

Investigation of PM 2.5 Concentration in the Wet Season of Bangkok, Thailand

Marie Frances Pagkalinawan¹, Sumeet Saksena², and Kraichat Tantrakarnapa³ ¹Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, Hawaii, USA; ²East West Center, Honolulu, Hawaii, USA; ³Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

INTRODUCTION

Air pollution levels in Bangkok, Thailand are critical issues throughout the year. The mean concentrations of both pollutants, particulate matters (PM) PM_{2.5} and PM₁₀, are over the limitation as announced by the Pollution Control Department (PCD). The daily mean standard Particulate Matters in Thailand's capital changes during the transition period from rainy season to dry season (December and January) over the national standard every year. Sources of particulate matters are regularly exacerbated by smoke (haze) from nearby sources and regional transboundary effects. In addition, air pollution from traffic is also a major contributor in

RESULTS

Figure 4: The graph illustrates the correlation of PM_{2.5} and NO_{2.} concentrations (p=0.000; r=0.225; t-stat=7.83; t_{critical} (0.05)=1.96; df=880)

Bangkok. Previous studies shown that PM_{10} most commonly occurs in the environment. However, studies had been proven that $PM_{2.5}$ is more harmful to the health of people due to a consistent amount of harmful chemicals such as PAHs (Polycyclic Aromatic Hydrocarbons). There are no studies published regarding $PM_{2.5}$ concentrations during wet non-haze episodes.

OBJECTIVE

This project aims to investigate the PM_{2.5} concentration during non-haze episode (rainy season).

Methodology

There is a high concentration of air pollutant PM_{2.5} in slow moving ferry boats surrounded by water located in West Bangkok

Results

Figure 5: The graph illustrates the correlation of PM_{2.5} and VOC. concentrations (p=0.001; r=0.114;t-stat=3.40;t_{critical} 0.05)=1.96; df=880

Table 2: PM _{2.5} concentration measured in nicrons per cubic meters and describes the air propertilation, whether it is closed air or open air	Table 3: PM _{2.5} concentration measured by microns per cubic meters and average speed measured in miles per bour in water vehicles	Table 4: PM _{2.5} concentration measured microns per cubic meters and average transmission discussion between the train	
n wheeled vehicles	measured in miles per nour in water venicles.		

Vehicle	PM 2.5 (μ/m³)	Closed or Open Air?	Vehicle	PM 2.5 (μ/m3)	Average Speed (mph)	Vehicle	Average speed (mph)	PM 2.5 (μ/m3)
Motor- cycle	12	Open Air	Khlong Sansaep (ferry boat)	42	5	BTS	24	8
Tuk-tuk	20	Open Air	Large Shuttle Boat	20	7	MRT	28	8
Car	2	Closed Air	Orange Express	15	10	ARL	22	15

Discussion

PM₁₀ is prominent in Bangkok, during non-haze episode although variance suggested a small difference between PM₁₀ and PM_{2.5}. The results suggests that PM_{2.5} are still in high capacity despite non-haze episodes in Thailand. PM_{2.5} results support the previous studies regarding the health hazard for humans.

Figure 1: The image illustrates the map of Bangkok, Thailand along its surrounding provinces.

- Data were collected using AirBeam 2, Aslung, and Plume devices.
 AirBeam 2 automatically measures PM₁, PM_{2.5}, PM₁₀, relative humidity, temperature in Fahrenheit, time, date and distance. The gathered data are automatically recorded in a download application in a mobile Android Operating System, AirCasting. AirCasting also has the capacity to record observational notes and pictures.
- Aslung was used a backup for AirBeam 2. Aslung automatically measures PM₁, PM_{2.5}, PM₁₀, Relative humidity, temperature in Celsius, Carbon Dioxide, time, and date. Recorded samples were stored in a memory stick inserted inside Aslung device.
- Routes, time, distance, and speed were tracked by a downloaded application in a mobile Android Operating System, GPS Tracker.
- Plume automatically measures Nitrogen Dioxide (NO₂), volatile organic compounds (VOC), PM_{2.5}, and PM_{10.}
- Chosen samples were from specific places in the central, north, south, east, and west locations of Bangkok.
- PM absorption by average speed were measured via usage of various modes of transportations.
- Statistical analysis regarding PM comparisons were analyzed by descriptive statistics and illustrated by a bar graph.
- Vehicle average speed and PM_{2.5} concentrations were illustrated in a table format.
- NO₂ and VOC were analyzed by linear correlation to determine their significance to PM_{2.5.}

Figure 2: The graph illustrates the comparative analysis of PM₁₀, PM_{2.5}, and PM₁ concentration measured by microns per cubic meters

 Table 1: The table illustrates a descriptive analysis of all Particulate Matters' numeral differences

PM 10	PM 2.5	PM 1	
Mean	17.4 Mean	14 Mean	9.6
Standard Error	0.748331477 Standard Error	0.707106781 Standard Error	0.979795897
Median	17 Median	14 Median	9
Mode	16 Mode	14 Mode	9
Standard Deviation	1.673320053 Standard Deviation	1.58113883 Standard Deviation	2.19089023
Sample Variance	2.8 Sample Variance	2.5 Sample Variance	4.8
Kurtosis	0.535714286 Kurtosis	-1.2 Kurtosis	1.744791667
Skewness	1.088511769 Skewness	0 Skewness	0.846307424
Range	4 Range	4 Range	6
Minimum	16 Minimum	12 Minimum	7
Maximum	20 Maximum	16 Maximum	13
Sum	87 Sum	70 Sum	48
Count	5 Count	5 Count	5
Confidence Level(95.0%)	2.077701267 Confidence Level(95.0%)	1.963243161 Confidence Level(95.0%)	2.720349523

Figure 3: The image illustrates the background of Chao Praya river located in west Bangkok

 Results show that PM_{2.5} is common in areas where there is are slow-moving vehicles located in West Bangkok. This suggests that average speed might be associated with high concentrations of PM_{2.5}. Lack of statistical analysis and further data set that could support the high concentration of PM_{2.5} in the west of Bangkok, becomes the limitation of the study.

Conclusions

Despite non-haze wet seasonal episodes, $PM_{2.5}$ is still prominent in all areas of Bangkok. Results of this study can be used as baseline for future studies regarding the health impacts of $PM_{2.5}$ in human health.

Acknowledgements

We thank Ms. Sarima Naimpardit and Mr. Wissanupong Kliengchuay from Mahidol University and Dr. Vivek R. Nerurkar, Dr. Angela Sy, and Mr. Keeton Krause for their assistance with this study. We thank the Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand faculty and staff for their assistance throughout this project. This research was supported by the NIMHD, National Institutes of Health (NIH) grant (T37MD008636-05) and NIGMS, NIH grant (P30GM114737).