
An Autonomous Discord Bot to Improve Online Course Experience and
Engagement: Lessons Learned Amid the COVID-19 Pandemic

Devin Robert Wright
Utah Valley University

DWright@uvu.edu

Tim Severence
Utah Valley University

Tim.Severance@uvu.edu

Charles D. Knutson
Utah Valley University

cknutson@uvu.edu

Jonathan L. Krein
Crimson Vista, Inc.

jonathan@crimsonvista.com

Tyler D. Buchanan
Utah Valley University
tbuchanan@uvu.edu

Abstract

The COVID-19 pandemic pushed many educational
institutions to adopt online learning models for most or
all of their courses. As a result, the effectiveness of
remote learning is more important now than ever before.
In this paper, we report on work that was conducted
in the Spring of 2021 at Utah Valley University. We
explored the use of Discord as a delivery mechanism
for online course content during the 2020-2021 school
year. We also developed a Discord bot to autonomously
track attendance. Based on our experience to date, the
Discord bot appears to enhance remote learning. We
describe the design, implementation, and deployment
of our bot. We also discuss what worked well, as
well as areas for improvement. In future semesters we
plan to collect data by which we may begin to answer
fundamental questions about the impact of such bots on
remote learning.

1. Introduction

In early 2020, the COVID-19 pandemic significantly
uprooted face-to-face university classes across the
world, necessitating an unprecedented migration to
online learning formats and platforms over a very
short time frame. Not surprisingly, most institutions
experienced some degree of disruption during this time
and faced new challenges. Utah Valley University
(UVU), in Orem, Utah, was no exception.

On March 6th, 2020, the state of Utah officially
declared a state of emergency, and by March 23, 2020
UVU had officially transitioned to a 100% remote
learning model. The announcement to teach all classes
remotely set in motion a rapid and unanticipated
transformation for many classes at UVU. Instructors and
administrators alike were suddenly forced to locate and
integrate new tools to facilitate virtual classrooms. In
such an environment, ease of use and reliability became
critical, albeit somewhat elusive, priorities.

UVU eventually designated Microsoft Teams as its

official virtual classroom solution. However, during the
transition to Teams, a number of limitations became
apparent. First, the university-wide scale up to using
Teams led to predictable outages and failures. Second,
we faced a number of key weaknesses regarding feature
support within Teams1. Given these limitations, the
authors assessed a number of other virtual workspace
platforms (including Slack, Zoom, Google Classroom,
and Discord) and ultimately selected Discord.

1.1. Motivation for Discord

This paper is not strictly about Discord, but an
understanding of Discord and the motivation behind our
decision to use Discord is necessary to understand the
context in which we developed our asynchronous and
automated attendance tracking bot.

Discord is a platform that organizes participants
into communities, called “guilds”2 – i.e., hosted digital
spaces in which users can congregate and interact via
voice, text, video, screen, and file sharing. In Discord,
guilds (or servers) enable the creation of both voice
and text “channels,” which represent the fundamental
mechanism for communication between community
members. Communication over voice channels includes
optional overlaying of screen, video, and file sharing.
Voice and text channels can also be overlayed onto one
another, thus allowing the user to create an array of
custom communication configurations. Such flexibility
proved invaluable for creating an effective and engaging
learning environment.

In addition to Discord’s capability to overlay
multiple communication methods in an array of custom
configurations, an informal poll of students suggested
that a majority of CS students at UVU were not only
familiar with Discord, but already spent significant time
(primarily socializing) on the platform. Based on this

1As an example, Teams provides limited administrative control to
those conducting meetings, whereas Discord gives the creator of a
server full administrative control over it. Other weaknesses relate to
specific usability concerns in which Discord clearly outshines Teams.

2Also commonly referred to as “servers” in Discord.

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 891
URI: https://hdl.handle.net/10125/79442
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



and other anecdotal evidence available to date, we
believe the popularity of Discord among CS students at
UVU is due to four factors: 1) Discord was initially
built as a social networking platform for the gaming
community; 2) A significant percentage of CS students
are online gamers; 3) Discord features an elegant
design and intuitive usability, coupled with a rich set
of communication features – i.e., it’s just a really good
product; and 4) The platform is available to users at no
cost.

Since much of our student body already utilizes
Discord for gaming and socializing, it appeared to be
a good candidate for use in our remote classroom.
Additionally, in practice, we found Discord’s intuitive
UX (“user experience”) design facilitated a smooth
transition for most students, including those who had
not previously used Discord. Further, in contrast to
the other platforms we considered, Discord provides
full administrative control over a server (or guild) once
it’s created, allowing the admin to assign roles and
permissions to teaching assistants (TAs) and students.
This capability for custom permissions significantly
improved server and channel management, since it
was better suited to our distributed model of course
management – professor and TAs working together to
administer a course.

1.2. Need for Automated Attendance Tracking

After a partial semester (Spring 2020) using Discord,
followed by a full semester (Fall 2020) using the
platform, we perceived a need for administrative
automation within the platform to streamline certain
aspects of our courses. Discord is, of course, not focused
on academic applications or functionality. Our previous
non-automated methods were tedious, time consuming,
and error-prone – especially for tracking attendance.
Inspired by these challenges, we conceptualized an
autonomous attendance tracking system that could run
as a background process on Discord, eliminate our
previous cumbersome and inaccurate manual systems,
and also provide a means for gathering data that
could be used to analyze select student behaviors,
thereby facilitating the future study of factors that might
lead to increased student success (including classroom
engagement).

1.3. Structure of this Paper

In the following section, we discuss literature
related to classroom attendance within the context
of online education and describe prior attempts to
automate the tracking of attendance. Subsequently we
provide additional background information regarding

the Discord platform and our use of Discord to facilitate
remote learning. We then describe the design and
implementation of our automated attendance tracking
solution, followed by a discussion of our deployment of
that solution in the context of a computer science course
at UVU (in the Spring of 2021). Finally, we discuss
some of the limitations of our tool as well as ideas we are
considering for future work and general conclusions.

2. Related Work

2.1. Motivation for Automated Attendance
Tracking

Studies suggest that well-prepared and/or motivated
university students generally perform similarly in both
face-to-face and online classes. Conversely, the
performance of average students tends to decrease in
online settings, as compared to face-to-face classes.
In addition, those students who are least prepared
for higher (e.g., university) education (including
low-income students and those with low high school
grade point averages) demonstrate an even larger
negative gap between their online class performance and
their face-to-face class performance [1][2]. Jaggars and
Xu suggest that this negative performance gap relates
to a number of propensities and skills present (or more
well-developed) in high-achieving students, including:
(1) a high level of self-regulation and self-discipline, (2)
a propensity to proactively seek help from teachers, and
(3) a number of other metacognitive skills “which often
fall under the broad rubric of self directed learning”
[2]. In all of these areas, Jaggars found low-achieving
students to be generally lacking or less well-developed
than high-achieving students [1].

As an open enrollment university, UVU’s
41,728 students include a significant percentage of
non-traditional students (at least 32%3), as well as
a large cohort of first-generation students (36%) [3].
While non-traditional community college students don’t
manifest as large a performance gap between online
and face-to-face learning, they typically perform more
poorly than the average university student in both online
and face-to-face classes [2]. First-generation students
are also more likely to be underprepared for a university
education [4].

Given the inherent discrepancies between student
performance in online courses vs. face-to-face
courses, our research was driven by a desire to
improve online courses to more closely mirror the
face-to-face experience, thereby (hopefully) narrowing

3This figure may be higher, depending on the definition of
“non-traditional” one applies.

Page 892



the discrepancy. Having observed a steep decline in
attendance when UVU transitioned to 100% remote
learning (as a result of the pandemic), we considered
class attendance to be an obvious area of remote
learning where improvement was needed. Our current
working hypothesis is that the known use of an
automated attendance tracking system improves remote
learning outcomes (e.g., it increases actual attendance,
exam scores, and student satisfaction). However, at
the very least (and from a practical standpoint), we
believe such a tool enables the collection of accurate
attendance information in an online environment, such
that we can hold students accountable in courses where
attendance is believed to be an important component
of the learning experience. Further, gathering accurate
data on student participation ultimately enables future
studies concerning the impact of such tools on student
performance (i.e., the tool will allow us to test our core
hypothesis going forward).

Allensworth enumerates several aspects of student
engagement, including behavioral, emotional, and
cognitive elements. He points out, “Only behavioral
engagement is observable by others, making it a crucial
signal of overall engagement to which educators need
to attend.” [5]. One of the most evident forms of
behavioral engagement is attendance. Consequently,
behavioral engagement markers – and in particular,
tracked attendance – are crucial to the evaluation of
overall student engagement.

Becker supports the idea that the accuracy with
which student involvement (in course material) is
assessed and communicated impacts student learning
outcomes [6]. Also, in the context of face-to-face
courses, Gomis and Rodrigues suggest that absenteeism
increases as access to online materials increases [7].
Consequently, as the online material provided to
students expands to subsume all course material –
essentially obviating (in the mind of the student) the
necessity of in-class time as a means for information
delivery – (1) class attendance drops significantly, (2)
student happiness mid-semester increases marginally,
(3) exam performance decreases, and (4) final grades
decrease significantly (after which one might reasonably
assume student happiness then decreases, though such
an effect was not assessed by Gomis and Rodrigues)
[7]. Additionally, and consistent with our earlier
observations, committed and driven students tend to
attend class regardless of other factors [8].

2.2. Non-Discord Attendance Tracking
Methods

2.2.1. Manual Methods Traditionally, class
attendance is tracked manually, either through a verbal
roll call or by allowing students to mark themselves
present on a class roll. These traditional methods for
recording attendance present problems that are difficult
to resolve. Depending on the size of a given class, roll
call can consume significant time that would otherwise
be dedicated to lecture or other in-class activities. As
an example, for a typical three-credit course, forty
to forty-five hours of in-class time is allotted for a
semester. Masalha suggests that as much as eight hours
of class time per semester (i.e., 17-20% of a typical
three-credit course) may be lost to the traditional roll
call method for attendance tracking [10].

A common substitute for roll call is to allow
students to mark themselves present, typically on a
sheet of paper. Not only does this create distractions
during lecture, but for classes in which attendance is a
major part of a student’s grade, this approach presents
students with the opportunity for a moral dilemma,
such as enabling them to mark absent peers as present.
Additionally, if an instructor includes multiple days on
a roll sheet being passed around the class, students
may avail themselves of the opportunity to retroactively
mark themselves present for days on which they had
actually been absent. The core problem here is that the
instructor does not have an effective means by which to
validate the data once collected, nor an efficient means
for migrating it into a digital format [9].

2.2.2. Partially and Fully Automated Methods
One study proposed marking attendance by requiring
students to scan a unique daily QR code. This approach
makes it more difficult for students to falsify attendance,
since it requires the individual to be physically near the
QR code in order to scan it with their mobile device [10].
However, it doesn’t prevent a student from snapping a
picture of the QR code and forwarding it to a friend
who is not present. It also requires the professor (or
TA) to create QR codes and display or circulate them
in some fashion as part of each class period, which can
be burdensome and time consuming.

Other innovative methods for attendance tracking
include fingerprinting [11], RFID (“Radio Frequency
Identification”) [12], facial recognition [13], and NFC
(“Near Field Communications”) technology [13]. While
many of these methods are technically elegant, all
of them require the adoption of specific technologies
(hardware as well as software) by both students and
institutions. Additionally, each of these solutions
has certain limitations. For example, QR and NFC
methods do not account for students who are present

Page 893



but forget to mark themselves as such. RFID can be
unreliable in precisely detecting student location. Many
of these solutions are also incapable of reliably tracking
certain important data – such as time of arrival, time
of departure, and amount of time present – without
disrupting the classroom setting, wasting time, or adding
unnecessary complexity to what should ideally be a
simple process.

In contrast to these proposed solutions, we sought
to create a fully automated attendance tracking
system with a low barrier to entry, few points
of failure, high resilience to user error or student
inaction, that also facilitated comprehensive collection
of attendance-related metrics.

2.2.3. Technologies for Recording Attendance
Academic institutions have relied on industry-leading
educational platforms, such as Canvas and Blackboard,
for many years. However, as Cacho suggests, even the
most current and well-funded products tend to provide
outdated functionality [14]. For example, these tools are
often inflexible, lack video conferencing capabilities,
and provide outdated forum style discussion boards
that are not conducive to active participation by the
contemporary student [15]. Additionally, such tools
typically require manual input of attendance, which,
as we discussed above, suffers from several key
weaknesses [9].

As Olson asserts, “Technology firms are eager to
build more functional tools for users but they need
both guidance and coordination from the field to build
solutions that work for more than a single use in a
single school system. Tech providers should codesign
such solutions with the ultimate end users: educators
and school system leaders.” [16]. To the extent
educational technology providers have failed to be
responsive to educators and school system leaders, or
have failed to keep up with the expectations and needs
of the contemporary student, some educators have seen
success in deploying their own solutions [9] [17] [18].

2.3. Discord-based Methods for Attendance
Tracking

As mentioned previously, in early 2020 UVU
transitioned from traditional face-to-face classroom
teaching to an entirely online-based approach. At that
time, the authors of this paper made the decision to
conduct classes using the Discord platform. While
not a primary motivation for our initial decision to
use Discord, the platform’s support for third-party
application development (such as plugins and bots)
proved a significant advantage as we explored the

possibility of automating the tracking of attendance.
A number of online activities on Discord can

be managed by the creation of a particular type of
automated software application referred to as a “bot”
[19]. Discord bots look and act (to the system) like user
accounts, but automatically perform actions that would
otherwise require manual human intervention. In fact,
a number of Discord bots have already been created to
specifically address the issue of automating the tracking
of virtual meeting attendance. Notable examples of
these Discord attendance bots include:

• Suivix – capable of creating lists of absent and
present users for a given activity [20]. It allows
attendance to be recorded for up to eight voice
channels and eight user roles. Additionally, it can
create anonymous and flexible surveys (referred
to as “polls”). In contrast to most Discord bots,
Suivix provides a full-featured user interface,
allowing a great deal of configuration control,
independent of the Discord interface.

• AmtBot – manages attendance for online events
related to a specific live action role playing
game called Amtgard [21]. The bot is started
by the admin of a Discord server and allows
users to mark themselves present. It then tracks
their status throughout a given meeting and then
provides information to the admin (as well as to
the attendee) related to the user’s attendance.

• Integromat – a robust and powerful tool that
provides integration with numerous platforms and
automates a variety of tasks [22]. Integromat
offers an attendance bot for Discord meetings,
among a host of other features.

• Apollo – manages events and attendance, and
pings users to remind them when an event is about
to start [23]. It leverages Discord’s permissions
and roles capabilities, and offers a simple and
intuitive user interface for Discord servers.

Our analysis of these bots revealed deficiencies
with respect to specific features we desired in our
automated solution (including granular tracking of
student arrivals and departures, flexible calculation of
attendance grades, and support for multiple courses,
among others). Given these limitations, we determined
to design and implement our own Discord bot to
automate the tracking of course attendance. As an
added benefit, implementing our own bot allowed us to
maintain full control over the bot in real time, as well as
giving us the ability to expand its functionality down the
road.

Page 894



3. Applying Discord to Remote Learning

3.1. The Discord Usage Model

Discord is a popular platform for group
communications, with over 140 million active monthly
users [24]. Its functionality is similar to Slack, Google
Chat, and Microsoft Teams, but unlike those platforms,
typical Discord users don’t simply use the platform
for scheduled meetings or events. Rather, they tend to
integrate the platform as a regular part of their online
life. As the Discord site says, “Imagine a place where
you can belong to a school club, a gaming group, or
a worldwide art community. Where just you and a
handful of friends can spend time together. A place
that makes it easy to talk every day and hang out more
often” [25]. Typical Discord users really do tend to hang
out on the platform in the same way that most digitally
connected people stay in contact with others via text
messaging or chat platforms (such as Messenger).

Discord users can join existing communities
(“servers” or “guilds”) or create their own servers in
order to invite others. The members of a given server
form an exclusive, invitation-only community within
Discord. Within a server, one or more “text channels”
(including a default channel called “general”), and one
or more “voice channels” (including a default channel
called “General”), facilitate communication between
members. Once a user joins a voice channel, the effect
is that of a conference call in which all participating
users can talk to each other. Additionally, within a
voice channel any individual on the channel can share
their screen (or specific applications on their computer)
and/or turn on their camera to facilitate an interactive
video chat (or both). During video and voice chats, text
channels remain easily accessible to users.

3.2. Using Discord as an Online Classroom

To set up Discord for use as an online classroom,
we created a new Discord server for the course we were
teaching. The course was titled “Global Social and
Ethical Issues in Computing (CS 305G).” We cleverly
named our new server “UVU CS 305G,” and a custom
logo was generated for it by the students during our first
class period together online. We also established three
administrative roles for the new server: 1) “@admin,”
the default administrator role, which we assigned to
the instructor and teaching assistants; 2) “spring2021,”
which included all students currently enrolled in the
course; and 3) “AssistantBot,” to which we assigned the
necessary permissions to enable our attendance bot to

perform its duties of taking attendance.4

As we discuss below, Discord bots are applications
that look and act like regular users within a Discord
server. As functional users, bots can be assigned roles,
thus enabling them to be granted whatever privileges are
necessary for them to perform their function.

4. Design and Implementation of a
Discord Attendance Bot

Discord bots are comprised of two key components:
First, an infrastructural component that represents a
Discord “application” of type “bot,” which is configured
per Discord’s documentation to communicate with
Discord servers in the cloud. This part of the
attendance bot is created using the framework provided
by the Discord Developer Portal.5 Second, a business
logic component. This part of the attendance bot
represents the core application code that must be custom
designed by the developer, and which constitutes the
domain-specific behavior of the bot (See Figure 1). We
discuss each of these two components in turn.

Figure 1. Discord Bot Infrastructure.

The Discord Developer Portal provides an
easy-to-use interface that allows any Discord user
to create a Discord “application.”6 Having created
the application, the Portal interface then allows the
developer to add a “Bot” user to the application,
effectively (and irreversibly) specializing the Discord
application with the capability to represent an
(automated) user within the system. A Discord
application, having been specialized as a bot, now

4Since we had initially conducted class on Discord during the
Fall 2020 semester, a number of students from the previous semester
were still members of the server. By establishing a role for students
registered during the current semester, we were able to limit access to
certain resources to only those students. We were also able to message
current students without spamming former students.

5See https://discord.com/developers/applications.
6See the Discord Developer Portal for documentation on how to do

this.

Page 895

https://discord.com/developers/applications


acquires the capability of interacting with a given
Discord server in (effectively) the same way as a human
user might. Although a Discord bot can be thought of
as running on the Discord platform, it actually runs on
a computer of your choosing, from which it interacts
with the Discord platform via standard network calls.
Its ability to communicate with the Discord platform is
based on the infrastructural component or functionality
within its source code, whereas its behavior (as a user
on the Discord platform) is determined by the business
logic component.

As just explained, part of the process of creating a
Discord bot requires establishing certain configurations
within the Discord Developer Portal, which are
necessary for the Discord platform to recognize the
bot code created by the developer. As part of the
portal configuration process, Discord generates a unique
token, which is provided to the developer via the portal
user interface. When setting up the infrastructural
component of the bot’s application code, the developer
uses this token (as shown in Discord’s documentation,
cited previously) to establish a connection or session
with the Discord platform. Communication with
the Discord platform, including use of the token,
is facilitated by a Discord-provided software library,
which provides standard functions to the developer,
by which the developer can interact with the Discord
platform. This software library is simply imported into
the bot’s application code and runs as part of the bot
on the same computer with the bot. Discord provides
interface libraries for both the Python and JavaScript
programming languages. We chose to develop our bot
application code in Python, and thus we utilized the
Python-based “discord.py” library.7

Our bot code is organized into two Python
scripts (or program modules). The first script
(“AssistantBot.py”) encapsulates the infrastructural
component or functionality of the bot. AssistantBot.py
establishes and maintains the bot’s connection with
the Discord platform. It also initializes and launches
the business logic or behavioral component of the
bot. The portion of the source code that implements
this latter component primarily resides in a structure
that Discord refers to as a “cog” – Discord jargon
for a base or parent class from which the developer’s
code must inherit (in a programming sense). The
second script (“AdminFunctionality.py”) defines the
“AdminFunctionality” cog, which we implemented to
provide the bot with the behavior and functionality to
operate as an attendance tracker.

In addition to performing initialization and
launching the AdminFunctionality cog, AssistantBot

7See https://pypi.org/project/discord.py.

also defines three administrative commands:

• load

• unload

• reload

These commands are used to load, unload, and
reload any cogs supported by the AssistantBot. While
it is true that the AdminFunctionality cog is loaded by
AssistsantBot when the bot joins a Discord server, by
implementing these commands we preserve the ability
to manually load and unload any present or future cogs
without having to take down the bot, thus providing an
extensible design.

Communication with a bot is achieved by typing
commands in a text channel on a given server to which
the bot is connected. Each bot on a Discord server
defines a prefix string, which enables the bot to receive
messages through the text channel. When the first
portion of a typed string matches the string defined by
the bot, the bot consumes the text chat and treats it as
input. Therefore any text string typed by a user on a
text channel that begins with the prefix string defined
by a given bot will be passed to the bot as input (with
the prefix string removed). Prefix strings can be a
single character (such as ‘>’) or an entire word (such
as ’heybot!’). We tried a number of prefix strings during
the semester, ultimately settling on ‘)’.

The AdminFunctionality cog defines the following
commands:

• clear – Deletes messages associated with the bot
from the text channel on which the command is
run.

• change prefix – Allows the user to change
the prefix string used to communicate with
AssistantBot.

• change channel – Allows the user to change the
voice channel on which attendance is taken by
AssistantBot.

• attendance start – Initiates the attendance
sampling activities of AssistantBot.

• attendance stop – Terminates the attendance
sampling activities of AssistantBot.

Before discussing the process by which AssistantBot
actually takes attendance, we first have to address
and resolve a critical data translation problem. When
connected to a voice or text channel, the AssistantBot
is capable of identifying the other users within the
same channel, and is able to do so by retrieving the

Page 896

https://pypi.org/project/discord.py


persistent identifier for each user (assigned by Discord)
as well as the username and nickname of the user
(determined by the user for that specific server). An
obvious solution would be to have each user set up
their nickname in a consistent manner (for example,
“Jones, Monica”). The challenge, however, is threefold.
First, getting several dozen students to execute such
a maneuver without error is a potential fool’s errand,
with dozens of points of failure. Second, and perhaps
more importantly, nicknames can be changed by users
without limit and Discord users regularly change their
nicknames and usernames for a variety of reasons.
Third, certain students in a given class may prefer, for
personal reasons, to function in the course under an
assumed nickname, and not under their given name (or
the name listed on the records of the university). As a
result of these factors, we resolved to track attendance
based strictly on the persistent identifier of the students.

The solution to this dilemma was to create a
mapping between each student’s name and their
persistent identifier. The mapping between names
and persistent identifiers was stored (i.e., hardcoded)
in a Python dictionary data structure within the file
AdminFunctionality.py. Given the persistent nature of
Discord identifiers, as long as we could obtain them
and accurately represent them in the Python dictionary
(mapping them to student names), we eliminated all
other points of potential failure and assured accurate
attendance taking going forward.

With the mapping between persistent identifiers and
student names securely stored in the bot source code,
the final step was to assess attendance of students
during class times. All lectures were conducted in
the “General” voice channel for the “UVU CS 305G”
server, so attendance at lecture was deemed to constitute
being present in the General voice channel on the server
during the timeframe designated for each class period.
There are certain threats to validity in this approach,
which we discuss below.

Discord allows a user with administrative privilege
for a given server to poll the system to ascertain the
identifiers of all users currently present on that server.
This lookup is performed with a simple query (see
Figure 2 below). The responses to the query are indexed
into the dictionary mentioned above, and student names
are thereby obtained. Attendance for each student is
then recorded in a secure database.

We were interested not only in a binary view of
student attendance (present vs. absent), but also in
patterns of absence and partial attendance. By polling
Discord every minute, we were able to track arrival and
departure times, including multiple disjoint periods of
attendance at the same lecture. We were thereby able

Figure 2. Query to poll a voice channel.

to acquire a robust set of data that revealed patterns
of tardiness, premature departure, and even students
who showed up at the beginning of class (presumably
because they knew we were taking attendance) but then
vanished. At the beginning and end of each class
attendance tracking was manually started and stopped.
Figure 3 below shows the commands to start and stop
the bot typed into the general text channel on the “UVU
CS 305G” server.

Figure 3. Commands to start and stop attendance

tracking.

5. Deployment of the Discord Attendance
Bot

The developer code that powers a Discord bot can
be hosted essentially anywhere code can be run, as
long as the hosting computer has internet connectivity.
Some bot developers have chosen to run their code on
Amazon Web Services, Microsoft Azure, or an other
cloud hosting service. Others have chosen to run their
code on a personal laptop or desktop machine.

We chose to run our code on a Raspberry Pi
developer board dedicated to the task of running the
AssistantBot. Data gathered by out bot was stored on the
same Raspberry Pi device, but that data could easily be
saved to a remote location, such as to a remote database.
By leaving our server powered up and connected to
the Internet, it was available to us any time, with no
inconvenience and at very low cost. Figure 4 shows
the bot running on the Raspberry Pi server, performing
attendance tracking activities.

Page 897



Figure 4. Attendance tracking running on Raspberry

Pi server.

6. Limitations

A number of limitations of the Discord attendance
bot represent threats to validity with respect to data
collection:

• Our attendance bot determined the presence of
a student based on whether the student was
connected to the designated lecture voice channel.
However, a student could obviously be counted as
attending class without effectively attending (for
example, by muting their speakers or leaving their
computer after connecting).

• The attendance bot recognized attendees based
on an internal hardcoded mapping between their
persistent Discord identifiers and their name of
record with the university. However, some
students have multiple Discord accounts, and
we encountered some students who repeatedly
connected with an account for which we did not
know the persistent identifier, despite having been
instructed to use the same account each time they
attended lecture. Some of these students were also
unwilling to provide the necessary identifying
information for their alternate account, which
resulted in unnecessary difficulties correcting the
attendance record.

• Although it did not happen during the semester in
which we used the attendance bot, if a network
connection were to fail for the device on which
the attendance bot was running, the attendance bot
would fail to collect attendance data.

Other limitations of the bot require manual effort by
the professor or TA to overcome:

• The professor or TA must manually create the
mapping of student names to persistent Discord

identifiers for every student every semester. This
process was the most time consuming aspect
of deploying the bot once the bot itself was
constructed.

• We also had to manually input the attendance
data (collected by the bot) after each class period
into the university’s grading system, which is a
tedious process. As a result, we are considering
the possibility of integrating the bot with the
university’s grading system (see future work
below).

• Tracking attendance with the bot required
manually starting and stopping the bot’s tracking
functionality at the beginning and end of each
class period. This task was not difficult or time
consuming to perform, but did require diligence
to remember that it be done consistently.

7. Future Work

As mentioned above, we had to manually import
the attendance data from the bot into the university’s
grading system. Although not all grading or
course management systems provide the necessary
programming interfaces to automate that process,
where such interfaces do exist, the bot could be
enhanced to automatically transfer attendance data,
either immediately after a class period ends, or upon
receipt of a command from the bot administrator.

We are considering enhancing the bot to reference
a course schedule and automatically start and stop its
tracking of attendance to correspond with scheduled
class times. This could be accomplished by creating a
separate thread that runs on an interval (for example,
every minute) while the bot is active, checking the
schedule to determine whether to start or stop tracking
attendance for a given class.

It would be convenient for the bot to flag any
attendees who are not found in the mapping between
student names and persistent Discord Identifiers. In
doing so, the bot could also log the persistent identifier,
username, and nickname of that person. The professor
or TA could then use that information to determine the
identity of that person. If the person is a student from
a past semester, their information could be added to
an ignore list maintained by the bot. If the person is
a current student, the identifier could be added to the
mapping of current students. Given such a strategy,
the professor/TA would not have to rely on students to
provide this information in the event they mistakenly use
a secondary account.

We are considering adding additional bot commands

Page 898



that can be executed by the students, such as commands
to allow a student to retrieve their attendance record.
The bot’s scope could also be increased, or additional
bots could be created, to implement student commands
for things like retrieving the course schedule or other
course information, requesting help, requesting lecture
slides for a given day, etc.

In addition to further development work on the
attendance bot, we also need to collect systematic data
by which to empirically assess the actual impact the bot
has on learning outcomes and student success. Does
the bot, for example, actually narrow the gap between
remote and in-person learning, and if so, for which
segments of the student population?

8. Conclusions

In 2020, the world experienced what may be the first
international wholesale move to virtual learning. During
that time, many educators recognized a need to change
the status quo with respect to remote learning and online
education.

Faced with this transition, we made our own modest
contribution by exploring new solutions to remote
learning, including the use of Discord as an online
classroom platform. We sought to bridge the gap
between in-class and online learning by developing an
autonomous attendance tracking bot for the Discord
platform. In the Spring semester of 2021 we
successfully developed and deployed a basic working
version of an attendance tracking bot and then utilized
our bot to track attendance in two courses during the
semester.

We found that a Discord attendance bot can not
only accurately track the arrival and departure times
of students, but can also mitigate many of the pitfalls
associated with traditional attendance taking methods.
Given the rapid deployment of our attendance bot, we
are well aware of a number of opportunities to further
enhance the bot based on lessons learned, as we have
outlined above in Limitations and Future Work.

References

[1] S. S. Jaggars and T. R. Bailey, “Effectiveness of
fully online courses for college students: Response to
a department of education meta-analysis,” tech. rep.,
Community College Research Center, Teachers College,
Columbia University, New York, New York, July 2010.

[2] D. Xu and S. S. Jaggars, “Performance gaps between
online and face-to-face courses: Differences across types
of students and academic subject areas,” The Journal of
Higher Education, vol. 85, no. 5, pp. 633–659, 2014.

[3] S. Trotter, “Enrollment numbers show UVU serves
a diverse array of learners.” https://www.uvu.edu/

news/2019/10/10022019 enrollment.html, Oct. 2019.
Accessed on 18-May-2021.

[4] A. R. Unverferth, C. Talbert-Johnson, and T. Bogard,
“Perceived barriers for first-generation students:
Reforms to level the terrain,” International Journal of
Educational Reform, vol. 21, pp. 238–252, Oct. 2012.

[5] E. M. Allensworth, C. A. Farrington, M. F. Gordon,
D. W. Johnson, K. Klein, B. McDaniel, and
J. Nagaoka, “Supporting social, emotional, & academic
development: Research implications for educators,”
tech. rep., University of Chicago Consortium on School
Research, Chicago, IL, Oct. 2018.

[6] W. E. Becker, “The educational process and student
achievement given uncertainty in measurement,” The
American Economic Review, vol. 72, no. 1, pp. 229–236,
1982.

[7] P. Gomis-Porqueras and J. A. Rodrigues-Neto,
“Teaching technologies, attendance, learning and the
optimal level of access to online materials,” Economic
Modelling, vol. 73, pp. 329–342, 2018.

[8] R. J. Longhurst, “Why aren’t they here? student
absenteeism in a further education college,” Journal of
Further and Higher Education, vol. 23, no. 1, pp. 61–80,
1999.

[9] P. W. Mwangi, Class attendance monitoring system
using NFC technology. PhD thesis, Strathmore
University, Apr. 2018.

[10] F. Masalha and N. Hirzallah, “A students attendance
system using QR code,” International Journal of
Advanced Computer Science and Applications, vol. 5,
no. 3, pp. 75–79, 2014.

[11] S. Rao and K. J. Satoa, “An attendance monitoring
system using biometrics authentication,” International
Journal of Advanced Research in Computer Science and
Software Engineering, vol. 3, no. 4, pp. 379–383, 2013.

[12] A. A. Kumbhar, K. S. Wanjara, D. H. Trivedi,
A. U. Khairatkar, and D. Sharma, “Automated
attendance monitoring system using android platform,”
International Journal of Current Engineering and
Technology, vol. 4, no. 2, pp. 1096–1099, 2014.

[13] A. Bhise, R. Khichi, A. Korde3, and D. Lokare,
“Attendance system using nfc technology with
embedded camera on mobile device,” International
Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, no. 2, pp. 350–353,
2015.

[14] J. F. Cacho, “Using discord to improve student
communication, engagement, and performance,” in Proc.
of Best teaching practices expo 2020, (Las Vegas NV),
UNLV Office of Faculty Affairs, Jan. 2020.

[15] J. I. Olszewska, “The virtual classroom: A new cyber
physical system,” in IEEE 19th World Symposium on
Applied Machine Intelligence and Informatics (SAMI),
pp. 187–192, IEEE, 2021.

[16] L. Olson, “How can learning management systems
be used effectively to improve student engagement?,”
tech. rep., University of Washington Bothell Center on
Reinventing Public Education, Bothell, WA, Jan. 2021.

[17] M. Vladoiu and Z. Constantinescu, “Learning during
covid-19 pandemic: Online education community, based
on discord,” in 19th RoEduNet Conference: Networking
in Education and Research (RoEduNet), pp. 1–6, IEEE,
2020.

Page 899

https://www.uvu.edu/news/2019/10/10022019_enrollment.html
https://www.uvu.edu/news/2019/10/10022019_enrollment.html


[18] V. Kruglyk, D. Bukreiev, P. Chornyi, E. Kupchak, and
A. Sender, “Discord platform as an online learning
environment for emergencies,” Ukrainian Journal of
Educational Studies and Information Technology, vol. 8,
no. 2, pp. 13–28, 2020.

[19] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software
bots,” IEEE Software, vol. 35, no. 1, pp. 18–23, 2017.

[20] M. Espagnet, “Take attendance on discord.” suivix.xyz/
en. Accessed on 18-May-2021.

[21] discordamtbot, “AmtBot.” www.facebook.com/
discordamtbot/?ref=page internal. Accessed on
18-May-2021.

[22] Integromat, “Attendance GIRITON, Discord
integrations.” www.integromat.com/en/integrations/
discord/giriton. Accessed on 18-May-2021.

[23] “Apollo: Discord events made easy.” apollo.fyi.
Accessed on 18-May-2021.

[24] Nelly, “Discord Transparency Report:
July – Dec 2020.” blog.discord.com/
discord-transparency-report-july-dec-2020-34087f9f45fb,
Apr. 2021. Accessed on 10-June-2021.

[25] “Discord.” discord.com. Accessed on 10-June-2021.

[26] Lucas, “Python: Making a Discord Bot
(Rewrite / v1.x).” www.youtube.com/channel/
UCR-zOCvDCayyYy1flR5qaAg/playlists, Apr. 2019.
Accessed on 7-Jan-2021.

Page 900

suivix.xyz/en
suivix.xyz/en
www.facebook.com/discordamtbot/?ref=page_internal
www.facebook.com/discordamtbot/?ref=page_internal
www.integromat.com/en/integrations/discord/giriton
www.integromat.com/en/integrations/discord/giriton
apollo.fyi
blog.discord.com/discord-transparency-report-july-dec-2020-34087f9f45fb
blog.discord.com/discord-transparency-report-july-dec-2020-34087f9f45fb
discord.com
www.youtube.com/channel/UCR-zOCvDCayyYy1flR5qaAg/playlists
www.youtube.com/channel/UCR-zOCvDCayyYy1flR5qaAg/playlists

	Introduction
	Motivation for Discord
	Need for Automated Attendance Tracking
	Structure of this Paper

	Related Work
	Motivation for Automated Attendance Tracking
	Non-Discord Attendance Tracking Methods
	Manual Methods
	Partially and Fully Automated Methods
	Technologies for Recording Attendance

	Discord-based Methods for Attendance Tracking

	Applying Discord to Remote Learning
	The Discord Usage Model
	Using Discord as an Online Classroom

	Design and Implementation of a Discord Attendance Bot
	Deployment of the Discord Attendance Bot
	Limitations
	Future Work
	Conclusions

