs. Fixed costs include depreciation, interest on investment, taxes and insurance. Variable costs include repairs, fuel and lubrication.

Table 4 shows the gross receipts. Table 5 outlines the variable expenses by operation. Table 6 summarizes the cost and return of the typical taro enterprise. Total costs is estimated to be \$6,175 per acre per crop with 25 percent being fixed expenses. With a gross receipt of \$11,750, net return to management is estimated to be \$5,575. Table 7 shows the breakeven prices and yields necessary to cover variable costs and total costs. A grower would have to cover its total costs in the long-run in order to remain profitable. However, in the short-run, the grower would continue to operate as long as its variable costs is covered. In order to cover total costs, a production of 15,765 pounds per acre is needed at 40 cents per pound while a 20.6 cents per pound price is sufficient to cover the total costs with a production of 30,000 pounds per acre.

It should be noted that this study shows a much higher return to management as compared to the 1984 study, \$5,575 vs \$1,389, primarily due to the increase in both per acre yield and price per pound received by the growers.

Case 2: Newly Established Operation (with purchasing cost of hulis)

For newly established operation, the grower has to purchase hulis which are assumed to cost 10 cents per piece. Hulis were spaced one foot apart within rows and 3.5 feet apart between rows with a population of 12,446 plants per acre. In other word, an additional cost of \$1,244.60 would have to be incurred per acre. This would result in a lower return to management as compared to the typical case, \$4,219 vs. \$5,575, and a higher breakeven price to cover total costs, 25.1 cents vs 20.6 cents. (see Table 7)

Case 3: Optimal Fertilization

Based on a recent fertilization experiment (Sato et al., 1989), the optimal fertilization schedule was estimated to be 460 lbs N (1000 lbs Urea), 600 lbs K (1185 lbs Muriate of Potash) and 3,000 lbs. TSP per acre. Using this schedule, yield was estimated to be 40,000 lbs per acre, an increase of 10,000 lbs. This yield increase generates an additional \$4,000 in gross receipt along with an increase of \$583 in fertilizer cost and \$792 in harvesting cost. Obviously, the increase in revenue outweighs the increase in costs. This contributes to an increase in return to management of approximately \$2,500 (\$8,076 vs. \$5,575). Also, breakeven price to cover total costs is lowered to 19.2 cents as compared to 20.6 cents for the typical case. (see Table 7)

References

- Cox, L.J., Nakamoto, S.T., Marutani, H.K., and Leung, P.S. 1988. A User's Manual for the Vegetable-Crop Budget Template, Research Extension Series 091, Hawaii Institute of Tropical Agriculture and Human Resources.
- Marutani, H.K. 1984. Cost and Return of Dry Land Taro Production in Hawaii: 1984, Farm Management Report No. 17, Hawaii Institute of Tropical Agriculture and Human Resources.
- Sato, D., Silva, J., Leung, P.S., Santos, G., and Kuniyoshi, J. 1989. *Nitrogen and Potassium Fertilization for Dryland Taro*, A GACC Taro Fertility Progress Report No. 1, Hawaii Institute of Tropical Agriculture and Human Resources.

Table 1.--Machinery and Labor Requirements by Operation

			Labo	r (hours)
Operation	Machinery & Equip	ment hours	Skilled	Unskilled
1. Seedling Preparation				
Prepare Hulis				48.0
2. Land Preparation				
Rake	Rake	16.0	16.0	
Mow	Mower, 5ft.	3.0	3.0	
Plow	Plows, 18-inch	4.0	4.0	
Rotovate	Rotovator	2.0	2.0	
Cut row	Furrow Digger	2.0	2.0	
All activities	Tractor	27.0	27.0	
3. Liming				
Liming	Tractor	4.0	4.0	
	Lime Spreader	4.0		
	Tractor,			
	front loader	4.0	4.0	
4. Planting				
Planting Hulis	Iseki	13.4	13.4	16.0
5. Maintenance of Growing Crop				
Weeding	Iseki	13.4	13.4	22.0
Fertilizing	Fertilizer			
	applicator	4.0		4.0
6. Harvesting				
Harvest	Flatbed Truck	5.0		360.0
Wash and Trim	120 331000000000000000000000000000000000	180		60.0
Bag				30.0
Hauling	Flatbed Truck	15.0		15.0

Table 2.--Material Requirement by Operation

Operation	Material	Quantity	Unit Price	
1 Coodline Dronamation				
1. Seedling Preparation	Baskets	20	\$ 1.20	
3. Liming			•	
F 1/6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Lime	2 tons	20.00	
5. Maintenance	16-16-16	10 @ 80lb bags	16.95	
6. Harvesting	10 10 10	10 0 0010 0460	10.50	
	Bags	600 bags	0.25	
	Water	54,000 gals	0.001	
	Racks	60	2.00	

Table 3.--Machinery and Equipment Cost Calculations

	Name	Horse- power	Market Value	Annual Use (hours)	Use Life (years)	Salvage Value	Fuel Type*	Average Value	Depreciation	Interest	Taxes & Insurance	Annual Fixed Cost	Fixed Cost/ hour	Repairs	Fuel	Lubri- cation	Annual Variable Cost	Variable Cost/ hour	Total Cost/ hour
TRACTOR	S Tractor Tractor, front loader	50.00 30.00	20000 12000	300 40	24 24	1000 600	Diesel Diesel	10500 6300	791.67 475.00	1260.00 756.00	157.50 94.50	2209.17 1325.50	7.36 33.14	833.33 500.00	990.00 79.20	148.50 11.88	1971.83 591.08	6.57 14.78	13.94 47.91
OTHER M	ACHINERY W/ ENGINES Truck, flatbed, 3/4 - 1 ton Iseki (Hand-drawn Tractor)	200.00 6.50	16000 4500	300 270	10 10	800 225	Diesel Gasoline	8400 2363	1520.00 427.50	1008.00 283.50	126.00 35.44	2654.00 746.44	8.85 2.76	1600.00 450.00	1800.00 54.41	270.00 8.16	3670.00 512.57	12.23 1.90	21.08 4.66
ATTACHM	ENTS Rotovator Lime spreader Rake Plows, 18-inch Mower, 5ft		4000 3000 2000 750 2000	20 40 160 40 30	15 36 36 25 15	200 150 100 38 100		2100 1575 1050 394 1050	253.33 79.17 53.20 28.50 126.67	252.00 189.00 126.00 47.25 126.00	31.50 23.63 15.75 5.91 15.75	536.83 291.79 194.95 81.66 268.42	26.84 7.29 1.22 2.04 8.95	266.67 50.00 56.00 36.00 133.33	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	266.67 50.00 56.00 36.00 133.33	13.33 1.25 0.35 0.90 4.44	40.18 8.54 1.57 2.94 13.39
OTHER E	QUIPMENT Furrow Digger Backpack Fertilizer Applicat	or	2000 225	20 40	25 5	100 11		1050 118	76.00 42.75	126.00 14.18	15.75 1.77	217.75 58.70	10.89 1.47	80.00 45.00	0.00	0.00	80.00 45.00	4.00 1.13	14.89 2.59

Table 4.--Gross Receipts (based on per acre per crop)

Item	Quantity	Unit	\$/unit	Value	
Grade A Off-Grade	25,000 5,000	lb. lb.	0.40 0.35	\$10,000 1,750	
TOTAL	30,000	lb.	0.39	11,750	

Table 5.--Variable Expenses (based on per acre per crop)

Operation	Machinery & Equip.	Labor	Material	Sub-Total	
 Seedling Preparation 	\$ 0	\$ 216	\$ 24	\$ 240	
2. Land Preparation	235	216	0	451	
3. Liming	90	64	40	194	
4. Planting	25	179	0	205	
5. Maintenance	30	269	170	469	
6. Harvesting	245	2,093	326	2,663	
Total Variable Costs :	625	3,037	560	4,222	

Table 6.--Summary Budget (based on per acre per crop)

Item	Value or Cost	% of Total Cost	=
1. Gross Receipts	\$11,750		
2. Variable Costs :			
Labor	3,037	49.2	
Machinery & Equipments	625	10.1	
Materials	560	9.1	
Interests on operating expenses	380	6.2	
Total Variable Costs	4,602	74.5	
3. Income Over Variable Costs	7,148		
4. Fixed Costs:			
Machinery & Equipments	777	12.6	
Building	72	1.2	*
Land	424	6.9	
Farm Overheads	300	4.9	
Total Fixed Costs	1,573	25.5	
5. Total Costs	6,175	100.0	
6. Return to management	5,575		
7. Return to labor & management	8,612		
8. Return to machinery & management	6,352		
9. Return to land & management	5,999		

Table 7.--Breakeven Analysis

	Breakeven Yield (lbs/acre)	Breakeven Price (\$/lb)	
1. To cover total costs:	15,765	\$0.21	
2. To cover variable costs:	11,749	\$0.15	

Table 8.--Case Comparison

	Case 1	Case 2	Case 3	
Return to Management (\$/acre)	\$5,575	\$4,219	\$8,076	
To cover total costs: Breakeven yield (lbs/acre) Breakeven price (\$/lb)	15,765 \$0.21	19,228 \$0.25	19,490 \$0.19	
To cover variable costs: Breakeven yield (lbs/acre) Breakeven price (\$/lb)	11,749 \$0.15	15,212 \$0.20	15,495 \$0.15	

Note: Case 1 - Typical operation Case 2 - Newly established operation Case 3 - Optimal fertilization

The Library of Congress has catalogued this serial publication as follows:

Research Extension series / Hawaii Institute of Tropical Agriculture and Human Resources.—001— [Honolulu, Hawaii]:

The Institute, [1980–

v. : ill. ; 22 cm

Irregular.

Title from cover.

Separately catalogued and classified in LC before and including No. 044.

ISSN 0271-9916 = Research Extension Series - Hawaii Institute of Tropical Agriculture and Human Resources.

1. Agriculture—Hawaii—Collected works. 2. Agricul-

ture—Research—Hawaii—Collected works. I. Hawaii Institute of Tropical Agriculture and Human Resources.

II. Title: Research Extension Series - Hawaii Institute of Tropical Agriculture and Human Resources.

S52.5R47

630'.5—dc19

85-645281

AACR 2 MARC-S

Library of Congress

[8506]