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Abstract

This dissertation conducts a study of graphical models, discusses the quality of statistical model

selection approximation, and proposes algorithms for model approximation. Graphical models are

useful tools for describing the geometric structure of networks in applications that deal with high

dimensional data. Learning from these high dimensional data requires large computation power

which is not always available due to hardware limitation for different applications. Thus, we need to

compromise between model complexity and its accuracy by using the best possible approximation

algorithm that chooses a simpler, yet informative model.

The first problem we study in this work is the quality of statistical model selection. We consider

the problem of quantifying the quality of approximation model. The statistical model selection

often uses a distance measure such as the Kullback-Leibler (KL) divergence between the original

distribution and the model distribution to quantify the quality of approximated model distribution.

Although the KL divergence is minimized to obtain model approximation in many cases, there are

other measures and divergences that can be used to do so. We extend the body of research by

formulating the model approximation as a parametric detection problem between the original dis-

tribution and the model distribution. The proposed detection framework results in the computation

of symmetric closeness measures such as receiver operating characteristic (ROC) and area under

the curve (AUC). In particular, we focus on statistical model selection for Gaussian distributions,

i.e. the covariance selection [1]. In the case of covariance selection, closeness measures such as KL

divergence, reverse KL divergence, ROC, and AUC depend on the eigenvalues of the correlation

approximation matrix (CAM). We find expressions for the KL divergence, the log-likelihood ratio,

and the AUC as a function of the CAM. We present a simple integral to compute the AUC. In

addition, easily computable upper and lower bounds are also found for the AUC to assess the qua-

lity of an approximated model. Through some examples and simulation for real and synthetic data,

we investigate the quality of the covariance selection for both tree-structured models and non-tree

structured models.

The second problem we target in this work is to formulate a general framework and algorithms to
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perform covariance selection. We develop a multistage framework for graphical model approximation

using a cascade of models such as trees. In particular, we look at the model approximation problem

for Gaussian distributions as linear transformations of tree models. This is a new way to decompose

the covariance matrix. Here, we propose an algorithm which incorporates the Cholesky factorization

method to compute the decomposition matrix and thus can approximate a simple graphical model

using a cascade of the Cholesky factorization of the tree approximation transformations. The Cho-

lesky decomposition enables us to achieve a tree structure factor graph at each cascade stage of the

algorithm which facilitates the use of the message passing algorithm since the approximated graph

has fewer loops compared to the original graph. The overall graph is a cascade of factor graphs with

each factor graph being a tree. This is a different perspective on the approximation model, and

algorithms such as Gaussian belief propagation can be used on this overall graph. Here, we present

theoretical results that guarantee the convergence of the proposed model approximation using the

cascade of tree decompositions. In the simulations, we look at synthetic and real data and measure

the performance of the proposed framework by comparing the KL divergences.
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1
Introduction

In many applications, we deal with accuracy and model complexity. In signal processing and

machine learning, it is a fundamental problem to balance performance quality (i.e. minimizing

cost function) with computational complexity. A powerful tool in order to address this trade-off

is the statistical model selection and the probabilistic graphical model. Model selection methods

provide approximated models with the desired accuracy as needed for different applications. For

Gaussian data, this problem is called covariance selection and the KullbackLeibler (KL) divergence

is computed to quantify the distance between Gaussian distributions with the original covariance

matrix and model covariance matrix (e.g. [3, 4]). Thus the following question is of great interest:

How good is the model approximation of the covariance matrix? To answer this question, we need

to pick a closeness criterion which has to be coherent and general enough to handle a wide variety

of problems and also has asymptotic justification [5]. In the following chapter, we aim to address

this question as well as introducing better model selection algorithms.
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This chapter aims to provide an introduction to statistical model selection and tree approximation

models, with a focus on Gaussian graphical models. We will also introduce definitions and notations

necessary for Gaussian model selection and multivariate models used throughout this thesis.

1.1 Graphical Model

Graphical models [6–12] have become a well-known tool to model states in many different engi-

neering applications, due to their effectiveness, flexibility, and simple representation. These models

serve as effective tools for both modeling uncertainties through the use of probability theory and

an effective approach to coping with complexity through the use of graph theory. Deployment of

these models in different applications results in the increased ability to effectively learn and perform

inference in large networks. Bayesian networks and Markov networks are the two most common

types of graphical models. In this dissertation, we focus on Markov networks and undirected graphs.

Consider a graph with n vertices where vertices represent variables and edges represent dependencies

between pair of vertices. Any two vertices that are connected with an edge are consecutive.

Some graph definitions:

1. Complete graph: In a complete graph all vertices are connected by an edge.

2. Cycle in a graph: A cycle is a path of edges and vertices where a vertex can be reached to

from itself.

3. Clique in a graph: A clique is complete undirected subset of a graph. A clique that cannot

be extended by including another vertex is called a maximal clique. Examples of maximal

cliques are circled in figure 1.1.

4. Chordal (decomposable) graph: In a chordal graph any two non-consecutive vertices of any

cycle of length n ą 3 are joined by a chord (an edge).

5. Connected graph: There is a path (maximum length of n ´ 1) between every pair of vertices

in a connected graph.

6. Tree graph: A connected graph where any two vertices are connected by exactly one path (a

connected loop-free graph).
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7. Chain tree: Any tree graph where all vertices have at most degree of two.

8. Star tree: Any tree graph where all vertices but one have degree of one.

To understand the usefulness of graphical model, we look at the following example which presents

an undirected graphical model with 5 vertices.

X1

X2 X3

X4

X5

Figure 1.1: An example of graphical model with 5 vertices.

For this thesis our focus is on undirected probabilistic graphs as shown in Figure 1.1. The vertices

represent random variables and the edges represent dependencies between the random variables.

From this graph note that the random variables X1, X2, and X3 are conditionally independent of

X5 given X4. This is known as the Markov property. The joint probability distribution of the

random variables can then be expressed in terms of products of functions of cliques of the vertices:

ppx1, . . . , x5q “
1

Z
φpx1, x2, x3qφpx2, x3, x4qφpx4, x5q

where φp.q’s are potential functions and Z is a normalizing constant.

According to Hammersley-Clifford theorem [13], any distribution that factors by nonnegative po-

tentials over the set of maximal cliques on an undirected graph satisfies the Markov property on

the graph. Conversely, if function p is strictly positive and satisfies the Markov property on an

undirected graph then it factors by nonnegative potentials over the set of maximal cliques.
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As a result of Hammersley-Clifford theorem, any probability distribution function can be expressed

as the equation shown above as products of functions of the cliques of the graph.

1.2 Divergences

Definition 1. KL Divergence: The KL divergence between two multivariate continuous distri-

butions with probability density functions (PDF) pXpxq and qXpxq is defined as

D ppXpxq||qXpxqq “
ż

X
pXpxq log

pXpxq

qXpxq
dx

where X is the feasible set. �

KL divergence is an asymmetric divergence. Thus, changing the order of input distributions, results

in a different divergence called reverse-KL divergence, D pqXpxq||pXpxqq. One way to compute a

symmetric divergence is to sum the KL divergence and its reverse KL divergence.

Definition 2. Jeffreys Divergence: The Jeffreys divergence between two multivariate continuous

distributions with PDFs pXpxq and qXpxq is defined as

DJ ppXpxq, qXpxqq “ D ppXpxq||qXpxqq `D pqXpxq||pXpxqq

where Dp.||.q is the KL divergence. �

1.3 Multivariate Gaussian models

Random vector X P Rn has multivariate Gaussian distribution N pµ,Σq with mean vector µ P Rn

and covariance matrix Σ P Sną0
1 if its has the following density function

pXpxq “
1

a

p2πqn|Σ|
e´

1
2
px´µqTΣ´1px´µq, x P Rn.

1. Sną0 is the set of all n-dimensional positive-definite covariance matrices.

4



1.3.1 Log-likelihood

Let’s assume a multivariate Gaussian statistical model. Given i.i.d. observations X : tx1, . . . , xmu

drawn from multivariate Gaussian distribution, the log-likelihood function for a Gaussian model is

lΣ̃px1, . . . , xmq “
m

2
log |Σ̃´1

| ´
m

2
tr pΣ̃´1Sq (1.1)

where Σ̃ is the covariance matrix of the model and

S “
1

m´ 1

m
ÿ

i“1

pxi ´ x̄qpxi ´ x̄q
T

is the sample covariance matrix and

x̄ “
1

m

m
ÿ

i“1

xi

is the sample mean.

In model selection problem, it is often easier to work with the inverse Π̃ “ Σ̃´1 covariance matrix

which is called precision or concentration matrix.

1.3.2 KL divergence

The KL divergence between two multivariate Gaussian distribution is defined as

DpN pµ
1
,Σ1q||N pµ2

,Σ2qq “
1

2

ˆ

trpΣ´1
2 Σ1q ` pµ2

´ µ
1
q
TΣ´1

2 pµ2
´ µ

1
q ´ n` log

|Σ2|

|Σ1|

˙

Without loss of generality in this thesis, we assume that the mean vector is 0. We focus on

approximation of a model covariance matrix Σ̃, subject to desired graphical model conditions. Thus,

we can simplify the KL divergence between the actual Gaussian distribution and its approximation

as

DpN p0,Σq||N p0, Σ̃qq “ 1

2

´

trpΣΣ̃´1
q ´ n` log |Σ̃Σ´1

|

¯

(1.2)

where Σ is the actual covariance matrix. We can always use sample covariance matrix S, if know-

ledge of the actual covariance matrix Σ is not available. In this scenario, we use DpN p0,Sq||N p0, Σ̃qq

as the optimization cost function to compute model approximation covariance matrix.
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1.3.3 Properties of a covariance matrix

Gaussian graphical model explores conditional independence between random variables. Let X „

N p0,Σq and also let’s assume that random variables Xi and Xj are the i-th and j-th elements of

random vector X. Then, Xi and Xj are jointly Gaussian and we have

1) Independence: Xi and Xj are independent (uncorrelated in general without jointly Gaus-

sian assumption) if and only if Σij “ 0.

2) Diagonals of precision matrix: Diagonals of precision matrix Π “ Σ´1 are reciprocals

of conditional variances given all the other random variables

Πii “
1

varpXi|XVziq
.

3) Conditional covariances: Conditional covariances between Xi and Xj give all the other

random variables can be computed as

covpXi, Xj|XVzti,juq “
Πij

ΠiiΠjj ´Π2
ij

.

4) Conditional uncorrelatedness: Random variables Xi and Xj are conditionally uncor-

related give all the other random variables (conditional independence for jointly Gaussian

random variables) if and only if Πij “ 0.

1.4 Dempster covariance selection and Chow Liu algorithm

Chapter 2 discusses the model selection problem for Gaussian distributions and algorithms for

finding optimal graphs when they are tree. The model selection problem is based on work by

Dempster [1]. For tree structured graphs, we can find the optimal tree minimizing and information

divergence, the Kullback Leibler (KL) divergence using the Chow Liu algorithm [3]. Both these

papers are classical papers that have been used in signal processing, statistics, communications,

and information theory.
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1.5 Application

Many engineering and computer science applications require using graphs to model dependencies

between nodes of the graph. These applications include a diversity of areas from social networking

to biomedical applications to transportation models to energy models [14]. Sparse modeling has

many applications in distributed signal processing and machine learning over graphs. One of its

applications is for the electric power grid at the distribution level. The smart grid is a promising

solution that delivers reliable energy to consumers through the power grid when there are uncer-

tainties such as distributed renewable energy generation sources. Smart grid technologies such as

smart meters and communication links are added to the distribution grid in order to obtain the

high dimensional, real-time data and information and overcome uncertainties and unforeseen faults.

The future grid will incorporate distributed renewable energy generation such as solar photovol-

taics (PV), with these energy sources being intermittent and highly correlated. Thus, modeling is

essential for signal processing and implementation of the smart grid.

1.5.1 Smart grid example

An electric distribution grid with measurements, distributed renewable energy sources, and decision

making capabilities is referred to as the smart grid [15]. Smart grids often have large number of

states (e.g. node voltages) making it computationally inefficient to gather the data and perform

central state estimation in real-time fashion. Moreover, central state estimation requires many

communication links between sensors on the distribution grid resulting in large costs. In contrast,

distributed state estimators can give reasonably good estimates for large power grid systems in real-

time while decreasing the number of necessary communications links. This fact causes a trade off

between computational time and accuracy of estimation. The distributed state estimation method

over a factor graph based on loopy Gaussian BP proposed in [16] can perform estimation in real-time

fashion. To assure the convergence of loopy Gaussian BP algorithm, [16] considers simple models of

the distributed renewable energy sources by approximating covariance matrices of the distributed

renewable energy sources with simpler covariance matrices that have tree-like structures. However

tree-like structures are poor approximators when the number of nodes is large [17–19] leading us

to consider more complex graphical structures. Recently, [20] also considered a BP approach for
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state estimation in power grid. The factor graph representation of a microgrid is given in figure 1.2.

This figure shows the approximation of a covariance matrix with a first order Markov chain model.

Here we need Model approximation in order to decrease the number of loops due to penetration of

correlated renewable sources. Note that, in the middle, we have the loopy factor graph with many

short loops due to complete factor graph of the covariance matrix. In the left, we remove many of

those short loops by using the approximated covariance matrix factor graph.

G G

G

G

G

G G

G

G

G

G G

G

G

G

Figure 1.2: Microgrid with correlated renewable energy sources (left), its Factor Graph (Middle)
and reduced Factor Graph by Chain approximation (Right).

1.6 Thesis Main Contributions

1.6.1 Quality of statistical model selection with focus on covariance

selection

We formulate a parametric detection problem between the original distribution and the approxi-

mation model distribution in order to quantify the quality of any model selection algorithm. The

proposed parametric detection problem is a different approach which gives us a broader view by

determining whether a particular model is a good approximation or not. Additionally, this formu-

lation leads to the calculation of the log-likelihood ratio test (LLRT) statistic, the KL divergence

and the reverse KL divergence as well as the receiver operating characteristic (ROC) curve and the

area under the ROC curve (AUC) where the AUC is used as the accuracy measure for the detection

problem. The AUC does not depend on a specific operating point on the ROC and broadly summa-

rizes the entire detection framework. It also effectively combines the detection probability and the

false-alarm probability into one measure. The AUC determines the inherent ability of the test to

distinguish (in conventional detection problem) or not to distinguish (in the model approximation

8



problem) between two hypotheses/models. More specifically, the detection formulation and parti-

cularly the AUC gives us additional insight about any approximation since it is a way to formalize

the model approximation problem.

After formulation of the general problem, we shift focus to the Gaussian data, i.e. the covariance

selection [1]. For Gaussian data, the LLRT statistic simplifies to an indefinite quadratic form. For

this case, we can define a key quantity which is the correlation approximation matrix (CAM). The

CAM is the product of the original correlation matrix and the inverse of the model approximation

correlation matrix. For Gaussian data, this matrix contains all the information needed to compute

the information divergences, the ROC curve and the area under the ROC curve, i.e. the AUC.

We also show the relationship between the CAM, the AUC and the Jeffreys divergence [21], the

KL divergence and the reverse KL divergence. We present an analytical expression to compute the

AUC for a given CAM that can be efficiently evaluated numerically. We then show the relation

between the AUC, the KL divergence, the LLRT statistics and the ROC curve. We also present

analytical upper and lower bounds for the AUC which only depend on eigenvalues of the CAM.

Finally, through some examples and simulation for real and synthetic data, we explore model

selection quality using the proposed detection framework for both tree structured and non-tree

structured approximation models.

1.6.2 General framework and algorithms to perform covariance selection

We have proposed a new optimization method for covariance selection. Mainly, our method is a

multi-stage graphical approximation using cascade of models such as trees. This cascade approx-

imation method for Gaussian distributions is a linear transformation of tree models and a new

decomposition of the covariance matrix. The purpose of this method is also to reduce the compu-

tational complexity of distributed algorithms in various applications while maintaining the desired

approximation quality. To achieve this goal we approximate the Gaussian graphical model with a

simpler, more tractable model.

We consider jointly Gaussian data and use cascade of tree transformation decompositions in order

to perform model approximation for graphical models. The tree structure model is considered

since this structure is simple and the optimal solution that minimizes the KL divergence can be
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easily computed using he Chow-Liu algorithm [3]. Furthermore, the tree structure model is a

loop-free model and simplifies the implementation of distributed algorithms such as Gaussian BP.

The cascade tree framework enables us to approximate a complex model with multiple stages

of simple tractable models such as the tree structured model. We pick trees as the model and

the Cholesky decomposition to factor the tree structured covariance matrix at each stage of the

cascade algorithm. Implementation of the Cholesky decomposition with the proper node ordering

(permutation matrix) enables us to draw a tree structured factor graph for each step of the cascade

tree decomposition transformation. This property can facilitates the use of Gaussian BP algorithm

over the aforementioned factor graph. Note that each successive additional tree reduces the KL

divergence. Also, we conjecture that the KL divergence goes to 0 as we added more and more

trees. Furthermore, selecting star networks and with proper node ordering, we can get to exact

representation of the covariance matrix at most with n-1 cascades.

We perform some simulations to investigate the performance of the proposed method. In our

simulations, we are looking at synthetic and real data and compare the performance of the proposed

framework by comparing KL divergences. We also consider the singular value decomposition (SVD)

and compare its performance to the Cholesky decomposition. Our simulation results also confirm

the advantages of the cascade tree framework in the sense of lowering the overall KL divergence

between the original and the model distribution.

1.7 Thesis Outline

The rest of the thesis is organized as follows. In chapter 2 we introduce the detection problem

framework for model selection and investigate the quality of a model approximation algorithm.

We present the theoretical results related to the quality of an approximation model. Chapter 3

extends the work in chapter 2 by looking at more complex approximation models such as non-tree

structured graphs and also graphical models with junction tree representation. This chapter also

gives some simple tree structured examples as well as non-tree examples on synthetic and real data.

In chapter 4, we represent our new covariance matrix decomposition method using a cascade of

linear transformations represented by trees and its usefulness in model approximation for graphical

model. We also show how the presented methodology in this chapter can be applied. Finally, We
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end with some concluding remarks and future research directions in Chapter 5. We provide the

proofs of theorems and lemmas in Appendix A.
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2
The Covariance Selection Problem using a

Detection Problem Formulation: Theoretical

Analysis

This chapter investigates the problem of quantifying the quality of a general statistical model

selection for graphs describing dependencies between random variables focusing on the covariance

selection quality for jointly Gaussian random vectors. There is a mature body of literature on

statistical model selection, but still, it is not obvious how good are these models. Statistical model

selection often uses a distance measure such as the Kullback-Leibler (KL) divergence between the

original distribution and the model distribution to quantify the quality of the model approximation.

In this chapter, we look at this problem from a different angle. We extend the body of research by

formulating the model approximation as a detection problem between the original distribution and
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the model distribution. We mainly focus on the covariance selection problem and AUC bounds to

quantify its quality.

2.1 Introduction

As we mentioned before, graphical models are useful tools for describing the geometric structure

of networks in numerous applications such as energy, social, sensor, biological, and transportation

networks [14] that deal with high dimensional data. Learning from these high dimensional data

requires large computation power which is not always available [6, 8], due to hardware limitation

which forces us to compromise between the accuracy and time complexity by using the best possible

approximation algorithm given the required constrained graph. In other words, the main concern is

to compromise between model complexity and its accuracy by choosing a simpler, yet informative

and useful model. To address this concern, many approximation algorithms are proposed for model

selection and imposing structure given data. A broad study of graphical models is also done in

[6, 8, 10]. For the Gaussian distribution, the covariance selection problem is first presented and

studied by Dempster [1]. More comprehensive covariance selection study using penalized normal

likelihood has been done in [22] and its references.

The ultimate purpose of the covariance selection problem that we discuss here is to reduce the

computational complexity and speed up various applications by using the power of graphical models

in modeling structures. One of the special approximation models that we consider in this dissertation

is the tree approximation model. Tree approximation algorithms are among the algorithms that

reduce the number of computations to get quicker approximate solutions to a variety of problems.

If a tree model is used, then distributed estimation algorithms such as message passing algorithm

and the belief propagation algorithm [23–26] can easily be applied on factor graphs [27] and these

algorithms are guaranteed to converge to the maximum likelihood solution quickly. The convergence

speed depends on the longest path [28] between any two vertices in a tree graph which is at most

the number of vertices minus one (chain trees).

There are algorithms in the literature that can be used to approximate the covariance matrix

and the inverse covariance matrix such that the jointly Gaussian distributions associated with the

covariance matrix can be represented by a more sparse graph representation while retaining desired
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accuracy. Some of these algorithms are as follows: the Chow-Liu minimum spanning tree (MST)

[3], the first order Markov chain approximation [16], penalized likelihood methods such as LASSO

[29] and graphical LASSO [30], and sparse approximation a conditional density of latent variables

(Variational inference) [31, 32]. Among these algorithms, we introduce the Chow-Liu MST algorithm

for Gaussian distribution is chapter 1. The algorithm’s goal is to find the optimal tree structure

using a Kullback-Leibler (KL) divergence cost function. This algorithm constructs a weighted graph

by computing pairwise mutual information and then utilizes one of the MST algorithms such as

the Kruskal algorithm [33] or the Prim algorithm [34]. The first order Markov chain approximation

method uses a regret cost function to output first order Markov chain structured graph [16] by

utilizing a greedy type algorithm. Penalized likelihood methods use an L1-norm penalty term in

order to sparsify the graph representation and eliminate some edges. Recently, a tree approximation

in a linear, underdetermined model was proposed in [35] where the solution is based on expectation,

maximization (EM) algorithm combined with the Chow Liu algorithm.

Here, we investigate the quality of the model selection, focusing on the Gaussian case, i.e. covariance

selection. We ask the following important question: “is the model approximation of the covariance

matrix for the Gaussian model a good approximation?” To answer this question, we need to pick

a closeness criterion which has to be coherent and general enough to handle a wide variety of

problems and also has asymptotic justification [5]. In many applications, the Kullback-Leibler (KL)

divergence has been proposed as a closeness criterion between the original distribution and its model

approximation distribution [1] and [3]. Besides that, other closeness measures and divergences are

used for the model selection. One example is the use of the reverse KL divergence as the closeness

criterion in variational methods to learn the desired approximation structure [32].

In this chapter, we bring a different perspective to the model approximation problem by formulating

a general detection problem. The detection problem formulation leads to the calculation of the log-

likelihood ratio test (LLRT) statistic, the KL divergence and the reverse KL divergence as well as the

receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) where the

AUC is used as the accuracy measure for the detection problem. The detection problem formulation

is a different approach which gives us a broader view by determining whether a particular model

is a good approximation or not. The AUC does not depend on a specific operating point on the

ROC and broadly summarizes the entire detection framework. It also effectively combines the
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detection probability and the false-alarm probability into one measure. The AUC determines the

inherent ability of the test to distinguish (in conventional detection problem) or not to distinguish

(in the model approximation problem) between two hypotheses/models. More specifically, the

detection formulation and particularly the AUC gives us additional insight about any approximation

since it is a way to formalize the model approximation problem. For Gaussian data, the LLRT

statistic simplifies to an indefinite quadratic form. We define a key quantity which is the correlation

approximation matrix (CAM). The CAM is the product of the original correlation matrix and the

inverse of the model approximation correlation matrix. For Gaussian data, this matrix contains

all the information needed to compute the information divergences, the ROC curve and the area

under the ROC curve, i.e. the AUC. We also show the relationship between the CAM, the AUC

and the Jeffreys divergence [21], the KL divergence and the reverse KL divergence. We present

an analytical expression to compute the AUC for a given CAM that can be efficiently evaluated

numerically. We then show the relation between the AUC, the KL divergence, the LLRT statistics

and the ROC curve. We also present analytical upper and lower bounds for the AUC which only

depend on eigenvalues of the CAM.

The rest of this chapter is organized as follows. In section 2.2 we give a general framework for

the detection problem and the corresponding sufficient test statistic, the log-likelihood ratio test.

The log-likelihood ratio test for Gaussian data and its distribution under both hypotheses are also

presented in this section. The ROC curve and the AUC definition, as well as an analytical expression

for the AUC, are given in section 2.5. Section 2.6 provides analytical lower and upper bounds for

the AUC. The lower bound for the AUC uses the Chernoff bound and is a function of the CAM

eigenvalues. The upper bound is obtained by finding a parametric relationship between the AUC

and the KL and reverse KL divergences. Finally, section 2.7 summarizes results of this chapter.

2.2 Detection Problem Framework

In this section, we present a framework to quantify the quality of a model selection. More specifically,

we formulate a detection problem to distinguish between the covariance matrix of a multivariate

normal distribution and an approximation of the aforementioned covariance matrix based on the

given model.
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2.2.1 Model selection problem

We want to approximate a multivariate distribution by the product of lower order component

distributions [36]. Let random vectorX P Rn, have a distribution with parameter Θ, i.e. X „ fXpxq.

We want to approximate the random vector X, with another random vector associated with the

desired model 1. Let the model random vector XM P Rn have a distribution with parameter

ΘM, associated with the desired model, i.e. X „ fXM
pxq. Also, let G “ pV , EMq be the graph

representation of the model random vector XM where sets V and EM are the set of all vertices and

the set of all edges of the graph representing of XM, respectively. Moreover, EM Ď ψ where ψ is

the set of all edges of complete graph with vertex set V .

Remark: Covariance selection and tree structured models for Gaussian distributions is discussed

in chapter 1.

2.2.2 General detection framework

The model selection is extensively studied in the literature [1]. Minimizing the KL divergence

between two distributions or the maximum likelihood criterion are proposed in many previous

works in literature to quantify the quality of the model approximation. A different way to look

at the problem of quantifying the quality of the model approximation is to formulate a detection

problem [37]. Given the set of data, the goal of the detection problem is to distinguish between

the null hypothesis and the alternative hypothesis. To set up a detection problem for the model

selection, we need to define these two hypotheses as follows

- The null hypothesis, H0: data is generated using the known/original distribution,

- The alternative hypothesis, H1: data is generated using the model/approximated distribu-

tion.

Given the set up for the null hypothesis and the alternative hypothesis, we need to define a test

statistic to quantify the detection problem. The likelihood ratio test (the Neyman-Pearson (NP)

Lemma [38]) is the most powerful test statistic where we first define the log-likelihood ratio test

1. Examples of possible models: tree structure, sparse structure, and Markov chain.
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(LLRT) as

lpxq “ log
fXpx|H1q

fXpx|H0q
“ log

fXM
pxq

fXpxq

where fXpx|H0q is the random vector X distribution under the null hypothesis while fXpx|H1q is

the random vector X distribution under the alternative hypothesis.

Let lpXq be the LLRT statistic random variable. Then, we define the false-alarm probability and the

detection probability by comparing the LLRT statistic under each hypothesis with a given threshold,

τ, and computing the following probabilities

- The false-alarm probability, P0pτq, under the null hypothesis, H0: P0pτq “ PrplpXq ě τ|H0q,

- The detection probability, P1pτq, under the alternative hypothesis, H1: P1pτq “ PrplpXq ě

τ|H1q.

The Neyman-Pearson Lemma [38] is the most powerful test at a given false-alarm rate (significant

level). The most powerful test is defined by setting the false-alarm rate P0pτq “ P̄0 and then

computing the threshold value τ “ τ0 such that PrplpXq ě τ0|H0q “ P̄0.

Throughout this dissertation, we may use other notation such as the KL divergence between two

covariance matrices for zero-mean Gaussian distribution case or the KL divergence between two

random variables in order to present the KL divergence between two distributions.

Proposition 1. Expectation of the LLRT statistic under each hypothesis is

- E plpXq|H0q “ ´DpfXpx|H0q||fXpx|H1qq “ ´DpfXpxq||fXM
pxqq,

- E plpXq|H1q “ DpfXpx|H1q||fXpx|H0qq “ DpfXM
pxq||fXpxqq.

Proof. Proof is based on the KL divergence definition. �

Remark: Relationship between the NP lemma and the KL divergence is previously stated in [39]

with the similar straightforward calculation, where the LLRT statistic loses power when the wrong

distribution is used instead of the true distribution for one of these hypotheses.

In a regular detection problem framework, the NP decision rule is to accept the hypothesis H1 if the

LLRT statistic, lpxq, exceeds a critical value, and reject it otherwise. Furthermore, the critical value

is set based on the rejection probability of the hypothesis H0, i.e. false-alarm probability. However,

we pursue a different goal in the approximation problem scenario. Our goal is to approximate
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a model distribution with PDF fXM
pxq, as close as possible to the given distribution with PDF

fXpxq. The closeness criterion is based on the modified detection problem framework where we

compute the LLRT statistic and compare it with a threshold. In an ideal case where there is no

approximation error, the detection probability must be equal to the false-alarm probability for the

optimal detector at all possible thresholds, i.e. the receiver operating characteristic (ROC) curve

[40] that represents best detectors for all threshold values should be a line of slope 1 passing through

the origin.

In the next subsection, we assume that the random vector X has zero-mean Gaussian distribution.

Thus, the covariance matrix of the random vector X is the parameter of interest in the model

selection, i.e. covariance selection.

2.2.3 Multivariate Gaussian distribution and model selection

Let random vector X P Rn, have a zero-mean jointly Gaussian distribution with covariance matrix

ΣX , i.e. X „ N p0,ΣXq where the covariance matrix ΣX is positive-definite, ΣX ą 0. Here, the

null hypothesis, H0, is the hypothesis that the parameter of interest is known and is equal to ΣX

while the alternative hypothesis, H1, is the hypothesis that the random vector X is replaced by

the model random vector XM. In this scenario, the model random vector XM has a zero-mean

jointly Gaussian distribution (the model approximation distribution) with covariance matrix ΣXM

i.e. XM „ N p0,ΣXM
q where the covariance matrix ΣXM

is also positive-definite, ΣXM
ą 0. Thus,

the LLRT statistic for the jointly Gaussian random vectors (X and XM) is simplified as

lpxq “ log
N p0,ΣXM

q

N p0,ΣXq
“ ´c` kpxq (2.1)

where c “ ´1
2
log p|ΣXΣ´1

XM
|q is a constant and kpxq “ xTKx where K “ 1

2
pΣ´1

X ´ Σ´1
XM
q is an

indefinite matrix with both positive and negative eigenvalues.

We define the correlation approximation matrix (CAM) associated with the covariance selection

problem and dissimilarity parameters of the CAM as follows.

Definition 3. Correlation approximation matrix. The CAM for the covariance selection

18



problem is defined as ∆ , ΣXΣ´1
XM

where ΣXM
is the model covariance matrix. �

Definition 4. Dissimilarity parameters for covariance selection problem. Let αi , λi `

λ´1
i ´ 2 for i P t1, . . . , nu be dissimilarity parameters of the CAM correspond to the covariance

selection problem where λi ą 0 for i P t1, . . . , nu are eigenvalues of the CAM. �

Remark: The CAM is a positive definite matrix. Moreover, eigenvalues of the CAM contains all

information necessary to compute cost functions associated with the model selection.

2.3 Dempster covariance selection

In 1972, Dempster introduced the covariance selection approach where given an empirical covari-

ance matrix, the goal is to approximate a sparse inverse covariance matrix to estimate data. Given

a covariance matrix with dense inverse, this approach can also be looked at as an approximation of

a covariance matrix with sparse inverse given some model criteria (e.g. sparse graphical represen-

tation).

Recall that we define the graphical model of model M as GM “ pV , EMq where V is a set of all

nodes and EM Ď ψ is a set of edges that represents the model M.

Theorem 1. Covariance Selection [1]. Given a multivariate Gaussian distribution with co-

variance matrix ΣX ą 0, fXpxq, and a model M, there exists a unique approximate multivariate

Gaussian distribution with covariance matrix ΣXM
ą 0, fXM

pxq, that minimize the KL divergence,

DpfXpxq||fXM
pxqq and satisfies the covariance selection rules, i.e. the model covariance matrix

satisfies the following covariance selection rules

- ΣXM
pi, iq “ ΣXpi, iq, @ i P V

- ΣXM
pi, jq “ ΣXpi, jq, @ pi, jq P EM

- Σ´1
XM
pi, jq “ 0, @ pi, jq P EcM

where the set EcM “ ψ ´ EM represents the complement of the set EM and ψ is the set of all edges

of a complete graph. Note that, Since ΣXM
is symmetric, ΣXM

pj, iq “ ΣXM
pi, jq. �

In other words, covariance selection rules state that

1) model approximation variances are the same as actual variances,
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2) model approximation covariances between two connected nodes in graphical representation

of the model M are the same as actual covariances,

3) coefficients of the model approximation precision matrix (inverse of the model approximation

covariance matrix) are zero at all other positions (expressing the conditional independence).

2.4 Chow-Liu minimum spanning tree

Tree structured graphical models are one of the simplest and important class of undirected graphs.

Finding the minimum spanning tree for an edge-weighted undirected graph is one of the well-

known and well-studied problems in the literature [33, 34, 41]. For jointly Gaussian distributions,

finding the optimal tree structured model reduces to finding the minimum spanning tree for an

edge-weighted undirected graph [3].

The maximum order of the lower order distributions in tree approximation problem is two, i.e. no

more than pairs of variables. Let XT „ N p0,ΣXT
q have the graph representation GT “ pV , ET q

where ET Ď ψ is a set of edges that represents a tree structure. Let Xr „ N p0,ΣXr
q have the

graph representation Gr “ pV , Erq where Er Ď ET is the set of all edges in the graph of Xr. The

joint PDF for elements of the random vector Xr can be represented by joint PDFs of two variables

and marginal PDFs in the following convenient form

fXr
pxrq “

ź

pu,vqPEr

fXu,Xvpxu, xvq

fXupxuqfXvpxvq

ź

uPV
fXupxuq, (2.2)

where Xu is the u-th element of random vector X. Using equation (4.1) we can then easily construct

a tree using iterative algorithms (such as the Chow-Liu algorithm [3] combined with the Kruskal

[33] algorithm or the Prim [34] algorithm) by adding edges one at a time [42]. Consider the sequence

of random vectors Xr with 0 ď r ď |ET |, where Xr is recursively generated by augmenting a new

edge, pi, jq P Er, to the graph representation of Xr´1. For the special case of Gaussian distributions,

ΣXr
has the following recursive formulation [42]

Σ´1
Xr
“ Σ´1

Xr´1
`Σ:

i,j ´Σ:

i ´Σ:

j , @ 0 ď r ď |ET |
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where Σ:

i,j “ rei ejsΣ
´1
i,j rei ejs

T and Σ:

i “ eiΣ
´1
i eTi where ei is a unitary vector with 1 at the i-th

place and Σi,j and Σi are the 2-by-2 and 1-by-1 principle sub-matrices of ΣX , with initial step

ΣX0
“diagpΣXq where diagpΣXq represents a diagonal matrix with diagonal elements of ΣX .

Remark: For all 0 ď r ď |ET |, we have

1. trpΣXr
q “ trpΣXq

2. trpΣXΣ´1
Xr
q “ n.

3. DpfXpxq||fXr
pxqq “ ´1

2
logp|ΣXΣ´1

Xr
|q

4. |ΣX | ď . . . ď |ΣXr
| ď . . . ď |ΣX0

| “ |diagpΣXq|

5. HpXq ď . . . ď HpXrq ď . . . ď HpX0q

where HpXq is differential entropy.

Tree approximation models are interesting to study since there are algorithms such as Chow-Liu

[3] combined with the Kruskal [33] or the Prim’s [34] that efficiently compute the model covariance

matrix from the graph covariance matrix.

Remark: The CAM is defined as ∆ , ΣXΣ´1
XM

. Thus, the constant c can be written as c “

´1
2

logp|∆|q. Then, for any given covariance matrix and its model covariance matrix that satisfies

conditions in theorem 1, the summation of diagonal coefficients of the CAM is equal to n, i.e.

the result in theorem 1 implies that tr p∆q “ n. Using this result and the definition of the KL

divergence for jointly Gaussian distributions, we have

DpfXpxq||fXM
pxqq “ c`

1

2
trp∆q ´

n

2

which results in c “ DpfXpxq||fXM
pxqq.

2.4.1 Covariance selection example

Here we choose tree approximation model as an example. Figure 2.1 indicates two graphs: (a) the

complete graph and (b) its tree approximation model where edges in the graph represent non-zero

coefficients in the inverse of the covariance matrix [1].

21



The correlation coefficient between each pair of adjacent nodes has been written on each edge. The

correlation coefficient between each pair of nonadjacent nodes is the multiplication of all correlations

on the unique path that connects those nodes. The correlation matrix for each graph is

X1

X2

X3

X4

0.9

0.
8

0.7

0.
9

0.3

0.6

(a)

X1

X2

X3

X4

0.9

0.
9

0.7

(b)

Figure 2.1: (a) The complete graph; (b) The tree approximation of the complete graph.

ΣX “

»

—

—

—

—

—

—

–

1 0.9 0.9 0.6

0.9 1 0.8 0.3

0.9 0.8 1 0.7

0.6 0.3 0.7 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and

ΣXT
“

»

—

—

—

—

—

—

–

1 0.9 0.9 0.63

0.9 1 0.81 0.567

0.9 0.81 1 0.7

0.63 0.567 0.7 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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The CAM for the above example is

∆ “

»

—

—

—

—

—

—

–

1 0 0.0412 ´0.0588

0.0474 1 0.3042 ´0.5098

0.0474 ´0.0526 1 0

0.9789 ´1.2632 0.1421 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The CAM contains all information about the tree approximation 2. Here we assume cases that

Gaussian random variables have finite, nonzero variances. The value of the KL divergence for this

example is ´0.5 logp|∆|q “ 0.6218.

Remark: Without loss of generality, throughout this dissertation we work with normalized corre-

lation matrices, i.e. the diagonal elements of the correlation matrices are normalized to be equal to

one.

2.4.2 Distribution of the LLRT statistic

The random vector X has Gaussian distribution under both hypotheses H0 and H1. Thus under

both hypotheses, the real random variable, kpXq “ XTKX has a generalized chi-squared distribu-

tion, i.e. the random variable, kpXq, is equal to a weighted sum of chi-squared random variables

with both positive and negative weights under both hypotheses. Let us define W “ Σ
´ 1

2
X X under

H0 and Z “ Σ
´ 1

2
XM

X under H1, where Σ
1
2
X and Σ

1
2
XM

are the square root of covariance matrices ΣX

and ΣXM
, respectively. Then the random vectors W „ N p0, Iq and Z „ N p0, Iq are zero-mean

Gaussian distributions with the same covariance matrices, I, where I is the identity matrix of di-

mension n. Note that, the CAM is a positive definite matrix with λi ą 0 where 1 ď i ď n. Thus,

the random variable kpXq, under both hypotheses H0 and H1 can be written as:

K0 , kpXq|H0 “
1

2

n
ÿ

i“1

p1´ λiqW
2
i

and

K1 , kpXq|H1 “
1

2

n
ÿ

i“1

pλ´1
i ´ 1qZ2

i

2. Dissimilarity parameters αi’s and eigenvalues of CAM contains all information about the tree approximation.
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respectively, where random variables Wi and Zi, are the i-th element of random vectors W and Z,

respectively. Moreover, random variables W 2
i and Z2

i , follow the first order central chi-squared dis-

tribution. Note that, similarly random variable lpXq , ´c` kpXq is defined under each hypothesis

as

L0 , lpXq|H0 “ ´c`K0

and

L1 , lpXq|H1 “ ´c`K1.

Remark: As a simple consequence of the covariance selection theorem, the summation of weights for

the generalized chi-squared random variable, the expectation of kpXq, is zero under the hypothesis

H0, i.e. EpK0q “
1
2

řn
i“1p1 ´ λiq “ 0 [1], and this summation is positive under the hypothesis H1,

i.e. EpK1q “
1
2

řn
i“1pλ

´1
i ´ 1q ě 0.

2.5 The ROC Curve and the AUC Computation

2.5.1 The receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is the parametric curve where the detection

probability is plotted versus the false-alarm probability for all thresholds, i.e. each point on the ROC

curve represents a pair of pP0pτq, P1pτqq for a given threshold τ. Set z “ P0pτq and η “ P1pτq, the

ROC curve is η “ hpzq. If P0pτq has an inverse function, then the ROC curve is hpzq “ P1pP
´1
0 pzqq.

In general, the ROC curve, hpzq, has the following properties [40]

- hpzq is concave and increasing,

- h1pzq is positive and decreasing,

-
ş1

0
h1pzq dz ď 1.

Note that, for the ROC curve, the slope of the tangent line at a given threshold, h1pzq, gives the

likelihood ratio for the value of the test [40].

Remark: For the ROC curve for our Gaussian random vectors we have h1pzq is positive, continuous

and decreasing in interval r0, 1s with right continuity at 0 and left continuity at 1. Moreover,
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ż 1

0

h1pzq dz “ 1

since hp0q “ 0 and hp1q “ 1.

Definition 5. Let fL0plq and fL1plq be the probability density function of the random variables L0

and L1, respectively. �

Lemma 1. Given the ROC curve, hpzq, we can compute following KL divergences

D pfL1plq||fL0plqq “ ´

ż 1

0

log ph1pzqq dz.

and

D pfL0plq||fL1plqq “ ´

ż 1

0

h1pzq log ph1pzqq dz

p˚q
“ ´

ż 1

0

log

ˆ

d h´1pηq

d η

˙

dη

where (*) holds if the ROC curve, η “ hpzq, has an inverse function.

Proof. These results are from the Radon-Nikodým theorem [43]. Simple, alternative calculus based

proofs are given in appendix A.1. �

2.5.2 Area under the curve

As discussed previously, we examine the ROC with a goal that the model approximation results in

the ROC being a line of slope 1 passing through the origin. This is in contrast to the conventional

detection problem where we want to distinguish between the two hypotheses and ideally, have a

ROC that is a unit step function. The area under the curve (AUC) is defined as the integral of the

ROC curve (figure 2.2) and is a measure of accuracy in decision problems.

25



AUC

1

1
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Figure 2.2: The ROC curve and the area under the ROC curve. Each point on the ROC curve
indicates a detector with given detection and false-alarm probabilities.

Definition 6. The area under the ROC cure (AUC) is defined as

AUC “

ż 1

0

hpzq d z “

ż 1

0

P1pτq dP0pτq (2.3)

where τ is the detection problem threshold. �

Remark: The AUC is a measure of accuracy for the detection problem and 1{2 ď AUC ď 1. Note

that, in conventional decision problems, the AUC is desired to be as close as possible to 1 while in

approximation problem presented here we want the AUC to be close to 1{2.

Theorem 2. Statistical property of AUC [44]. Assume L1 and L0 are independent random

variables then the AUC for the LLRT statistic is

AUC “ Pr pL1 ą L0q .

�

Corollary 1. From theorem 2, when PDFs for the LLRT statistic under both hypotheses exist, we

can compute the AUC as

AUC “

ż 8

0

pfL1 ‹ fL0q plq dl (2.4)

where pfL1 ‹ fL0q plq ,
ş8

´8
fL1pτq fL0pl ` τq dl is the cross-correlation between fL1plq and fL0plq.
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Proof. A proof based on the definition of the AUC (2.3), is given in [45]. �

Let us define the difference LLRT statistic random variable as L∆ , L1 ´ L0. Then, we get

AUC “ Pr pL∆ ą 0q

“ 1´ FL∆
p0q

where FL∆
plq is the cumulative distribution function (CDF) for random variable L∆. Note that we

define the difference LLRT statistic random variable to simplify the notation and easily show that

the AUC only depends on this difference.

The two conditional random variables L0 and L1 are independent 3 as stated above. Thus, the

cross-correlation between the corresponding two distributions is the distribution of the difference

LLRT statistic, L∆. We can write the random variable L∆ as

L∆ “ ´c`K1 ´ p´c`K0q

“ K1 ´K0.

Replacing the definition for K0 and K1, we have

L∆ “
1

2

n
ÿ

i“1

pλ´1
i ´ 1qZ2

i ´
1

2

n
ÿ

i“1

p1´ λiqW
2
i .

We can rewrite the difference LLRT statistic, L∆, in an indefinite quadratic form as

L∆ “
1

2
V T
pΛ´ IqV

where

3. By the definition of the detection problem.
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V “

»

—

—

—

–

W

Z

fi

ffi

ffi

ffi

fl

and

Λ “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1

. . . 0

λn

λ´1
1

0
. . .

λ´1
n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

2.5.3 Analytical expression for AUC

To compute the CDF of random variable L∆, we need to evaluate a multi-dimensional integral of

jointly Gaussian distributions [46] or we need to approximate this CDF [47]. More efficiently, as

discussed in [48] for the real-valued case, the CDF of the random variable L∆ can be expressed as

a single-dimensional integral of a complex function 4 in the following form

FL∆
plq “

1

2π

ż 8

´8

e
l
2
pjω`βq

jω ` β

1
b

|I` 1
2
pΛ´ Iqpjω ` βq|

dω

where β ą 0 is chosen such that matrix I` β
2
pΛ´Iq, is positive definite and simplifies the evaluation

of the multivariate Gaussian integral [48].

Special case: When Λ “ I, i.e. the given covariance obeys the model structure, then

AUC “ 1´ FL∆
p0q “ 1´

1

2π

ż 8

´8

1

jω ` β
“

1

2

for β ą 0 and is also independent of the value of the parameter β.

4. This is the transform to the frequency domain for an arbitrary β.
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Picking an appropriate value for the parameter β 5, the AUC can be numerically computed by

evaluating the following one dimension complex integral

AUC “ 1´
1

2π

ż 8

´8

1

jω ` β

1
b

|I` 1
2
pΛ´ Iqpjω ` βq|

dω.

Furthermore, since Λ ą 0, choosing β “ 2 and changing variable as ν “ ω{2, we have

AUC “ 1´
1

2π

ż 8

´8

1

jν ` 1

1
a

|Λ` jνpΛ´ Iq|
dν. (2.5)

Moreover, |Λ`jνpΛ´Iq| “
śp

i“1p1`αiν
2´jαiνq. This equation shows that the AUC only depends

on αi’s.

Remark: Since the AUC integral in (2.5) cannot be evaluated in closed form, it cannot be used

directly in obtaining model selection algorithms. Numerical evaluation of the AUC using the one-

dimensional complex integral (2.5) is very efficient and fast compared to the numerical evaluation

of a multi-dimensional integral of jointly Gaussian CDF.

2.6 Analytical Bounds for the AUC

Section 2.5 derived an analytical expression for the AUC based on zero-mean Gaussian distributions.

In this section, we find analytical lower and upper bounds for the AUC. These bounds will give us

insight into the behavior of the AUC.

2.6.1 Generalized Asymmetric Laplace distribution

In this subsection, we present the probability density function and moment generating function for

the difference LLRT statistic random variable, L∆. We will use this result in computing the AUC

bound.

The difference LLRT statistic random variable, L∆, follows the generalized asymmetric Laplace

5. The parameter β is picked such that I` β
2 pΛ´ Iq ą 0 and β “ 2 always satisfies this condition since Λ ą 0.
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(GAL) distribution 6 [49]. For a given i where i P t1, . . . , nu, we define random variable L∆i
as

L∆i
“
λi ´ 1

2
W 2
i ´

1´ λ´1
i

2
Z2
i . (2.6)

Then, difference LLRT statistic random variable, L∆, can be written as

L∆ “

n
ÿ

i“1

L∆i

where L∆i
’s are independent and have GAL distributions at position 0 with mean αi{2 and PDF [49]

fL∆i
plq “

e
l
2

π
?
αi
K0

˜

c

α´1
i `

1

4
|l|

¸

, l ‰ 0 (2.7)

where K0p´q is the modified Bessel function of second kind [50]. The moment generating function

(MGF) for this distribution is

ML∆i
ptq “

1
?

1´ αit´ αit2

for all t’s that satisfies 1´αit´αit
2 ą 0. From (2.6), the MGF derivation for the GAL distribution

is straightforward and is the multiplication of two MGFs for the chi-squared distribution.

The distribution of the difference LLRT statistic random variable, L∆, is

fL∆
plq “

n
˚
i“1

fL∆i
plq

where ˚n
i“1 is the notation we use for convolution of n functions together. Note that, although the

distribution of random variables L∆i
’s in (2.7) has discontinuity at l “ 0, the distribution of random

variable L∆ is continuous if there are at least two distribution with non-zero parameters, αi’s, in

the aforementioned convolution. Moreover, the MGF for fL∆
plq can be computed by multiplying

MGFs for L∆i
as

ML∆
ptq “

n
ź

i“1

ML∆i
ptq (2.8)

for all t’s in the intersection of all domains of ML∆i
ptq. The smallest of such intersections is

´1 ă t ă 0.

6. Also known as the variance-gamma distribution or the Bessel function distribution.
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2.6.2 Lower bound for the AUC (Chernoff bound application)

Given the MGF for the difference LLRT statistic distribution (2.8), we can apply the Chernoff

bound [51] to find a lower bound for the AUC or upper bound for the CDF of the difference LLRT

statistic random variable, L∆, evaluated at zero).

Proposition 2. Lower bound for the AUC is

Pr pL∆ ą 0q ě max

"

1

2
, 1´ e´

1
2

řn
i“1 logp1`

αi
4 q

*

(2.9)

Proof. One-half is a trivial lower bound for AUC. To achieve a non-trivial lower bound, we apply

Chernoff bound [51] as follow

Pr pL∆ ă 0q ď inf
t
ML∆

ptq.

To complete the proof we need to solve the right-hand-side (RHS) optimization problem.

Step 1: First derivatives of ML∆
ptq is

d

d t
ML∆

ptq “ML∆
ptq

˜

1

2

n
ÿ

i“1

λi ´ 1

1´ pλi ´ 1qt
`

λ´1
i ´ 1

1´ pλ´1
i ´ 1qt

¸

“ML∆
ptqp1` 2tq

n
ÿ

i“1

αi
2p1´ αit´ αit2q

.

Clearly, first derivative is zero for t “ ´1{2 which is in the feasible domain of the MGF for the

difference LLRT statistic. Note that, the smallest feasible domain is ´1 ă t ă 0.

Step 2: Second derivatives of ML∆
ptq is

d2

d t2
ML∆

ptq “ML∆
ptq

˜

1

4

n
ÿ

i“1

λi ´ 1

1´ pλi ´ 1qt
`

λ´1
i ´ 1

1´ pλ´1
i ´ 1qt

¸2

`ML∆
ptq

˜

1

4

n
ÿ

i“1

pλi ´ 1q2

p1´ pλi ´ 1qtq2
`

pλ´1
i ´ 1q2

p1´ pλ´1
i ´ 1qtq2

¸

.

Therefore, we conclude that the second derivative is positive and thus the optimal solution to the

RHS optimization problem is at t “ ´1
2
. Replacing that in the definition of the moment generation
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function which results in the following bound

Pr pL∆ ď 0q ă
n
ź

i“1

2
?

4` αi

which can be written as

Pr pL∆ ą 0q ě 1´
n
ź

i“1

2
?

4` αi

which completes the proof. �

2.6.3 Upper Bound for the AUC

In this section, we present a parametric upper bound for the AUC, but first, we need to present the

following results.

Lemma 2. Data processing inequality of the KL divergence for the LLRT statistic. We

have

DpfL1plq||fL0plqq ď DpfXpx|H1q||fXpx|H0qq

and

DpfL0plq||fL1plqq ď DpfXpx|H0q||fXpx|H1qq.

Proof. This lemma is an special case of the data processing property for the KL divergence [52].

By picking the appropriate measurable mapping which in this case is a quadratic function (for our

case of Gaussian random vectors for the LLRT) the Lemma is proved. �

Definition 7. Possible Feasible Region. The AUC and the KL divergence pair lie in the possible

feasible region (figure 2.3) for all possible detectors (ROC curves), i.e. no detector with the AUC

and the KL divergence pair lie outside the feasible region 7.

Theorem 3. Possible feasible region for the AUC and the KL divergence. Given the

ROC curve, the parametric possible feasible region as shown in figure 2.3 can be expressed using the

positive parameter a ą 0 as

Pr pL∆ ą 0q “
1

1´ e´a
´

1

a

7. The definition of the feasible region here is inspired by the joint range of f-divergences [53].
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and

D˚l ě logpaq `
a

ea ´ 1
´ 1´ logp1´ e´aq

where

D˚l “ min tDpfL1plq||fL0plqq , DpfL0plq||fL1plqqu . (2.10)

Proof. Proof is given in the appendix A.2. �
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Figure 2.3: Possible feasible region for the AUC and the KL divergence pair for all possible detectors
or equivalently all possible ROC curves (the KL divergence is between the LLRT statistics under
different hypotheses, i.e. DpfL0plq||fL1plqq or DpfL1plq||fL0plqq.)

Theorem 3 formulates the relationship between the AUC and the KL divergence. The results of this

theorem is generally true for any LLRT statistic. Theorem 3 states that for any valid ROC that

corresponds to a detection problem, the pair of AUC and KL divergence must lie in the possible

feasible region (figure 2.3), i.e. outside of this region is infeasible. This possible feasible region

results in the general upper bound for AUC.

Since computing the distribution of the LLRT statistics is not straightforward in most cases, propo-

sition 3, relaxes the Theorem 3 by bounding the KL divergence between the LLRT statistics using

the invariance property of KL divergence for the LLRT statistic (lemma 2).
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Proposition 3. The parametric upper bound for AUC is

Pr pL∆ ą 0q “
1

1´ e´a
´

1

a

and

D˚ ě logpaq `
a

ea ´ 1
´ 1´ logp1´ e´aq

where a ą 0 is a positive parameter and

D˚ “ min t DpfXpx|H1q||fXpx|H0qq , DpfXpx|H0q||fXpx|H1qq u . (2.11)

Proof. Proof is based on the lemma 2 and the possible feasible region presented in the theorem 3.

From the lemma 2, we have

D˚l ď D˚.

Then, using the result in the theorem 3, we get the parametric upper bound. �

2.6.4 Asymptotic behavior for AUC bounds

Proposition 4. Asymptotic behavior of the lower bound. We have

Pr pL∆ ą 0q ě 1´ e´np1´
1
n

řn
i“1p1`

αi
8
q´1q.

Proof. Applying the inequality

2x

2` x
ă logp1` xq

for x ą 0, we achieve the result. �

Proposition 5. Asymptotic behavior of the upper bound. The parametric upper bound for

AUC has the following asymptotic behavior

Pr pL∆ ą 0q ď 1´ e´D
˚´1

34



where D˚ is given in (2.11).

Proof. Proof is as follows.

´ log p1´ Pr pL∆ ą 0qq “ ´ log

ˆ

1

ea ´ 1
`

1

a

˙

ď log paq

ď D˚ ` 1.

Applying the exponential function to both sides of the above inequality we get the upper bound. �

Remark: The asymptotic lower bound is a function of the number of nodes, n and has an expo-

nential decaying behavior. The asymptotic upper bound also has an exponential decaying behavior

with respect to KL divergence.

Figure 2.4 shows the possible feasible region and the asymptotic behavior log-scale. As it is shown

in this figure, the parametric upper bound can be approximated with a straight line especially for

large values of the parameter a (the result in proposition 5). Also, figure 2.5 shows the possible

feasible region and the asymptotic behavior in regular-scale.
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2.7 Conclusion

In this chapter, we formulated a detection problem and investigated the quality of the model se-

lection. More specifically, we considered Gaussian distributions and discuss the covariance selection

quality of a given model. We present the correlation approximation matrix (CAM) and show its

relationship with information theory divergences such as the KL divergence, the reverse KL diver-

gence, and the Jeffreys divergence as well as the ROC curve and the area under the ROC curve,

the AUC, as a measure of accuracy in the detection problem framework. This chapter also presents

an analytical expression for the AUC that can be efficiently evaluated numerically. AUC analytical

lower and upper bounds are also provided. We show that the AUC and the lower bound for the

AUC depend on the eigenvalues of the CAM. Upper bounds for the AUC are obtained from finding

a parametric relationship between the AUC and the KL/reverse KL divergences.

The detection framework presented in this chapter can be generalized for non-Gaussian models.

The AUC analytical bounds obtained in this chapter can also be used in other applications that are

using AUC as a relevant criterion. One example is in medicine when the AUC is used for diagnostic

tests between positive instance and negative instance [54] where instead of changing the coordinates

we can look at the exponent of the AUC bounds.

37



3
The Covariance Selection Problem using a

Detection Problem Formulation: Examples

In this chapter, we consider some examples of covariance matrices for a Gaussian random vector X.

In the first part, we look at some covariance matrices as examples and approximate those with tree

structured graphical models. In particular, we look at a Toeplitz covariance matrix as well as real

solar data covariance matrices and a simulated sensor network example where sensors are place on a

two dimensional grid. In the second part, we look at approximations beyond tree structure, specially

graphs with Junction tree structures. In this part, we focus on Toeplitz covariance matrix example

and show some theoretical results alongside simulation results on how good these models perform.

Our ultimate goal in this chapter is to determine the quality of each of the above approximation

scenarios.
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3.1 Part I: Tree approximation model

Tree approximation models are interesting to study since there are algorithms such as Chow-Liu

[3] combined with the Kruskal [33] or the Prim’s [34] that efficiently compute the model covariance

matrix from the graph covariance matrix.

3.1.1 Toeplitz example

Here, we assume that the covariance matrix ΣX has a Toeplitz structure with ones on the diagonal

elements and the correlation coefficient ρ ą ´ 1
pn´1q

as off diagonal elements

ΣX “

»

—

—

—

—

—

—

–

1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ

ρ . . . ρ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In this subsection, we consider a tree structured model as the graphical model approximation and

examine the covariance selection problem quality. In our simulations, we compare the numerically

evaluated AUC and its lower and upper bounds and discuss their asymptotic behavior as the

dimension of the graphical model, n, increases.

3.1.1.1 Star approximation

Σstar
XT

“

»

—

—

—

—

—

—

—

—

—

–

1 ρ . . . . . . ρ

ρ
. . . ρ2 . . . ρ2

... ρ2 . . . . . .
...

...
...

. . . . . . ρ2

ρ ρ2 . . . ρ2 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For this example, the KL divergence and the Jeffreys divergence can be computed in closed form as
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DpX||Xstarq “
1

2
pn´ 1q logp1` ρq ´

1

2
logp1` pn´ 1qρq

and

DJ pX , Xstarq “
pn´ 1qpn´ 2qρ2

2p1` pn´ 1qρq

respectively, where

DJ pX , Xstarq “ DpX||Xstarq `DpXstar||Xq

is the Jeffreys divergence [21]. Moreover, for large values of n we can approximate the KL divergence

as

DpX||Xstarq «
n

2
logp1` ρq

which is linear in number of vertices in the graph. Similarly, we can also approximate the Jeffreys

divergence for large values of n as follow

DJ pX , Xstarq «
n

2
ρ.

Figure 3.1 plots the 1´AUC v.s. the dimension of the graph, n for different correlation coefficients,

ρ “ 0.1 and ρ “ 0.9. This figure also indicates the upper bound and the lower bound for the

1´AUC.
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Figure 3.1: 1´AUC v.s. the dimension of the graph, n for Star approximation of the Toeplitz
example with ρ “ 0.1 (left) and ρ “ 0.9 (right). In both figures, the numerically evaluated AUC
is compared with its bounds.

3.1.1.2 Chain approximation

The chain approximated covariance matrix is as follow (nodes are connected like a first order Markov

chain, 1 to n)

Σchain
XT

“

»

—

—

—

—

—

—

—

—

—

–

1 ρ ρ2 . . . ρn´1

ρ
. . . . . . . . .

...

ρ2 . . . . . . . . . ρ2

...
. . . . . . . . . ρ

ρn´1 . . . ρ2 ρ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For this example, the KL divergence and the Jeffreys divergence can be computed in closed form as

DpX||Xchainq “ DpX||Xstarq

41



and

DJ pX , Xchainq “
ρ2

p1` pn´ 1qρqp1´ ρq
ˆ

ˆ

npn´ 1q

2
´
np1´ ρnq

1´ ρ
`

1´ pn` 1qρn ` nρn`1

p1´ ρq2

˙

respectively. Moreover, for large values of n we have the following approximation for the Jeffreys

divergence

DJ pX , Xchainq «
n

2

ρ

1´ ρ
.

Remark: As we see in all of the above approximations for the KL divergences and the Jeffreys

divergences for both star and chain models, for large values of n all divergences are linear in the

number of graph vertices, n. Table 3.1 shows the approximated slope for large n for all of these

approximations.

DJ pX , XMq DpX||XMq

Star Model Chain Model Star Model Chain Model

Approx. Slope
ρ
2

ρ
2p1´ρq

logp1`ρq
2

logp1`ρq
2

Table 3.1: Approximated slope for large n of the KL divergences and the Jeffreys divergences for
both chain and star models

Figure 3.2 plots the 1´AUC v.s. the dimension of the graph, n for different correlation coefficients,

ρ “ 0.1 and ρ “ 0.9 as well as its upper and lower bounds.
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Figure 3.2: 1´AUC v.s. the dimension of the graph, n for Chain approximation of the Toeplitz
example with ρ “ 0.1 (left) and ρ “ 0.9 (right). In both figures, the numerically evaluated AUC
is compared with its bounds.

In both figure 3.1 and figure 3.2, p1 ´ AUCq and its bounds rapidly goes to 0 which means that

AUC goes to one as we increase the number of nodes, n, in the graph. More precisely, bounds for

1´AUC are decaying exponentially as the dimension of the graph, n, increases which is consistent

with the theory obtained for analytical bounds. Furthermore, we can conclude from these figures

that a smaller ρ results in a better tree approximation, i.e. covariance matrices with smaller

correlation coefficients are more like tree structure model. Moreover, comparing the AUC for the

star network approximation with the AUC for the chain network approximation we conclude that

the star network is a much better approximation than the chain network even though that both

approximation networks have the same KL divergences. We can also interpret this fact through

the analytical bounds obtained in this paper. The star network is a better approximation than the

chain network since the decay rate of 1 ´ AUC for the star network is less than its decay rate for

the chain network.

Remark: The star approximation in the above example has lower AUC than the chain approxima-

tion. Practically, it means that the correlation coefficients between vertices that are not connected

to each other in the approximated graphical structure has been approximated more accurately in

the star network than in the chain network.
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3.1.1.3 Divergences values on possible feasible region

Here we look at the position of divergences and AUCs pairs on the possible feasible region. We

compute the KL divergences and reverse KL divergences for jointly Gaussian random vectors (2.11)

and LLRT statistics random variables (2.10).
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Figure 3.3: Possible feasible region for KL divergence and AUC for Toeplitz covariance matrices
with both n “ 10 and n “ 20 and correlation ρ “ 0.5 which shows values of KL divergence, reverse
KL divergence and AUC for both star approximation and chain approximation. (KL shows the KL
divergence between jointly Gaussian random vectors while KLl show the KL divergence between
LLRT statistic random variables.)

Figure 3.3 plots the possible feasible region for KL divergence and AUC. This figure illustrates

divergences and AUCs pairs as points for Toeplitz covariance matrices with both n “ 10 vertices

and n “ 20 vertices and correlation coefficient ρ “ 0.5. This figure also compares the goodness of

star approximation and chain approximation.
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3.1.1.4 LLRT statistic probability density function

Figure 3.4 shows the PDFs for LLRT statistic random variable under both hypotheses H0 and

H1. In this figure, we investigate the LLRT statistic random variable PDFs for Toeplitz covariance

matrices with n “ 10 vertices and n “ 20 vertices and correlation coefficient ρ “ 0.5. This figure

also shows means of each of the plotted PDFs which are the KL divergence and the reverse KL

divergence.
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Figure 3.4: Probability distribution functions for the LLRT statistic random variable under both
hypotheses H0 and H1, for Toeplitz covariance matrices with n “ 10 vertices and n “ 20 vertiecs
and correlation coefficient ρ “ 0.5.
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Remark: The conditional pdfs of LLRT gives us complete information about the quality of the

approximation model for the covariance selection problem. For a good approximation model we

want these two pdfs to be as close as possible. If we look at the means of these to random variables

we get the KL and reverse KL divergence. If they are both close to zero, then the model should

provide a close approximation. However, this may not always be the case as two pdfs could still be

different and the AUC will reflect this.

3.1.2 Real solar data example

In this subsection, we look at real solar irradiation data obtain from NREL website [55]. As

discussed previously in the introduction chapter 1, part of our motivation for this research is based

on looking at distributed state estimation for microgrids with penetration of distributed renewable

energy sources such as roof-top solar Photo Voltaics (PV). Solar radiation data at these energy

sources are highly correlated (due to received irradiation) and we are looking to approximate the

distribution of these data with simpler, yet informative approximations that can also be represented

by tree structures. In what follows, we will see that when the number of nodes are moderately large

(19) (first example), tree approximations do not work well. However, when we have a small number

of sources (6) (second example), then with the proper edge inclusion tree approximations work well.

3.1.2.1 Normalization methods

Standard normalization method: In the standard normalization method a time interval in a day and

the required days of the data is selected and then by subtracting mean and dividing by deviation

we normalize the data.

Zenith angle normalization method: The Zenith angle is the angle between the perpendicular line to

the earth and the line to the sun where at the sunrise and the sunset it is 90 degrees. Relationship

of the cosine of the Zenith angle to solar irradiation is linear in sunny days. In order to get rid

of the time of day and the seasonal effects over the observed data, one can divide the received

irradiation at each time with the cosine of the Zenith angle at that time. Then by using the

standard normalization method, by subtracting mean of data and then divide it by its deviation,

we get the normalized data [56].
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3.1.2.2 Solar measurement fields definition [2]

1. Oahu solar measurement grid sites: We examined NREL solar data for Oahu solar

measurement grid sites by looking at sensor data taking from Kaleloa, Hawaii [55]. The data

consists of one second sampled data from 19 sensors where 17 sensors are at a horizontal

position and 2 sensors are tilted 45 degrees toward the west. Figure 3.5 compare the data

received at one of the tilted sites and the horizontal site nearby. DH1 Sensors with indexes 8

and 9 are at the same place and the 8-th sensor is in a horizontal position while the 9-th sensor

is tilted 45 degrees toward the west. The same thing holds for AP6 sensor indexes 10 and

11 where sensors are at the same place and the 10-th sensor is in a horizontal position while

the 11-th sensor is tilted 45 degrees toward the west 1. We looked at different combinations of

these sensors and extracted data for a year from April first, 2010 to March 31-th 2011. The

data was segmented to times between 9 : 00 AM to 5 : 00 PM. We then normalized data using

the standard normalization method and the zenith angle normalization with time intervals

of 1 minute, 5 minutes and 10 minutes as described before. After that, we computed the

unbiased estimate of the correlation matrix.
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Figure 3.5: Left: Solar received irradiation for a panel with horizontal angle. Right: Solar received
irradiation at the same position for a panel with angle 45 degrees tilted toward the west.

1. look at the field definition [55].
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2. Colorado sites: We examined NREL solar data for 6 sites near the city of Denver, Colorado

[55]. The sites are National Wind Technology Center (NWTC), Solar Technology Acceleration

Center (STAC), Lowry Range Solar Station (LRSS), Solar Radiation Research Laboratory

(SRRL), Vehicle Testing and Integration Facility (VTIF) and South Park Mountain Data

(SPMD). SRRL and VTIF are fairly close to each other and the distance between them is

around 400 meters while the distance between any other pair of sites is between 22Km and

92Km. The data of all sites consists of one minute sampled data except data of SPMD site

which is sampled every 5 minutes. To make the data usable, we repeat the sampled data of

this sensor four more times to obtain one minute sampled data. We extracted data of the year

2013. The data was segmented to times between 8 : 00 AM to 4 : 00 PM. We then normalized

data using the standard normalization method and the zenith angle normalization with time

intervals of 1 minute, 5 minutes and 10 minutes as described before. After that, we computed

the unbiased estimate of the correlation matrix.

In what follows, we investigate the KL divergence between the empirical covariance matrices that

are computed for the dataset presented previously and the optimal, Chow-Liu tree structured

approximation of them. Our goal is to understand how good these tree structured approximations,

model the spatial correlations between different sites in both Kaleloa, Oahu and Denver, Colorado.

As we mentioned it before, here we use the KL divergence to quantify the goodness of the tree

approximation. We show the optimal value for the KL divergence using the notation D˝ at each

time of day.

Figure 3.6 is plotted for the 17 Oahu horizontal sensors (left) and the 6 Colorado sensors (right). KL

divergences in this figure are plotted for three time intervals of 1 minute, 5 minutes and 10 minutes

during the day while both the standard normalization and the zenith angle normalization are used.

We can see that the standard normalization (subtract data by mean and then divide by deviation

for that time of day) is slightly worse than the zenith angle normalization for the Colorado sensors.

Note that the KL divergence for the Colorado sites is much smaller than it is for the Oahu sites.

The reason is that the Oahu graph is much bigger than the Colorado sites.

Figure 3.7 discusses the seasonal effect on the graphical structure of the spatial correlations of the

solar PV cells. In this figure, left plot is the Kaleloa sites and right plot is the Colorado sites.
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Figure 3.6: The minimum KL divergence distance comparison between all the 17 horizontal Oahu
measurement grid and the 6 Colorado sites for windowing time interval 1 minute, 5 minutes and 10
minutes (Solid lines show the Zenith angle normalization while dashed lines indicate the standard
normalization method.)
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Figure 3.7: The minimum KL divergence distance comparison between seasonal data (average over
summer, winter and whole year) for all the 17 horizontal Oahu measurement grid (left) and the 6
Colorado sites (right) with windowing time interval of 5 minutes
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We used the Zenith angle normalization. It shows that for both sites (Oahu and Colorado) tree

structure is a good model while it works slightly better in summer than winter.
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Figure 3.8: The minimum KL divergence for different times of a day by taking into account all the
sensors (tilted and un-tilted) for solar irradiation data form Oahu sites.

Figure 3.8 takes into account tilted solar cells and discusses the effect on the graphical structure

of the spatial correlations of the distributed PV solar sites. Those two tilted sensors are highly

correlated to each others since their received irradiation pattern are similar. They also are highly

correlated to the nearest geographical sensor during the morning and the afternoon. These result

in the spatial correlations of all the sensors being highly correlated which makes the tree modeling

slightly worse in the morning and in the afternoon than at noon.

Figure 3.9 shows the seasonal and the time of day effects for the Oahu measurement grid when

we are taking all the 19 sensors into account. Tilted sensors add more strong edges to the spatial

connectivity of Oahu graph representation in the morning and in the afternoon which causes slightly

higher KL divergence.

Figure 3.10 depicts the normalized minimum KL divergence distance per removed edge (i.e. D˝e “
D˝{ppp´ 1qpp´ 2q{2q) for all the 6 Colorado sensors, the first 6 and the last 6 Oahu sensors and the

all 19 Oahu sensors. The first 6 Oahu sensors are DH3, DH4, DH5, DH10, DH11 and DH9 with

indexes 201-206 while the last 6 Oahu sensors are AP5, AP4, AP7, DH6, DH7 and DH8 with

indexes 212-217 2. We take the first 6 and the last 6 Oahu sensors to compare results together and

with the result of the 6 Colorado sensors. We can conclude from this figure while tree modeling is

2. look at the field definition [55].
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Figure 3.9: The minimum KL divergence distance by taking into account all the sensors for Oahu
sites (average over summer, winter and whole year)

doing well for all scenarios, it is doing slightly better for the Oahu Sensors. Moreover, by comparing

the results of this figure for the first 6, the last 6 and all the Oahu sensors , we conclude that the

normalized KL divergence metric, D˝e , is almost the same for the Oahu sensors and that is less than

the Colorado sensors.
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Figure 3.10: The normalized minimum KL divergence distance per removed edge for four scenarios:
1) all the 6 Colorado sensors, 2) the first 6 Oahu sensors (201-206 sensors), 3) the last 6 Oahu
sensors (212-217 sensors) and 4) all the 19 Oahu sensors.
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In the following Examples, a covariance matrix is calculated based on presented datasets [2]. Two

datasets are used from the National Renewable Energy Laboratory (NREL) website [55]. The first

dataset is the Oahu solar measurement grid which consists of 19 sensors (17 horizontal sensors and

two tilted sensors) and the second one is the NREL solar data for 6 sites near Denver, Colorado.

These two data sets are normalized using standard normalization method and the zenith angle

normalization method [2] and then the unbiased estimate of the correlation matrix is computed 3.

3.1.2.3 The Oahu solar measurement grid dataset

From data obtained from 19 solar sensors at the island of Oahu, we computed the spatial covariance

matrix during the summer season at 12:00 PM averaged over a window of 5 minutes. Then, the

AUC and the KL divergence are computed for those tree structures that are generated using Markov

Chain Monte-Carlo (MCMC) method. Figure 3.11 shows the distribution of those tree structures

generated using MCMC method versus the KL divergence (left) and v.s log10p1´AUCq (right) 4.
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Figure 3.11: Left: distribution of the generated trees (Normalized histogram) using MCMC v.s.
the KL divergence and Right: distribution of the generated trees (Normalized histogram) using
MCMC v.s. log10p1 ´ AUCq for the Oahu solar measurement grid dataset in summer season at
12:00 PM.

3. See [2] for other details about the normalization methods for the solar irradiation covariance matrix.
4. In this example, since the AUC for all generated tree structures is close to one, we plots the distribution of

generated trees v.s. log10p1´AUCq.
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Looking back at figure 2.4, for the very small value of 1 ´ AUC the relationship between the KL

divergence and the boundary of the possible feasible region for ´ logp1 ´ AUCq is linear. This

means that if the upper bound is tight then the relationship between the KL divergence and the

´ logp1 ´ AUCq is almost linear. In figure 3.11, the maximum value of 1´AUC for this model is

less than 10´3 which justifies why two distributions in figure 3.11 are scaled/mirrored of each other.

Moreover, just by looking at the distribution of tree models in this example, it is obvious that

most tree models have similar performance. Only a small portion of the tree models have better

performance than the average tree models, but the difference is not that significant.

3.1.2.4 The Colorado dataset

From the solar data obtained from 6 sensors near Denver, Colorado, we computed the spatial

covariance matrix during the summer season at 12:00 PM averaged over a window of 5 minutes.

Then, the AUC and the KL divergence are computed for all possible tree structures. Figure 3.12

shows the distribution of all possible tree structures v.s the KL divergence (left) and v.s the AUC

(right).
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Figure 3.12: Left: distribution of all trees (Normalized histogram) v.s. the KL divergence and
Right: distribution of all trees (Normalized histogram) v.s. the AUC for the Colorado dataset in
summer season at 12:00 PM.

In the Colorado dataset, there are two sensors that are very close to each other compared to the

distance between all other pairs of sensors. As a result, if the particular edge between these two
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sensors is in the approximated tree structure we get a smaller AUC and KL divergence compared

to when that particular edge is not in the tree structure. This explains why the distribution of all

trees, in this case, looks like a mixture of two distributions. This result also gives us valuable insight

on how to answer the following question, ”How to construct informative approximation algorithms

for model selection in general.” This is an example where almost all trees that contain the particular

edge between the two aforementioned sensors are good approximations while the rest of the tree

models’ give poor performance.

3.1.3 Two-dimensional sensor network example

In this example, we create a 2-dimensional (2D) sensor network using a Gaussian kernel [57] as

follows

ΣXpi, jq “

„

e´
dpi,jq2

2σ2



where dpi, jq is the Euclidean distance between the i-th sensor and the j-th sensor in the 2D space.

All sensors are located randomly in 2D space 5. We set σ “ 1 and generate a 2D sensor network

with 20 sensors. For the 2D sensor network example, figure 3.13 shows the distribution of the

generated tree structures using MCMC method v.s KL divergence (left) and v.s log10p1 ´ AUCq

(right). Again we see the mirroring effect in Fig. 3.13 as we have an almost linear relationship

between the KL divergence and ´ logp1´AUCq. Note that, the covariance matrix generated has one

dominant eigenvalue in most cases. Furthermore, figure 3.14 plots 1´AUC as well as its analytical

upper bound and lower bound v.s. the dimension of the graph, n for σ “ 1.3 (left) and σ “ 1.8

(right). To generate this figure, we randomly generated 1000 sensor networks and then plot the

averaged AUC. As we can see in this figure, the 1´AUC and its bounds decay exponentially which

is consistent with the theoretical results of this paper.

5. Sensors location in each dimension are drawn randomly from a Normal distribution.
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Figure 3.13: Left: distribution of the generated trees (Normalized histogram) using MCMC v.s.
the KL divergence and Right: distribution of the generated trees (Normalized histogram) using
MCMC v.s. log10p1´ AUCq for the 2D sensor network example with 20 sensors and σ “ 1.
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Figure 3.14: 1´AUC and its bounds v.s. the dimension of the graph, n for σ “ 1.3 (left) and
σ “ 1.8 (right), averaged over 1000 runs of sensor networks generated randomly.
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3.2 Part II: Beyond tree approximation

In this part, we consider graphical models beyond simple tree structures.

3.2.1 Toeplitz Covariance Matrix

In this section, again we assumed that the n by n covariance matrix ΣX has a Toeplitz structure

with ones on the diagonal and the correlation coefficient ρ as off-diagonal elements

ΣX “

»

—

—

—

—

—

—

–

1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ

ρ . . . ρ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We aim to analyze the quality of models beyond tree structures discussed in Part I of this chapter.

Definition 8. Clique. A maximal subset of the nodes which defines a complete subgraph is the

clique subgraph. �

In other words, all pairs of nodes are connected in the clique subgraph.

Definition 9. Junction tree. A junction tree is a clique tree [58] such that for each pair of

cliques C1 and C2 in the graph, all cliques on the path between C1 and C2 contain their intersection,

C1 X C2. �

In this example, we are interested in models which can be represented using junction trees whose

vertices are cliques of the size p. 6 Going back to the model selection problem for the example, we

are investigating the following two generalizations of the chain and the star networks. Note that,

we can construct a junction tree for these two special models.

6. We avoid cycles by turning subsets of the nodes into supernodes.
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3.2.2 pth order star network

The model covariance matrix for the pth order star network where all nodes are connected to the

first p nodes which all are connected together is

Σpth´star
XM

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ρ . . . . . . . . . . . . ρ

ρ
. . . . . .

...
...

. . . 1 ρ . . . . . . ρ
... ρ 1 ρ1 . . . ρ1

...
... ρ1

. . . . . .
...

...
...

...
. . . . . . ρ1

ρ . . . ρ ρ1 . . . ρ1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

.

/

-

p

where

ρ1 “
pρ2

pp´ 1qρ` 1
.

3.2.3 pth order Markov chain network

The model covariance matrix for the pth order Markov chain network is as follow

Σpth´chain
XM

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ρ . . . ρ ρ1 . . . ρn´p´1

ρ
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . ρ1

ρ
. . . . . . . . . ρ

ρ1

. . . . . . . . . . . .
...

...
. . . . . . . . . ρ

ρn´p´1 . . . ρ1 ρ . . . ρ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

.

/

-

p

.

To satisfy Theorem 1 we have that ρ
i

for i P t1, . . . , n ´ p ´ 1u can be computed through the

following recursive equation

ρ
i
“ ρT

i´1
vi

ρ

pp´ 1qρ` 1
(3.1)
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where vi “ r

p
hkkikkj

1, . . . , 1, 0, . . . , 0sT is a vector of length n and ρ
i
“ rρ

i
, . . . , ρ1 ,

p
hkkikkj

ρ, . . . , ρsT where ρ
0
“

r

p
hkkikkj

ρ, . . . , ρsT is the initialization step.

Lemma 3. The KL divergence for the pth order star network and the pth order Markov chain

network can be calculated as

DpX||Xpth´chainq “
1

2
pn´ pq log

ˆ

pρ` 1

pp´ 1qρ` 1

˙

`
1

2
log

ˆ

pp´ 1qρ` 1

pn´ 1qρ` 1

˙

and

DpX||Xpth´starq “ DpX||Xpth´chainq.

Proof. Note that, from [42] we have

|Σpth´chain
XM

| “
rppρ` 1qpρ´ 1qpspn´pq

rppp´ 1qρ` 1qpρ´ 1qp´1s
pn´p´1q

and

|ΣX | “ ppn´ 1qρ` 1qpρ´ 1qn´1.

Inserting the values of these determinants into the KL divergence

DpX||XMq “ ´
1

2
log

´

|ΣXΣ´1
XM
|

¯

we conclude the result for the pth order Markov chain network. To show that the KL divergence for

the pth order star network is exactly equal to the KL divergence for the pth order chain network, we

need to construct the corresponding junction tree for each of these networks by grouping appropriate

p nodes.

Remark: Note that the KL divergence for the junction trees are equal since the mutual information

between the junction nodes are exactly equal. In other words, there are
`

n
p

˘

nodes in the junction

tree and all the possible junction trees have the same KL divergences. �

Theorem 4. The KL divergence for the pth order star network and the pth order Markov chain

network is bounded as n goes to infinity if for a given constant number, κ ą 1, the order, p, is the
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integer number in interval,

DpX||Xpth´starq ă 8 as pnÑ 8, n{pÑ κq.

Proof. Let p “
P

n{κ
T

be the smallest integer greater than or equal to n{κ. The KL divergence can be

bounded as follow

DpX||Xpth´starq “
pn´

P

n{κ
T

q

2
log

˜

1`
ρ

p
P

n{κ
T

´ 1qρ` 1

¸

`
1

2
log

˜

p
P

n{κ
T

´ 1qρ` 1

pn´ 1qρ` 1

¸

paq

ď
pn´ n{κq

2
log

ˆ

1`
ρ

pn{κ´ 1qρ` 1

˙

`
1

2
log

ˆ

ppn{κ` 1q ´ 1qρ` 1

pn´ 1qρ` 1

˙

pbq

ď
p1´ 1{κqn

2

ˆ

ρ

pn{κ´ 1qρ` 1

˙

`
1

2
log

ˆ

pn{κqρ` 1

pn´ 1qρ` 1

˙

Where (a) is true since for the integer order, p, we have n{κ ď p ă n{κ ` 1 and (b) is true since

logp1` zq ď z for z ě 0. Then, in the limit we have

lim
nÑ8

DpX||Xpth´starq ď
p1´ 1{κq

2{κ
`

1

2
log p1{κq

ď
κ´ 1

2
´

logpκq

2
ă 8

which complete the proof. �

Theorem 5. The AUC of the pth order star network and the pth order Markov chain network is

is strictly less than 1 as n goes to infinity if p “
P

n{κ
T

,

Pr pL∆ ą 0q ď 1´ e´
κ`1´logpκq

2 ă 1.

Proof. We can conclude this result from Proposition 4 which gives an upper bound for the KL
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divergence combined with the upper bound for the AUC,

Pr pL∆ ą 0q ď 1´ e´ limnÑ8DpX||Xpth´starq´1

ď 1´ e´
κ`1´logpκq

2

ă 1

where the AUC upper bound is provided in [17]. �

Remark: For the constant κ the gap, e´
κ`1´logpκq

2 , in Theorem 5 indicates the goodness of a model

approximation, i.e. the larger the gap, the better the model approximation will be.

Remark: The gap here is only calculated based on the upper bound for the KL divergence,

limnÑ8DpX||Xpth´starq. Note that, the same calculation can be done for the reverse KL divergence,

limnÑ8DpXpth´star||Xq, for both star and chain networks.

3.2.4 Simulation Results and Discussion

In this section, we consider the Toeplitz example presented before as the covariance matrix for a

Gaussian random vector. We calculate different models such for the pth order Markov chain and

the pth order star networks for various values of p. For a given order, both of the aforementioned

models have the same KL divergence values as calculated in Lemma 3. Moreover, we compute AUC

and compare it with its lower and upper bounds [17] for these cases.

Figure 3.15 plots (1 - AUC) in logarithmic-scale v.s. the dimension of the graph, n, in linear-scale

for star approximation (left) and chain approximation (right) with different model orders, p “ 1,

p “ 3, p “ 5 and p “ 7 for correlation coefficient ρ “ 0.9. As it is indicated in this figure, (1 - AUC)

decreases as the order of the model increases for both star and chain models. From this figure,

we can conclude that the pth order star network performs better than the pth order Markov chain

network since the exponential decay of (1-AUC) is smaller for the former model than the latter

model. This can also be seen by comparing the covariance matrix ΣX and the model covariance

matrix, ΣXM
where the model covariance matrix associated with the pth order star network is more

similar to the covariance matrix ΣX than the model covariance matrix associated with the pth order
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Figure 3.15: 1 - AUC (logarithmic-scale) v.s. the dimension of the graph (linear-scale), n, for star
approximation (left) and chain approximation (right) with different model orders, p “ 1, p “ 3,
p “ 5 and p “ 7 and correlation coefficient ρ “ 0.9.

Markov chain network. For example, even the quality of the first order star network approximation

is better than the quality of the fifth order Markov chain approximation in the simulation results

provided in this figure. Figure 3.16 plots the same curves as figure 3.15 in a arithmetic scale.
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Figure 3.16: 1 - AUC v.s. the dimension of the graph, n, for star approximation (left) and chain
approximation (right) with different model orders, p “ 1, p “ 3, p “ 5 and p “ 7 and correlation
coefficient ρ “ 0.9.

Figure 3.17 plots KL divergence v.s ´ log (1 - AUC) for the presented models. In this figure, the

dimension n is set to 15, the order p is set to 1 and 3 and the correlation coefficient ρ is set to

0.9. Furthermore, the possible feasible region presented in [17] and its asymptotic behavior are
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also plotted in this figure. For both models, the KL divergence and the reverse KL divergence are

computed and are plotted on this figure. Note that, KL divergences for both models are equal (see

Lemma 3) and are connected in this figure. As it is shown in the figure, the third order model has

better performance than the first order model 7.
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Figure 3.17: KL divergence v.s. AUC and the AUC parametric bound v.s. for graph dimension,
n “ 15 for the pth order Markov chain approximation and pth order star network for p “ 1 and
p “ 3 with ρ “ 0.9.

Figure 3.18 plots KL divergence v.s AUC for different graph dimensions, n, and different models.

In this figure, order, p is set to one while the correlation coefficient, ρ is set to 0.1 on the left and

0.9 on the right. Moreover, the feasible region presented in [17] and its asymptotic behavior are also

plotted in this figure. The AUC has computed for the first order Markov chain approximation and

first order star approximation. For each model, the KL divergence and the reverse KL divergence

are computed. Note that, KL divergences for both models are equal (see Lemma 3). From this

figure, we can see that the value of the reverse KL divergence for star model is less than the actual

KL divergence and vice versa for the chain model. Since KL divergences are equal for both models,

we conclude that the star network has better quality than the chain network which we already know

from the associated AUC value for each model for a fixed order, p and dimension, n. We can also

observe from this figure that the approximation with a smaller ρ has better quality, i.e. has smaller

associated AUC. Furthermore, setting p “ 9, figure 3.19 shows similar results as figure 3.18. In

7. More simulation results and discussion about the points in the possible feasible region can be found in [59].
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Figure 3.18: KL divergence v.s. AUC and the AUC parametric bound v.s. for different dimension
of the graph, n for the pth order Markov chain approximation and pth order star network for p “ 1
with ρ “ 0.1 (left) and ρ “ 0.9 (right).

these figures, the value of the KL divergence and its reverse increase as the number of nodes in the

graph increases. Comparing these two figures we can observe that for a fixed graph dimension, the

approximation is better for larger approximation order, p, i.e. approximation with the larger order

has smaller AUC.
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Figure 3.19: KL divergence v.s. AUC and the AUC parametric bound v.s. for different dimension
of the graph, n for the pth order Markov chain approximation and pth order star network for p “ 9
with ρ “ 0.1 (left) and ρ “ 0.9 (right).
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Figure 3.20: 1 - AUC and its lower and upper bounds v.s. the dimension of the graph, n for the
pth order star approximation of the Toeplitz example for ρ “ 0.1 (left) and ρ “ 0.9 (right) with
the model order p “ rn{κs where κ “ 10.

Figure 3.20 plots 1 - AUC v.s. the dimension of the graph, n for the pth order star approximation

of the Toeplitz example for ρ “ 0.1 (left) and ρ “ 0.9 (right) while keeping the model order

proportional to the number of nodes in the graphical model, n. More specifically, in this figure, we

set the model order p “
P

n{κ
T

where κ “ 10. This figure also plots the lower bound and the upper

bound for 1 - AUC. 8 From this figure, we conclude that, pth order star approximation is a good

approximation model when the model order, p is proportional to the number of nodes, n, since the

AUC is bounded from one as nÑ 8. Similarly, figure 3.21 plots 1 - AUC and its upper and lower

bounds v.s. the dimension of the graph, n for the pth order Markov chain approximation of the

Toeplitz example for ρ “ 0.1 (left) and ρ “ 0.9 (right) with p “
P

n{κ
T

where κ “ 10. Plots in this

figure are not monotonically decreasing since both the order p and the dimension n are integers

and thus the ratio n{p is not exactly equal to κ for all values of p and n. Furthermore, from the

figure, the pth order Markov chain approximation is a good approximation model when the model

order, p is proportional to the number of nodes, n, since the AUC is bounded from one as nÑ 8.

Comparing the plots in figure 3.20 and figure 3.21 we can clearly see that even though the AUC

for both approximation models are bounded from one, the pth order star approximation model is a

better model than the pth order Markov chain approximation model.

8. Bounds are presented in [17].
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Figure 3.21: 1 - AUC and its lower and upper bounds v.s. the dimension of the graph, n for the pth
order Markov chain approximation of the Toeplitz example for ρ “ 0.1 (left) and ρ “ 0.9 (right)
with the model order p “ rn{κs where κ “ 10.

3.3 Conclusion

In this chapter, we discuss the quality of model approximation using the proposed detection frame-

work and the AUC bounds. In the first part, we pick tree graphs as an example of an approximation

model. We use the Chow-Liu MST algorithm to compute the maximum likelihood tree structure

approximation and investigate the quality of tree model using the proposed framework. Through

some examples, we show that in general, the tree approximation is not a good model as the number

of nodes in the graphical model increases. The aforementioned result is also consistent with the

analytical results provided in this paper that is 1´AUC decays exponentially as the dimension of

graph increases. In the second part, we look at more accurate graphical approximations that involve

non-tree graphs. We discuss graphical models with junction trees such as the pth order Markov

chain and the corresponding star network interpretation for a special Toeplitz covariance matrix

with ones along the diagonal and correlation coefficient ρ’s on the off-diagonals. These models have

very short loops and have associated junction tree that connects cliques of the same size. The

model covariance matrix as well as the KL divergence between the original distribution and the

model distribution are computed for the presented Toeplitz covariance matrix. We also quantify

the goodness of the covariance selection problem for this Toeplitz covariance matrix. For this cova-

riance matrix, we show that if the model order, p, is proportional to the number of nodes, n, then
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the model selection is asymptotically good as n Ñ 8 since the AUC is asymptotically bounded

away from one. We conduct some simulations which show that the selected model quality increases

as the model order, p, increases which confirm our theoretical results.
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4
Model Approximation Using Cascade of Tree

Decompositions

We continue our study of graphical models and discuss statistical model approximation for large

graphs. We are specifically looking at the statistical model approximation for jointly Gaussian

random vectors. In this chapter, we present a general, multistage framework for graphical model

approximation using a cascade of models such as trees. In particular, we look at the problem

of covariance matrix approximation for Gaussian distributions as linear transformations of tree

models. This is a new way to decompose the covariance matrix. Here, we propose an algorithm

which incorporates the Cholesky factorization method to compute the decomposition matrix and

thus can approximate a simple graphical model using a cascade of the Cholesky factorization of

the tree approximation transformations. The Cholesky decomposition enables us to achieve a tree

structure factor graph at each cascade stage of the algorithm which facilitates the use of the message
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passing algorithm since the approximated graph has less loops compared to the original graph. The

overall graph is a cascade of factor graphs with each factor graph being a tree. This is a different

perspective on the approximation model, and algorithms such as Gaussian belief propagation can

be used on this overall graph. Here, we present theoretical result that guarantees the convergence

of the proposed model approximation using the cascade of tree decompositions. In the simulations,

we look at synthetic and real data and measure the performance of the proposed framework by

comparing the KL divergences.

4.1 Introduction

Learning from high dimensional data requires large computational power which is not always avai-

lable. In signal processing and machine learning a fundamental problem is to balance performance

quality (i.e. minimizing cost function) with computational complexity. A powerful tool in order to

address this trade-off is graphical model selection. Model selection methods provide approximated

models with the desired accuracy as needed for different applications. Given data, different model

selection algorithms impose different structures to model data [20].

Tree approximation algorithms are among the algorithms that reduce the number of computations in

order to achieve quicker approximate solutions to a variety of problems. The tree approximations are

made as it is much simpler to perform inference and estimation on trees rather than graphs that have

cycles or loops. An example is applying the Gaussian belief propagation (BP) algorithm [24] which

will converge to the maximum likelihood solution over loop-free graphs. 1 While these algorithms

approximate the correlation matrix with a more sparse graph, in many cases as the number of

nodes increases in large datasets, they fail to retain the desired accuracy [17]. As a result, in many

applications, we need to go beyond the tree structure approximation to achieve design accuracy that

can be translated to any model approximation that can achieve a KL divergence below a certain

design threshold.

Another related and mature body of work in literature is on mixture models [6] and [8], including

works on mixtures of tree approximations [61], [62] and [63] and Gaussian mixture model (GMM)

[64] for graphical models. While in this chapter, we are generalizing a single-tree approximation

1. The convergence of Gaussian BP with multiple loops is analyzed in literature [60].
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algorithm and using a sequence of tree approximations for sparse model approximation, the afore-

mentioned mixture of tree approximation methods considers parallel trees.

The purpose of this chapter is present a general framework to reduce the computational complex-

ity of distributed algorithms in various applications while maintaining the desired approximation

quality. To achieve this goal we approximate the associated Gaussian graphical model with a sim-

pler, more tractable model. In this chapter, we consider jointly Gaussian data and use cascade of

tree transformation decompositions in order to perform model approximation for graphical models.

The tree structure model is considered since this structure is simple and the optimal solution that

minimizes the KL divergence can be easily computed using the Chow-Liu algorithm [3]. Further-

more, the tree structure model is a loop-free model and simplifies the implementation of distributed

algorithms such as Gaussian BP. The cascade tree framework enables us to approximate a complex

model with multiple stages of simple tractable models such as the tree structured model. We pick

trees as the model and the Cholesky decomposition to factor the the tree structured covariance

matrix at each stage of the cascade algorithm. Implementation of the Cholesky decomposition with

the proper node ordering (permutation matrix) enables us to draw a tree structured factor graph

for each step of the cascade tree decomposition transformation. This property facilitates the use of

Gaussian BP algorithm over the aforementioned factor graph. We perform some simulations to con-

firm the results of this chapter by looking at synthetic and real data and compare the performance

of the proposed framework by comparing KL divergences. We also consider the singular value de-

composition (SVD) and compare its performance to the Cholesky decomposition. Our simulation

results also confirm the advantages of the cascade tree framework.

Many engineering and computer science applications require using graphs to model dependencies

between nodes of the graph. These applications include a diversity of areas from social networking

to biomedical applications to transportation models to energy models. For these applications graphs

must be approximated by simpler structures to reduce computational complexity.

The rest of this chapter is organized as follows. In section 4.2 we provide a summary of Gaussian

tree approximation. The Gaussian model approximation as a transformation is also discussed in

this section. Section 4.3 presents the theory behind the proposed model approximation framework.

The symmetric correlation approximation matrix (CAM) is defined and the convergence theorem

is discussed in this section. Section 4.4 provides a greedy algorithm for the model approximation

69



using cascade of tree decompositions. The proposed algorithm is based on the symmetric CAM,

the tree approximation algorithm and its Cholesky decomposition. This algorithm is suitable for

message passing and Gaussian BP over factor graphs since we use the Cholesky decomposition at

each of the cascade stages. In section 4.4 we also present a simple example illustrating the Cholesky

algorithm transformations and the cascade of factor graphs. Section 4.5 provides some simulations

over synthetic examples as well as a real solar data example from the island of Oahu obtained from

an NREL website and investigates the quality of the proposed model approximation by looking at

the KL divergence. Finally, Section 4.6 summarizes results of this chapter.

4.2 Gaussian tree approximation

In this section, we first review the tree approximation algorithm for Gaussian distributions. Then

we explain the framework for the covariance transformation decomposition for any given model such

as the tree model. The tree structure is a simple graphical model and can be computed efficiently.

The loop-free structure of the tree structure also facilitates the implementation of distributed algo-

rithms such as Gaussian BP. Later in the next section, we use the cascade of tree transformation

decompositions to perform model approximation for graphical models.

4.2.1 Tree approximation for Gaussian distributions

In the tree approximation, we want to approximate a multivariate distribution by the product of

lower order component distributions [36]. Let X „ N p0,Σq (i.e. jointly Gaussian with mean 0 and

covariance matrix Σ) where X P Rn have the graph representation G “ pV , Eq where sets V and E

are the set of all vertices and edges of the graph representing X. 2 Let XT „ N p0, Σ̃q have the graph

representation GT “ pV , ET q where ET Ď E is a set of edges that represents a tree structure. The

joint probability density function can be represented by joint PDFs of two variables and marginal

PDFs in the following convenient form

fXT
pxq “

ź

pu,vqPET

fXu,Xvpxu, xvq

fXupxuqfXvpxvq

ź

oPV
fXopxoq. (4.1)

2. Here, we assume that all nodes are connected in the graphical structure of vector X.
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Definition 10. Let TΣ denote the set of all positive definite covariance matrices with following

properties:

1) These covariance matrices have tree structured Gaussian graphical models;

2) Picking any covariance matrix in this set, Σ̃ P TΣ, the Gaussian distributions N p0, Σ̃q and

N p0,Σq have the same marginal distributions and joint distribution of two variables over the tree

structured graph, GT . �

In the above definition N p0, Σ̃q obeys the product rule given in (4.1). Also, note that, the cardinality

of the set TΣ is finite [65] since the number of all possible tree structured graphs with n nodes is

finite.

Chow-Liu MST method [3], was initially proposed for approximating the joint distribution of dis-

crete variables by product of lower order distributions similar to (4.1) which involves no more than

a pair of variables. The proposed KL divergence is used to quantify the distance between any

distribution and its tree structure approximation. The Chow-Liu MST algorithm for Gaussian dis-

tributions, minimizes the following optimization problem in order to find the optimal tree structured

covariance matrix, ΣT P TΣ

ΣT “ arg min
Σ̃PTΣ

DpfXpxq||fXT
pxqq. (4.2)

Here, D‹ , ´1
2
logp|ΣΣ´1

T |q which minimum KL divergence that gives the distance between the

given distribution and its optimal tree approximation. It is shown in [3] that the optimal solution

for this problem 4.2 can be found efficiently using greedy algorithms [33], [34]. Their algorithm

can be easily generalized for approximating the optimal tree structure of the joint distribution of

Gaussian variables using equation (4.1) by adding edges one at a time [42]. In other words, given

the knowledge of Σ, the Chow-Liu algorithm can efficiently compute the optimal solution, i.e.

ΣT “ chowliupΣq.

Remark: In case that the covariance matrix Σ is not available, we can replace it with the empirical

covariance matrix obtained from data.
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N p0, Iq C N p0,Σq

Figure 4.1a: Transformation from N p0, Iq to N p0,Σq using decomposition of the covariance matrix,
Σ.

N p0, Iq CM N p0,ΣMq

Figure 4.1b: Transformation from N p0, Iq to N p0,ΣMq using decomposition of the model covariance
matrix, ΣM.

N p0,∆q CM N p0,Σq

Figure 4.1c: Transformation from N p0,∆q to N p0,Σq using decomposition of the model covariance
matrix, ΣM.

4.2.2 Gaussian model approximation as a transformation

Any zero-mean multivariate Gaussian distribution such as N p0,Σq where Σ is the covariance matrix,

can be obtained through a linear transformation of the multivariate standard normal distribution,

N p0, Iq (figure 4.1a) where I is the identity matrix. Moreover, the decomposition matrix C is

defined as a square matrix that factors the covariance matrix Σ, i.e. Σ , CCT . In this scenario,

the decomposition matrix C is also the transformation matrix. We focus on the decomposition

matrix C in more detail in section 4.4, some of the possible matrix decompositions that can be

used to efficiently compute C are the Cholesky decomposition and singular value decomposition

(SVD). Let’s assume that the desired model covariance matrix, ΣM and its decomposition matrix,

CM, i.e. ΣM , CMCT
M, are given. Then, from figure 4.1b, the model distribution N p0,ΣMq

is the transformation of the multivariate standard normal distribution. However, to generate the

Gaussian distribution with covariance matrix, N p0,Σq, using the model decomposition matrix,

CM, the input distribution, N p0,Σq, has to have a certain covariance matrix, ∆. This covariance

matrix is called the symmetric correlation approximation matrix and is defined as ∆ “ C´1
MΣC´T

M .

We will give a formal definition for the symmetric CAM in section 4.3 where we consider cascade

of tree approximation decompositions for graphical model approximation.

Remark: Invariance of Gaussian KL divergence with respect to transformation. The KL divergence
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Zi „ N p0,∆iq CTi Zi´1 ... Z1 CT1 X „ N p0,Σq

Figure 4.2a: The i stages of the model transformation from Zi „ N p0,∆iq to X „ N p0,Σq using
cascade tree decompositions.

W „ N p0, Iq CTl ... CT1
XMl

„ N p0,ΣMl
q

Figure 4.2b: The l stages of model approximation using cascade tree transformation decomposition
framework. The model approximation is generated by passing W „ N p0, Iq through the l steps of
cascade trees and is XMl

„ N p0,ΣMl
q.

between the input Gaussian distributions in figures 4.1b and 4.1c is invariant to the transformation

CM, i.e. it is equal to the KL divergence between the output Gaussian distributions in figures 4.1b

and 4.1c, (Dp∆||Iq “ DpΣ||ΣMq).

Remark: In the rest of this chapter we consider the tree approximation as our model at each step

of the cascade approximation.

4.3 Model Approximation Using Cascade of Tree Decom-

positions Principle

In this section, we focus on the cascade of trees framework for model selection using the tree

decomposition transformations. We formulate the problem by considering the tree approximation

as a transformation and we use multiple stages of these cascade trees to do model approximation. Let

Σ , CCT and ΣT , CT CT
T where C and CT are square transformation matrices that decompose

the covariance matrices, Σ and ΣT . Without loss of generality, in the rest of this chapter, we look

at the zero-mean Gaussian distributions with normalized covariance matrix Σ, i.e. covariance and

correlation matrices are the same. Factoring covariances enable us to look at the problem as a

transformation, as it is shown in figure 1. There are different decomposition algorithms to factor

covariances such as the Cholesky decomposition and SVD. While we discuss the performance of the

cascade of trees framework for model selection here, picking the decomposition algorithm will be

discussed in section 4.4.
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Definition 11. Symmetric correlation approximation matrix: The symmetric correlation

approximation matrix (CAM) for the tree approximation model is defined as ∆ , C´1
T Σ C´T

T . �

The symmetric CAM for each step of the cascade tree algorithm is also defined using the transfor-

mation matrix CTi and the previous step symmetric CAM.

Definition 12. The symmetric correlation approximation matrix for the i-th step of the cascade

tree approximation is defined as ∆i , C´1
Ti ∆i´1C

´T
Ti where ∆0 , Σ, ΣTi “ chowliup∆i´1q and

ΣTi , CTiC
T
Ti where CTi is the decomposition for the i-the step covariance matrix, ΣTi. �

Figures 4.2a and 4.2b show schematic diagrams associated with the cascade tree framework. In figure

4.2a, we want to model the zero-mean multivariate Gaussian distribution, X „ N p0,Σq, using the

cascade of tree decomposition transformations. Let XTi „ N p0,ΣTiq be the tree approximation

distribution for the residue random vector Zi´1 „ N p0,∆i´1q
3 where ΣTi is the tree approximation

covariance matrix for ∆i´1, i.e. ΣTi “ chowliup∆i´1q. As shown in figures 4.2a, the i-stage

cascade tree decomposition, transforms the zero-mean Gaussian random vector Zi to the zero-mean

Gaussian random vector X.

Remark: For all i ě 1, trt∆iu “ n. Trace of the CAM, ∆i is equal to n, since the covariance

matrix ΣTi at each iteration is obtained by the Chow-Liu algorithm and thus satisfies the covariance

selection rules [1], i.e. trtp∆i´1 ´ΣTiqΣ
´1
Ti u “ 0 and thus trt∆i´1Σ

´1
Ti u “ n.

In figure 4.2b we use the cascade tree decompositions to construct the approximation model. If we

just use one tree, CT1 we have a tree approximation. For a cascade of l trees the approximation model

is constructed using a backwards algorithm via the following cascade of linear tree approximations;

pCT1CT2 . . .CTlqpCT1CT2 . . .CTlq
T “ ΣMl

. We also have following properties in lemma 4 and lemma

5.

Lemma 4. Let W „ N p0, Iq, then

(a) DpfZipzq||fW pwqq “ DpfZi´1
pzq||fXTi

pxqq,

(b) DpfZi´1
pzq||fXTi

pxqq ď DpfZi´1
pzq||fW pwqq,

where in (b) equality happens when fZi´1
pzq “ fW pwq, i.e ∆i´1 “ I.

3. Z0 „ N p0,Σq.
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Proof. Proof of part (a) is based on the definition of KL divergence for jointly Gaussian distribution

and trt∆iu “ n as follow

DpfZi´1
pzq||fXTi

pxqq “ ´
1

2
logp|∆i´1Σ

´1
Ti |q

“ ´
1

2
logp|C´1

Ti ∆i´1C
´T
Ti |q

“ ´
1

2
logp|∆i|q

“ DpfZipzq||fW pwqq.

Proof of part (b) follows from the KL divergence definition for Gaussian distributions and

DpfZi´1
pzq||fW pwqq “ DpfZi´1

pzq||fXTi
pxqq

`DpfXTi
pxq||fW pwqq

ě DpfZi´1
pzq||fXTi

pxqq.

Equality only happens if |ΣTi | “ 1. Since trt∆i´1u “ n, then the covariance selection rule [1]

dictates trtΣTiu “ n, and thus the equality only happens if ∆i´1 “ I. �

Lemma 4 states that the distribution of the i-th step residue random vector Zi converges to the

normal Gaussian random vector W . Thus, in the cascade tree model approximation algorithm,

we fix the number of cascade stages, l, and input the normal Gaussian random vector W to the

cascade trees with l stages to do model approximation. The l-th step model covariance matrix

approximation is

ΣMl
“ CMl

CT
Ml

where CMl
“ CT1CT2 ...CTi ...CTl is the model transformation. Note that, this is a backward con-

struction (figure 4.2a).

Lemma 5. KL divergence upper bound.

DpfXpxq||fXMi
pxqq ď DpfXpxq||fXMi´1

pxqq

with equality only happens if ∆i´1 “ I.
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Proof.

DpfXpxq||fXMi
pxqq

paq
“ DpfZipzq||fW pwqq
pbq
“ DpfZi´1

pzq||fXTi
pxqq

pcq

ď DpfZi´1
pzq||fW pwqq

pdq
“ DpfXpxq||fXMi´1

pxqq

where (a) and (d) are because of the invariance of KL divergence between Gaussian distributions

to the transformation; (b) and (c) follow from lemma 4. Equality in (c) holds if fZi´1
pzq “ fW pwq.

�

Theorem 6. The Cascade tree decomposition transformation. As the number of cascade

trees, i, increases, the KL divergence between the distribution of X and the model distribution

decreases, i.e. DpfXpxq||fXMi
pxqq converges to a finite value.

Proof. Proof follows directly from lemma 5 and positivity of KL divergence. �

Conjecture 1. The KL divergence converges to 0.

Remark: Theorem 6 states that the KL divergence between the model approximation and the

original distribution decreases as we add more stages of the cascade trees (Lemma 5) and we

conjecture it will go to zero as the number of cascade trees goes to infinity. Note that, it is exactly

equal to zero if at some iteration of the cascade tree ∆i´1 “ I.

4.4 Cascade Trees Algorithm

In order to use the cascade tree transformation decomposition framework presented in section 4.3,

we need to pick a factorization scheme. Here we pick the Cholesky factorization. The main reason

is that this scheme can preserve the sparsity pattern of the covariance matrix and thus is suitable

to run message passing algorithms over factor graphs. Also, using the Cholesky decomposition,

without loss of generality the diagonal coefficients of the symmetric CAM at all cascade stages are
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Figure 4.3: Left: Tree representation of the random vector X (ρij’s are the correlation coefficients).
Right: Factor graph representation with 5 nodes where Q “ L´1 and qij’s are the coefficients of
the matrix Q.

equal to one. Figure 4.3 shows a sample tree structured graph and its factor graph representation

using the coefficients of the inverse of the Cholesky decomposition matrix, Q.

4.4.1 Greedy Model Approximation Algorithm

Here we present a greedy algorithm based on the cascade trees principle. This algorithm consists

of two general steps [66]:

- Finding the optimal Chow Liu tree,

- Performing the Cholesky decomposition such that it preserves the tree graph structure.

Given the symmetric CAM at each iteration of the greedy algorithm, we can efficiently find the

optimal tree structure covariance matrix.

Theorem 7. There exists a permutation matrix such that the inverse of the Cholesky decomposition

preserves the sparsity pattern (position of zeros) of the inverse of the tree approximation covariance

matrix [67].

Proof. This lemma is a simplified version of the result presented in [67] where the Cholesky de-
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Zi CTi Zi´1 Ñ Zi P´T
i Li P´T

i
Zi´1

Figure 4.4a: Left: The i-th stage of the model transformation from Zi to Zi´1. Right: The
i-th stage of the model transformation from Zi to Zi´1 using proper permutation matrix and the
Cholesky decompositions.

W P´T
l Ll P´T

l
... P´T

1 L1 P´T
1

XMl

Figure 4.4b: The l stages of cascade tree model approximation using the Cholesky decomposition
with proper order (permutation) to keep the sparsity pattern in the inverse of The Cholesky de-
composition. The model approximation is generated by passing W „ N p0, Iq through the l steps
cascade trees and is XMl

„ N p0,ΣMl
q.

composition preserves the pattern of zeros corresponding to a co-chordal or homogeneous graph

associated with a specific type of vertex ordering (permutation matrix). �

Theorem 7 guarantees the existence of a loop-free factor graph based on the Cholesky decomposition

coefficients of the inverse decomposition.

Figure 4.4a shows the schematic of the i-th stage of the model transformation based on the proper

permutation of the Cholesky decomposition. To compute matrices Pi and Li and reconstruct Zi´1

from Zi, we need to first compute the i-th stage tree approximation covariance matrix, ΣTi “

chowliup∆i´1q. Next, we use the result of theorem 7 to find the proper re-order of the nodes. To

do that, we look at the graph structure of the tree covariance matrix, ΣTi , and pick the nodes such

that the graph associated with the subset of the picked nodes is always connected 4. After that,

we compute the Cholesky decomposition as Li “ CholeskypPiΣTiP
T
i q which has a sparse inverse.

Next, we permute Li to get the tree approximation transformation matrix, CTi . This process is

shown in figure 4.4b. The model approximation covariance matrix after the l-th iteration is given

as follow

ΣMl
“ CMl

CT
Ml

where CMl
“ P´1

1 L1P
´T
1 P´1

2 L2P
´T
2 . . .P´1

l LlP
´T
l .

Using the Cholesky decomposition with the proper permutation matrix at each iteration enables us

4. If at any step of the algorithm, the tree graph structure associated with ΣTi becomes disconnected, we will
seek the same procedure for each of the disjoint segments of the graph.
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to draw loop-free factor graph at each iteration of the cascade trees’ framework. The factor graph

representation is useful in order to run message passing algorithm and loopy Gaussian BP over the

overall loopy factor graph. The greedy algorithm based on the Cholesky decomposition presented

in figure 4.4b is as follow:

Algorithm 4.1: Greedy Model Approximation Algorithm using Cascade Trees’ Fra-
mework and the Cholesky Decomposition

‚ Initialization Step [i “ 0]:

— ∆0 “ Σ

‚ Continue updating [i-th Step]:

— iÐ i` 1

— ΣTi “ chowliup∆i´1q

— Given ΣTi , compute the proper node ordering and construct the permutation matrix,
Pi.

— Li “ CholeskypPiΣTiP
T
i q

— CTi “ P´1
i LiP

´T
i

— ∆i “ C´1
Ti ∆i´1C

´T
Ti

‚ Stopping criterion: i ď l

‚ Output Li’s and Pi’s as well as the approximated model covariance matrix
ΣMl

“ CMl
CT

Ml
where CMl

“ CT1 . . .CTl for some i satisfying the stopping criterion.

Remark: We can stop the algorithm sooner than we reach the maximum numbers of cascade tress if

for some i ă l the KL divergence goal is satisfied, i.e. DpfZipzq||fW pwqq ď δ where δ is the maximum

KL divergence between the original distribution and the approximated model distribution. 5

Remark: In any step of the algorithm, if the graph correspond to the ∆i become disconnected,

we will do tree approximation for each of the connected subgraphs.

Theorem 8. There exists a cascade tree approximation algorithm to generate the model approxi-

mation M1
i such that after at most n´ 1 iteration, the model approximation error (KL divergence)

5. Parallel computing algorithms can be useful for implementation of tree algorithms [68–71].
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is exactly equal to zero, i.e. Σ “ ΣMn´1. In other words,

DpfXpxq||fXM1
n´1
pxqq “ 0.

Proof. We proof by construction. We use the star approximation (graph with the star node having

n-1 edges and all other nodes connected just to the star node), at each iteration of the cascade

tree approximation algorithm. Moreover, we use the Cholesky decomposition to keep the sparsity

pattern in the inverse of the Cholesky decomposition. Formal proof is given in appendix A.3. �

Theorem 9. Diagonal Coefficients of the Symmetric CAM. Diagonal coefficients of the

symmetric CAM at each step of the the greedy model approximation algorithm using the Cholesky

factorization, are equal to one.

Proof. Proof is given in appendix A.4. �

Theorem 9 shows that if we pick the Cholesky factorization and we follow the greedy model approx-

imation algorithm presented here, then diagonal coefficients of the approximated matrix is always

the same as diagonal coefficients of the covariance matrix, Σ, i.e. the proposed algorithm preserves

variances.

4.4.2 Complexity of the cascade tree algorithm

The Chow-Liu algorithm has the running time complexity of Opn2 logpnqq while the Cholesky de-

composition complexity is Opn3q. Thus, the overall complexity of the algorithm is Opl n3q since we

run the algorithm for at most l cascade stages. Moreover, the maximum number of edges in the

resulting factor graph is ln.
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Figure 4.5: First stage cascade tree representation for the 5 nodes example and its Factor graph
representation.

4.4.3 Example with 5 nodes

In this example, we start with a zero mean Gaussian distribution with covariance matrix Σ (or ∆0)

for random vector X as follows

Σ “

»

—

—

—

—

—

—

—

—

—

–

1 0.9 0.6 0.8 0.7

0.9 1 0.5 0.6 0.6

0.6 0.5 1 0.4 0.1

0.8 0.6 0.4 1 0.8

0.7 0.6 0.1 0.8 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We want to approximate the random vector X with 2 stages of cascade trees as XM. First step of

the tree approximation covariance matrix T1 is

T1 “

»

—

—

—

—

—

—

—

—

—

–

1 0.9 0.6 0.8 0.64

0.9 1 0.54 0.72 0.576

0.6 0.54 1 0.48 0.374

0.8 0.72 0.48 1 0.8

0.64 0.576 0.374 0.8 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Figure 4.6: Second stage cascade tree representation for the 5 nodes example and its Factor graph
representation.

while its Cholesky decomposition inverse, Q1 is

Q1 “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0

´2.064 2.294 0 0 0

´0.75 0 1.25 0 0

´1.333 0 0 1.666 0

0 0 0 ´1.333 1.666

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and the permutation matrix, P1 is identity. To proceed to the second stage, we first compute the

symmetric CAM, ∆1 as

∆1 “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0.1

0 1 ´0.1147 ´0.458 0.252

0 ´0.114 1 ´0.166 0.374

0 ´0.458 ´0.458 1 ´0.133

0.1 0.252 0.252 ´0.133 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The CAM matrix, ∆1, is the covariance matrix of the residue random vector, Z1, and Z1 “ Q1X

or equivalently X “ CT1Z1 where CT1 “ Q´1
1 . Also, the KL divergence for the first step is
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DpX||XM1
q “ 0.375. Then, the second step of the tree approximation covariance matrix T2 is

T2 “

»

—

—

—

—

—

—

—

—

—

–

1 0.025 ´0.053 ´0.011 0.1

0.025 1 ´0.134 ´0.458 0.252

´0.053 ´0.134 1 0.061 ´0.533

´0.011 ´0.458 0.061 1 ´0.115

0.1 0.252 ´0.533 ´0.115 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

while its Cholesky decomposition inverse, Q2, which is computed using

Q2 “ PT
2 CholeskypP2T2P

T
2 q
´1P2

is as follow

Q2 “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0

0 1.033 0 0 ´0.260

0 0 1.182 0 0.630

0 0.516 0 1.125 0

´0.1 0 0 0 1.005

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the permutation matrix, P2, is

P2 “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Furthermore, the residue random vectors, Z1 and Z2, have the following relationship Z2 “ Q2Z1 or

equivalently Z1 “ CT2Z2 where CT2 “ Q´1
2 . To approximate the model random vector XM2

using

two stage of the cascade tree, we replace the second residue random vector, Z2, with the random

vector W . Also, the KL divergence for the second step is DpX||XM2
q “ 0.051. Figure 4.5 shows the

Chow-Liu tree and the factor graph representation for of it and figure 4.6 shows the second stage

of the algorithm. Since the permutation matrix is not identity in the second step of the algorithm,

we need to change the ordering as it is shown in figure 4.6. For this example a cascade of two trees
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produces a linear transformation that approximates the Gaussian vector X closely.

4.5 Simulation Results and Discussion

In this section, we consider some examples of covariance matrices for a Gaussian random vector

X. We present some simulation results on both synthetically generated covariance matrices and

the covariance matrix generated from the island of Oahu real solar dataset. We also present the

simulation results on the performance of the cascade tree decomposition transformation framework

using different factorization methods. We take a special look at the performance of the presented

algorithm in section 4.4 which is based on the Cholesky decomposition and the proper permutation

to keep the sparsity pattern in the inverse of the Cholesky factorization. We also look at the

performance of the singular value decomposition and the Cholesky factorization without the proper

permutation (does not keep the sparsity pattern). Looking at other covariance matrices factorization

methods gives some insight on how good is the performance of the greedy algorithm which is

presented in section 4.4.

Remark: In all simulation results we only consider 16 digits precision after the floating point.

4.5.1 Synthetic data

We randomly generate synthetic covariance matrix with 250 nodes such that its graphical structure

has about half of all possible edges and then we normalize it to have ones along the diagonal.

Figure 4.7 plots the gray scaled, sparsity pattern for the inverse of a randomly generated, synthetic

covariance matrix and various approximations of it. The top left plot shows the inverse of the

original normalized covariance matrix. The graph associated with this inverse covariance matrix

has around n2

2
number of edges. The bottom left plot indicates the first stage of the cascade tree

approximation (the optimal Chow-Liu solution) or the approximated model after the first stage of

the greedy algorithm. The top middle plot shows the inverse of the second approximated model

while the plot on the bottom middle indicates the inverse of the second stage tree approximation.

The plot on the top right indicates the sparsity pattern of the inverse of third approximated model,
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Figure 4.7: Gray scaled, sparsity pattern for the inverse of a randomly generated, synthetic co-
variance matrix. Top left: Inverse of the original normalized covariance matrix, Bottom left:
Inverse of the first stage tree approximation and first model. Top middle: Inverse of the se-
cond approximated model, Bottom middle: Inverse of the second stage tree approximation. Top
right: Inverse of the third approximated model, Bottom right: Inverse of the third stage tree
approximation.

while the bottom right plot shows the third stage tree approximation. In Figure 4.7 the Chow-

Liu tree approximation shown in the bottom left is a poor approximation of the top left plot by

comparing the two gray-scale plots. The top middle plot is a better approximation of the top left

plot and the top right plot provides the best approximation to the top left plot. The top right plot

consists of the cascade of three trees having a maximum of 3 ˆ 249 edges as compared to the top

left plot which represents a graph with more than 30000 edges.

Figure 4.8 plots the log-scaled KL divergence between the random vector X and the approxima-

tion model vector XM after the i-th step of the cascade trees approximation with respect to the

number of cascade trees transformation that are used in the approximation, i. This figure plots

the result of the cascade trees decomposition algorithm for the performance of three different tree

structures, the optimal Chow liu tree, the Star tree without permutation, and the optimal star tree

with permutation, as we add more cascade steps. The left plot compares the performance of the

cascade trees approximation for different choices of tree structures after 10 steps of the cascade
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KL divergence at i = 249 is exactly 0.

Figure 4.8: KL divergence between the distribution of the random vector X and the model distri-
bution after the i-th step of the cascade approximation v.s. the index of the cascade trees, i, for a
graph with 250 nodes. Chow-Liu algorithm is used at each iteration of the cascade approximation.
Right: Comparing the performance of three different tree structures, the optimal Chow liu tree,
the Star tree without permutation, and the optimal star tree with permutation, as we add more
cascade steps. left: Zoomed into 10 cascade trees decompositions.

trees decompositions, while the right plot runs the cascade trees algorithm for 249 steps. Looking

only at the KL divergence we can easily see that using the greedy algorithm presented in section

4.4 clearly has a better performance when we only have small number of cascade stages. On the

other hand, running the cascade tree framework using the star tree approximation at each stage for

249 stages, the KL divergence goes to zero. Note that, figure 4.9 plots the KL divergence in linear

scale. If we compare the Chow-Liu tree to a cascade of two trees/ three trees the KL divergence

decreases by respectively 35%/ 50% (figure 4.9).

Remark: In the i-th iteration of the always star approximation we picked node i as the star node

to do the approximation without any optimization, i.e. identity permutation matrix.

Figure 4.10 plots the KL divergence between the random vector X and the approximation model

vector XM after the i-th step of the cascade trees approximation with respect to the number of

cascade trees transformation that are used in the approximation, i, for a graph of 100 nodes. This

figure plots the result of the cascade trees framework with different decompositions such as the

Cholesky LLT (keep the sparsity), the Cholesky UUT (does not keep the sparsity) and the SVD.

From figure 4.10 we see that three of the decomposition transformations perform similarly with the

star decomposition transformation performing the worse.
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Figure 4.9: KL divergence between the distribution of the random vector X and the model distri-
bution after the i-th step of the cascade approximation v.s. the index of the cascade trees, i, for a
graph with 250 nodes.
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Figure 4.10: KL divergence between the distribution of the random vector X and the model distri-
bution after the i-th step of the cascade approximation v.s. the index of the cascade trees, i for a
graph with 100 nodes using different decompositions. Chow-Liu algorithm is used at each iteration
of the cascade approximation.
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Figure 4.11: Gray scaled, sparsity pattern for the inverse of the covariance matrix generated using
the Oahu solar measurement grid dataset. Top left: Original normalized covariance matrix,
Bottom left: first stage tree approximation and first model. Top middle: second approxi-
mated model, Bottom middle: second stage tree approximation. Top right: third approximated
model, Bottom right: third stage tree approximation.

4.5.2 The Oahu solar measurement grid dataset

In this Example, the covariance matrix is calculated based on datasets presented in [2]. The

Oahu solar measurement grid dataset is obtained from the National Renewable Energy Laboratory

(NREL) website [55]. This dataset consists of 19 sensors (17 horizontal sensors and two tilted

sensors). For this dataset we normalized using standard normalization method and the zenith angle

normalization method [2] 6. From the data obtained from these 19 solar sensors at the island of

Oahu, we computed the spatial covariance matrix during the summer season at 12:00 PM averaged

over a window of 5 minutes.

6. See [2] for more detailed description of dataset and other details about the normalization methods for the solar
irradiation covariance matrix.
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Figure 4.12: KL divergence between the distribution of the random vector X and the model dis-
tribution after the i-th step of the cascade approximation v.s. the index of the cascade trees, i, for
the island of Oahu solar data using different decompositions.

Figure 4.11 plots the grayscaled, sparsity pattern for the inverse of the Oahu solar measurement

grid covariance matrix and various approximations of it. The top left plot shows the inverse of

the original normalized covariance matrix while the bottom left plot indicates the first stage of the

cascade tree approximation or the optimal Chow-Liu approximated model. The top middle plot

shows the inverse of the second approximated model while the plot on the bottom middle indicates

the inverse of the second stage tree approximation. The plot on the top right indicates the sparsity

pattern of the inverse of the third approximated model, while the bottom right plot shows the third

stage tree approximation. Note that the sparsity pattern of the third approximation is close to

original correlation matrix.

Figure 4.12 plots the log-scaled KL divergence between the distribution of the random vector X

and the distribution of the model distribution after the i-th step of the cascade trees approximation

with respect to the number of cascade trees transformation that are used in the approximation, i.

This figure compares the performance of the proposed cascade trees approximation with different

decomposition choices with the optimal star tree approximation. Looking only at the KL divergence

we can easily see that using the greedy algorithm presented in section 4.4 clearly has a better per-
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formance when we only have a small number of cascade stages compared to the star tree structure.

On the other hand, running the cascade tree framework using the star tree approximation at each

stage for 18 stages, the KL divergence goes the zero. This figure also plots the result of the cascade

trees framework with different decompositions such as the Cholesky LLT (keep the sparsity), the

Cholesky UUT (does not keep the sparsity) and the SVD. From figure 4.12 we see that three of

the decomposition transformations perform similarly with the star decomposition transformation

performing the worse. If we compare the Chow-Liu tree to a cascade of two trees/ three trees the

KL divergence decreases by respectively more than 50%/ 80%. More precisely, the KL divergence

after one, two and three cascade stages is equal to 1.695, 0.7615 and 0.3507. By using the Chow-Liu

algorithm to produce trees and then using the Cholesky factorization in general, this algorithm

performs well as the KL divergence decreases relatively quickly. However, by using the star network

systematically on all nodes except one we can guarantee that the cascade algorithm converges to

the model after n´ 1 steps.

Remark: This greedy algorithm is a new way to decompose covariance matrices. We want to use

the Chow-Liu algorithm since it results in the KL divergence initially decaying faster. However, if

we use a star network, the KL divergence goes to zero after at most n´ 1 steps.
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Figure 4.13: (AUC ´0.5) between the distribution of the random vector X and the model distribu-
tion after the i-th step of the cascade approximation v.s. the index of the cascade trees, i, for the
island of Oahu solar data using different decompositions.

Figure 4.13 plots the log-scaled (AUC ´0.5) between the distribution of the random vector X and

the distribution of the model distribution after the i-th step of the cascade trees approximation

with respect to the number of cascade trees transformation that are used in the approximation, i.

This figure plots the result of the cascade trees framework using the Cholesky decompositions LLT

which keep the sparsity. As it is shown in this figure, (AUC ´0.5) is also decreasing to 0 similar to

KL divergence.

4.6 Conclusion

In this chapter, we look at the graphical model as a transformation and introduce a general fra-

mework to do model approximation for graphical models. This new framework, which we call

the cascade trees framework, approximates a complex, hard to compute model with a cascade of

simpler, more efficient tree models, that can be easily computed. To compute the optimal tree

approximation at each stage of the cascade trees framework, we used the Chow-Liu algorithm. In
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the computation of cascade tree framework we look at the best possible decomposition methods and

we defined an important quantity, the symmetric CAM. The symmetric CAM allows us to use this

cascade tree framework by creating a residual correlation matrix at each step. The residual correla-

tion matrix can be viewed as the remaining part of the original correlation matrix not approximated

by previous iterations. Here we used a backward construction method. For the proposed cascade

trees algorithm, the algorithm we picked uses the Cholesky lower diagonal decomposition of the

covariance matrix. This choice of decomposition is favorable since it preserves the sparsity pattern

of the inverse covariance matrix. We present results that guarantee the convergence of the proposed

model approximation using the cascade of tree decompositions. We confirm those results using the

examples provided in the simulation section where we look at synthetic and real data and compare

the performance of the proposed framework by comparing KL divergences.

In future research, a more generalized case than cascade of tree models can be considered where

instead of tree approximation at each iteration we look at simple, easy to compute non-tree mo-

dels, such as ring models. Here we focused on a backward cascade model. We are currently also

considering forward cascade models. We are also looking more deeply at the convergence of these

cascade tree algorithms.
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5
Conclusions and Future Directions

5.1 Conclusion

In this concluding chapter, we first review the contributions of this dissertation to the following

two related problems in graphical modeling: the quality of the statistical graphical models, and

a systematic way to construct tractable algorithms for model approximation. Then, we identify a

number of directions for further research.

In the first problem, we studied the quality of the statistical graphical models by quantifying its

quality by setting up a parametric detection problem while in the second problem, we targeted a

systematic way to construct tractable algorithms for model approximation by formulating a general

framework where we developed a multistage framework for graphical model approximation using a

cascade of models such as trees.
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In chapter 2, we discussed the theory behind our proposed method of quantifying the quality of the

approximation model. Instead of using common distance measure such as the KL divergence, we

extended the body of research by formulating the model approximation as a parametric detection

problem between the original distribution and the model distribution. The proposed detection

framework resulted in the computation of symmetric closeness measures such as ROC and AUC.

In the second part of chapter 2, we focused on Gaussian distributions and the covariance selection

quality. We showed that closeness measures such as KL divergence, reverse KL divergence, ROC,

and AUC are all depended on the eigenvalues of the CAM. Besides that, we presented theoretical

expressions for the KL divergence, the log-likelihood ratio, and the AUC as a function of the CAM.

We also presented a simple, computationally efficient, and complex-valued integral to calculate the

AUC. In addition, easily computable upper and lower bounds are also found for the AUC to assess

the quality of an approximated model.

In chapter 3, we looked at the quality of different model approximation methods through some

examples and simulations for real and synthetic data. In the first part of this chapter, we investigated

the quality of tree structured models while in the second part, we switched to more complex, non-

tree structured models. In the first part, we used the Chow-Liu MST algorithm to compute the

maximum likelihood tree structured approximation. Then, the quality of this tree algorithm was

investigated using the proposed framework in chapter 2. We saw through some examples that

in general, the tree approximation model is not a good model as the number of vertices in the

graphical model increases which is the case in high-dimensional problems. One such example is

modeling the electrical distribution grid using smart grid sensor measurements and distributed

renewable energy sources. The aforementioned result is also consistent with the analytical results

provided for Toeplitz example which shows that 1´AUC decays exponentially as the number of

graph vertices increases. In the second part, we looked at non-tree graphical models where we

discuss graphical models with junction tree structures such as the p-th order Markov chain and the

corresponding star network interpretation for a special Toeplitz covariance matrix with ones along

the diagonal and correlation coefficient ρ’s on the off-diagonals. These models have very short loops

and have associated junction tree that connects cliques of the same size. We computed the model

covariance matrix and the KL divergence and also quantified the goodness of the approximated

covariance matrix. In this example, we showed that if the model order, p, is proportional to the
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number of vertices, n, then the approximated model is asymptotically good as n Ñ 8 since the

AUC is asymptotically bounded away from one. We confirmed this theoretical result by performing

some simulations which showed that the selected model quality increases as the model order, p,

increases. We also provided necessary criteria on the model order, p, in order to bound the AUC

away from one.

In chapter 4, we formulated a general framework and algorithms for model approximation. We de-

veloped a multistage framework for graphical model approximation using a cascade of models such

as trees. In particular, we looked at the model approximation problem for Gaussian distributions

as linear transformations of tree models which is a new way to decompose the covariance matrix.

The proposed algorithm in this chapter incorporates the Cholesky factorization method to compute

the decomposition matrix and thus can approximate a simple graphical model using a cascade of

the Cholesky factorization of the tree approximation transformations. The implementation of the

Cholesky decomposition enables us to achieve a tree structure factor graph at each cascade stage

of the algorithm which facilitates the use of the message passing algorithm since the approxima-

ted graph at each stage has fewer loops compared to the original graph. The overall graph is a

cascade of factor graphs with each factor graph being a tree. This is a different perspective on

the approximation model, and algorithms such as Gaussian belief propagation can be used on this

overall graph. In this chapter, we also presented theoretical results that guarantee the convergence

of the proposed model approximation using the cascade of tree decompositions. This is a backward

construction method. In the simulations, we looked at synthetic and real data and measured the

performance of the proposed framework by comparing the KL divergences.

5.2 Future Possible Research Directions

Graphical models is an effective approach to cope with modeling complexity using graph theory.

In future research by looking at the first problem presented in this dissertation, we can look at

other applications of the theoretical foundation to other problems in literature. For instance, the

parametric detection framework presented in chapter 2 can be generalized for non-Gaussian models.

The AUC analytical bounds obtained in this chapter can also be used in other applications that are

using AUC as a relevant criterion. One example is in medicine when the AUC is used for diagnostic
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tests between positive instance and negative instance [54] where instead of changing the coordinates

we can look at the exponent of the AUC bounds.

Regarding the second problem addressed in this dissertation, in future research, a more generalized

case than a cascade of tree models can be considered where instead of tree approximation at each

iteration we look at simple, easy to compute non-tree models, such as ring models. Here we focused

on a backward cascade model. We can also consider forward cascade models. We can also look more

deeply at the convergence of these cascade tree algorithms. Moreover, we can look at the models,

decompositions at each iteration of cascade approximation that makes the overall approximation to

converge in finite steps (similar to the star model).

Results found in this dissertation can add to modeling distributed energy resources in the power

grid. One can use presented model approximation techniques in order to decrease the number of

loops due to penetration of correlated renewable sources.
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A
Appendices

A.1 Proof of Lemma 1

The calculus based proof for the special case of continuous PDFs is as follow. We can apply the

Leibniz integral rule [72] and compute the derivative of CDFs P0plq and P1plq as

fL0plq “ ´
dP0plq

dl

and

fL1plq “ ´
dP1plq

dl
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since fL0plq and fL1plq are continuous functions. 1 We have

D pfL0plq||fL1plqq “

ż `8

´8

log
fL0plq

fL1plq
fL0plq dl

paq
“ ´

ż 1

0

log
dP1

dP0

dP0

pbq
“ ´

ż 1

0

log h1pzq dz

where equality (a) is true since we can replace PDfs fL0plq and fL1plq using the derivative of their

CDFs. Equality (b) is just a change of variable, z “ P0plq, in order to write the integral in terms

of the derivative of the ROC curve. Proof for the second part of this lemma is similar to the proof

of the first part. �

A.2 Proof of Theorem 3

Looking back at properties of the ROC curve, hpzq, where z P r0, 1s, the ROC curve have to satisfy

the following conditions

— C1:
ş1

0
h1pzqdz “ 1

— C2: h1pzq ě 0

— C3: h1pzq is decreasing

where h1pzq is the derivative of the ROC curve, hpzq. Also for a given ROC curve, hpzq, we can

compute the AUC as

Pr pL∆ ą 0q “

ż 1

0

hpzqdz.

Then, using integration by parts, we can show that

1´ Pr pL∆ ą 0q “

ż 1

0

z h1pzqdz.

To compute the possible feasible region stated in the theorem 3, we need to optimize both of

following KL divergences, D pfL1plq||fL0plqq and D pfL0plq||fL1plqq, with respect to the derivative of

1. Both fL0plq and fL1plq are PDFs in generalized Chi-squared distributions class. This means that each of these
PDFs are convolution of weighted Chi-squared distributions. Weighted Chi-squared distribution is continuous in its
domain thus, convolution of these distributions is continuous in its domain.
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the ROC curve given a fixed AUC, Pr pL∆ ą 0q, while conditions, C1, C2 and C3 hold. To solve

this optimization, we can use the method of Lagrange multiplier.

First step: Here we minimize D pfL1plq||fL0plqq with respect to the derivative of the ROC curve

given the constraints. Optimization problem is as follow

arg min
h1pzq

´

ż 1

0

log h1pzqdz (A.1)

s. t.

ż 1

0

z h1pzqdz “ 1´ Pr pL∆ ą 0q

C1, C2 & C3.

To solve this optimization problem, we first write the Lagrangian. We need two coefficients a and

b corresponding to conditions in optimization problem (A.1). Then, we can write the Lagrange

multiplier as a function of the derivative of the ROC curve, z, a and b as follow

Lph1pzq, z, a, bq “ ´

ż 1

0

log h1pzqdz

` a

ˆ
ż 1

0

zh1pzqdz ´ p1´ Pr pL∆ ą 0qq

˙

` b

ˆ
ż 1

0

h1pzqdz ´ 1

˙

.

Note that, the Lagrangian, Lph1pzq, z, a, bq is a convex functional [73] of h1pzq. Thus, we can compute

its minimum by taking its derivative with respect to h1pzq. Doing so, and applying the Euler-

Lagrange equation [73] we get

δLph1pzq, z, a, bq

δh1pzq
“
BL

Bh1
´
d

dz

BL

Bh2

“

ż 1

0

ˆ

az ` b´
1

h1pzq

˙

dz.

Set BLph1pzq,z,a,bq
Bh1pzq

“ 0 we get

h1pzq “
1

az ` b

for all z P r0, 1s. From C3, since h1pzq is decreasing, we can conclude that a ą 0. Moreover, from C1,
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at optimum we have
ş1

0
h1pzqdz “ 1 and thus, we can compute one of the coefficients as b “ a

ea´1
.

Computing the AUC integral and the KL divergence using the ROC curve we get the following

parametric boundary for the possible feasible region

Pr pL∆ ą 0q “
1

1´ e´a
´

1

a
(A.2)

and

D “ logpaq `
a

ea ´ 1
´ 1´ logp1´ e´aq (A.3)

where D “ D pfL1plq||fL0plqq.

Second step: Here we minimize D pfL0plq||fL1plqq. The Lagrange multiplier for this step is similar

to the first step but it is more straight forward if we define gpηq “ h´1pηq. Note that using

integration by parts, we can show that AUC is

Pr pL∆ ą 0q “

ż 1

0

η g1pηqdη.

Now, we can write the Lagrangian for the optimization problem with respect to g1pηq. The La-

grangian is convex with respect to g1pηq, thus taking the derivative and set it equal to zero as

follow

δLpg1pηq, η, a, bq

δg1pηq
“ 0

we can compute the parametric boundary for the possible feasible region. The parametric boundary

in this case is the same as solution in (A.2) and (A.3) with D “ D pfL0plq||fL1plqq. Thus, combining

these two steps, for the optimal boundary we have

D˚l “ mintD pfL1plq||fL0plqq , D pfL0plq||fL1plqqu.

�
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A.3 Proof of Theorem 8

The proof is by construction. At each step we use a star approximation graph (a tree with one

node connected to all other nodes). The Cholesky factorization is used to ensure that the sparsity

pattern occurs in the inverse Cholesky matrix.

The first star approximation structure is constructed such that all the other nodes are connected

to the first node. Then, the Cholesky decomposition is computed where the inverse Cholesky

decomposition preserves the star structure. This particular construction causes node 1 to become

disconnected from the rest of the graph (construction of ∆1).

A formal, algebraic proof for this claim is given as follow. We generally partition the covariance

matrix Σ as

Σ “

»

–

Σ1 Σ12

Σ21 Σ2

fi

fl .

According to the covariance selection rules from Dempster theorem [1], the model covariance matrix

has the same coefficients as the covariance matrix, Σ, at non-zero places in the inverse. For the

sake of notation simplicity, let Σ̃ denotes the first stage model covariance matrix. For the proof of

this part, we want the model inverse covariance matrix to have zeros at the block position of Σ2.

Thus, the model covariance matrix, Σ̃, has the following partitioned covariance matrix

Σ̃ “

»

–

Σ1 Σ12

Σ21 Σ̃2

fi

fl .

Using matrix inversing lemma [74] we have

Σ̃´1
“

»

–

Σ´1
1 `Σ´1

1 Σ12Σ̃
´1
2|1Σ21Σ

´1
1 ´Σ´1

1 Σ12Σ̃
´1
2|1

´Σ̃´1
2|1Σ21Σ

´1
1 Σ̃´1

2|1

fi

fl ,

Where Schur compliment,

Σ̃2|1 “ Σ̃2 ´Σ21Σ
´1
1 Σ12

is the conditional covariance and is diagonal.
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The inverse of model covariance matrix can be factor as

Σ̃´1
“ QTQ

where Q is the inverse of the lower tridiagonal Cholesky decomposition of Σ̃ and can be partitioned

as

Q “

»

–

Q1 0

Q21 Q2

fi

fl ,

where Q1 and Q2 can be computed from the following

Σ´1
1 “ QT

1 Q1,

Σ̃´1
2|1 “ QT

2 Q2,

and Q21 as follow

Q21 “ ´Q2Σ21Σ
´1
1 .

Computing QΣQT , we have

pQΣQT
q1 “ Q1Σ1Q

T
1 “ I

and

pQΣQT
q12 “ Q1Σ12Q

T
2 `Q1Σ1Q12

“ Q1pΣ12 ´Σ1Σ
´1
1 Σ12qQ

T
2

“ Q1p0qQ
T
2 “ 0,
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and

pQΣQT
q2 “ Q21Σ1Q12 `Q2Σ21Q12

`Q21Σ12Q2 `Q2Σ2Q
T
2

“ Q2Σ21Σ
´1
1 Σ1Σ

´1
1 Σ12Q

T
2

´Q2Σ21Σ
´1
1 Σ12Q

T
2

´Q2Σ21Σ
´1
1 Σ12Q2 `Q2Σ2Q

T
2

“ ´Q2Σ21Σ
´1
1 Σ12Q2 `Q2Σ2Q

T
2

paq
“ Q2pΣ2 ´ Σ̃2 ` Σ̃2 ´Σ21Σ

´1
1 Σ12qQ

T
2

“ I`Q2pΣ2 ´ Σ̃2qQ
T
2 ,

where (a) is true since we add and subtract Σ̃2.

All diagonal coefficients of Q2pΣ2 ´ Σ̃2qQ
T
2 are zeros, since according to the covariance selection

theorem [1], diagonal coefficients of Σ2 and Σ̃2 are equal, and Q2 is diagonal.

Remark: Note that all diagonal coefficients of pQΣQT q2 are ones since all diagonal coefficients of

Q2pΣ2 ´ Σ̃2qQ
T
2 are zeros.

Overall, the QΣQT (symmetric CAM) has the following structure

QΣQT
“

»

—

—

—

—

—

—

—

—

—

–

I 0

1 � ¨ ¨ ¨ �

0 � 1
. . .

...
...

. . . . . . �

� . . . � 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For the star tree approximation we have

∆1 “ QΣQT
“

»

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0

0 1 � �
... �

. . . �

0 � � 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Repeating this construction process recursively, at the i-th iteration, node i ` 1 to node n are all

connected to the i-th node in the i-th star approximation structure and thus, the i-th node become

disconnected from the rest of the graph. Repeating this procedure for n ´ 1 iterations, we get

∆n´1 “ I which translates to zero model approximation error.

Note that, we can also optimize the choice of the star tree by minimizing the KL divergence

by exhaustively searching over all the n possible star structures at each step of the cascade tree

approximation algorithm.

A.4 Proof of Theorem 9

Our goal is to show that all diagonal coefficients of the symmetric CAM are equal to one. For

simplicity and without losing generality of the proof we can assume that the permutation matrix

is identity, i.e. we start with an appropriate ordering that satisfies theorem 7 conditions. Let Q

be the inverse Cholesky factorization of the tree model covariance matrix. Let us also assume that

the tree model is connected. With these assumptions, matrix Q has one non-zero coefficients in

the first row (on the diagonal) and exactly two non-zero coefficients in each other row (one on the

diagonal and one on its left), i.e. @ j ă i ď n, qji ‰ 0 and qii ‰ 0. This is true since Q is a

lower triangular matrix that preserves tree structure.

We can right the symmetric CAM as follow

QΣQT
“ QpΣ´ Σ̃` Σ̃qQT

“ I`QpΣ´ Σ̃qQT .

Note that, the difference Σ ´ Σ̃ has zeros at positions ji and ij where qji ‰ 0. To prove this

lemma, we need to show that pQpΣ ´ Σ̃qQT qii “ 0 or equivalently we need to show that ith row

of QpΣ ´ Σ̃q times the transpose of the ith row (i ą 1) of Q is 0. There are only two non-zero

coefficients in the ith row of Q, at positions ii and ji. Thus we only need to compute pQpΣ´ Σ̃qqii

and pQpΣ´ Σ̃qqji. It is easy to see that pQpΣ´ Σ̃qqii “ 0. For pQpΣ´ Σ̃qqji, we have

r0 . . . 0 qji 0 . . . 0 qii 0 . . . 0sr� . . .� 0 � . . .� 0 � . . .�sT “ 0.
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This equality holds since pΣ´ Σ̃qji “ 0. Thus, @i ď n, pQpΣ´ Σ̃qQT qii “ 0 which results in this

lemma.
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[53] P. Harremoës and I. Vajda, “On pairs of f -divergences and their joint range,” arXiv preprint

arXiv:1007.0097, 2010.

[54] N. P. Johnson, “Advantages to transforming the receiver operating characteristic (roc) curve

into likelihood ratio co-ordinates,” Statistics in medicine, vol. 23, no. 14, pp. 2257–2266, 2004.

[55] N. S. irradiance website. [Online]. Available: http://www.nrel.gov/midc/.

[56] S. A. Fatemi and A. Kuh, “Solar radiation forecasting using Zenith angle,” Global SIP confe-

rence, 2013.

[57] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine learning,” the MIT

Press, 2006.

[58] J. R. Blair and B. Peyton, “An introduction to chordal graphs and clique trees,” in Graph

theory and sparse matrix computation. Springer, 1993, pp. 1–29.

110



[59] N. T. Khajavi and A. Kuh, “The covariance selection quality for graphs with junction trees

through AUC bounds,” in Proc. of the Asia-Pacific Signal and Information Processing Asso-

ciation (APSIPA ASC), Dec 2016, pp. 1–5.

[60] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in gaussian graphical models of

arbitrary topology,” in Advances in neural information processing systems, 2000, pp. 673–679.

[61] A. Anandkumar, D. J. Hsu, F. Huang, and S. M. Kakade, “Learning mixtures of tree graphical

models,” in Advances in Neural Information Processing Systems, 2012, pp. 1052–1060.

[62] R. Santana, A. Ochoa-Rodriguez, and M. R. Soto, “The mixture of trees factorized distribu-

tion algorithm,” in Proceedings of the 3rd Annual Conference on Genetic and Evolutionary

Computation. Morgan Kaufmann Publishers Inc., 2001, pp. 543–550.

[63] M. Meila and M. I. Jordan, “Learning with mixtures of trees,” Journal of Machine Learning

Research, vol. 1, no. Oct, pp. 1–48, 2000.

[64] S. Dasgupta, “Learning mixtures of Gaussians,” in Foundations of computer science, 1999.

40th annual symposium on. IEEE, 1999, pp. 634–644.

[65] C. Greene and G. A. Iba, “Cayley’s formula for multidimensional trees,” Discrete Mathematics,

vol. 13, no. 1, pp. 1–11, 1975.

[66] N. Tafaghodi Khajavi and A. Kuh, “Covariance matrix decomposition using cascade of linear

tree transformations.” IEEE, 2019.

[67] K. Khare and B. Rajaratnam, “Sparse matrix decompositions and graph characterizations,”

Linear Algebra and its Applications, vol. 437, no. 3, pp. 932–947, 2012.

[68] L. Ghalami and D. Grosu, “Scheduling parallel identical machines to minimize makespan: A

parallel approximation algorithm,” Journal of Parallel and Distributed Computing, 2018.

[69] ——, “A parallel approximation algorithm for scheduling parallel identical machines,” in Pa-

rallel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE International.

IEEE, 2017, pp. 442–451.

[70] E. Dalkiran and L. Ghalami, “On linear programming relaxations for solving polynomial pro-

gramming problems,” Computers & Operations Research, 2018.

111



[71] Y. Li, L. Ghalami, L. Schwiebert, and D. Grosu, “A gpu parallel approximation algorithm

for scheduling parallel identical machines to minimize makespan,” in 2018 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2018, pp. 619–

628.

[72] H. Flanders, “Differentiation under the integral sign,” The American Mathematical Monthly,

vol. 80, no. 6, pp. 615–627, 1973.

[73] D. G. Luenberger, Optimization by vector space methods. John Wiley & Sons, 1997.

[74] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook.

http://www2.imm.dtu.dk/pubdb/p.php?3274: Technical University of Denmark, Octo-

ber 2008.

112


	Acknowledgments
	Abstract
	Contents
	Introduction
	Graphical Model
	Divergences
	Multivariate Gaussian models
	Log-likelihood
	KL divergence
	Properties of a covariance matrix

	Dempster covariance selection and Chow Liu algorithm
	Application
	Smart grid example

	Thesis Main Contributions
	Quality of statistical model selection with focus on covariance selection
	General framework and algorithms to perform covariance selection

	Thesis Outline

	The Covariance Selection Problem using a Detection Problem Formulation: Theoretical Analysis
	Introduction
	Detection Problem Framework
	Model selection problem
	General detection framework
	Multivariate Gaussian distribution and model selection

	Dempster covariance selection
	Chow-Liu minimum spanning tree
	Covariance selection example
	Distribution of the LLRT statistic

	The ROC Curve and the AUC Computation
	The receiver operating characteristic curve
	Area under the curve
	Analytical expression for AUC

	Analytical Bounds for the AUC
	Generalized Asymmetric Laplace distribution
	Lower bound for the AUC (Chernoff bound application)
	Upper Bound for the AUC
	Asymptotic behavior for AUC bounds

	Conclusion

	The Covariance Selection Problem using a Detection Problem Formulation: Examples
	Part I: Tree approximation model
	Toeplitz example
	Star approximation
	Chain approximation
	Divergences values on possible feasible region
	LLRT statistic probability density function

	Real solar data example
	Normalization methods
	Solar measurement fields definition APSIPA2014
	The Oahu solar measurement grid dataset
	The Colorado dataset

	Two-dimensional sensor network example

	Part II: Beyond tree approximation
	Toeplitz Covariance Matrix
	pth order star network
	pth order Markov chain network
	Simulation Results and Discussion

	Conclusion

	Model Approximation Using Cascade of Tree Decompositions
	Introduction
	Gaussian tree approximation
	Tree approximation for Gaussian distributions
	Gaussian model approximation as a transformation

	Model Approximation Using Cascade of Tree Decompositions Principle
	Cascade Trees Algorithm
	Greedy Model Approximation Algorithm
	Complexity of the cascade tree algorithm
	Example with 5 nodes

	Simulation Results and Discussion
	Synthetic data
	The Oahu solar measurement grid dataset

	Conclusion

	Conclusions and Future Directions
	Conclusion
	Future Possible Research Directions

	Appendices
	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 8
	Proof of Theorem 9

	Bibliography

