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Abstract

Geometric group theory is a branch of mathematics in which we explore the characteristics

of finitely-generated groups by letting the group act on a particular space and by analyzing

the connections between the group’s algebraic properties and the geometric and topological

properties of the spaces being acted upon.

In the last half of the 20th century, harmonic analysis on a free group was extensively

studied and Hilbert space representations of the free group were an integral tool in this

research. In 1986, T. Pytlik and R. Szwarc [15] constructed a particularly useful family of

uniformly bounded representations of the free group F acting (by translation) on `2(F). In

this dissertation we will extend Pytlik and Szwarc’s construction of a holomorphic family

of uniformly bounded Hilbert space representations for the free group F acting on `2(F) to

the more general case of a discrete group acting on `2(X), where X is the set of vertices

of a CAT(0)-cube complex. We will then show that these representations are identical to

another holomorphic family of uniformly bounded Hilbert space representations constructed

by E. Guentner and N. Higson using cocycles.

We also examine an example of a discrete group acting on a non-positively curved cube-

complex which yields the result that, for every 3-manifold group, there exists a non-positively

curved space on which it acts freely.
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Chapter 1

Introduction

1.1 Synopsis

Harmonic analysis of the free group has been extensively studied over the last forty to

fifty years. In particular, unitary representations are completely understood and several

di↵erent constructions of holomorphic families of uniformly bounded Hilbert space represen-

tations have been explored. In 1986, Pytlik and Szwarc constructed a holomorphic family of

uniformly bounded Hilbert space representations for the free group F acting on `2(F) [15].

Later, Pimsner [14] and Valette [17] constructed a similar holomorphic family of uniformly

bounded Hilbert space representations of a discrete group G acting on `2(X), where X is

the set of vertices of a simplicial tree. In the first chapter of this dissertation, we will present

these constructions, extend the construction of Pytlik and Szwarc to the more general tree

case and reprove that the construction of Pytlik and Szwarc and that of Pimsner and Vallette

are identical in this slightly generalized setting. We will also prove this for discrete groups

that may not be transitive.

Erik Guenter and Nigel Higson extended the construction of Pimsner [14] and Valette [18]

for discrete groups acting on trees to construct a holomorphic family of uniformly bounded

Hilbert space representations of discrete groups acting on a finite-dimensional CAT(0)-cube
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complex [9]. In Chapter 2, we will define a CAT(0)-cube complex and in Chapter 3, we

will present the construction of Guentner and Higson for CAT(0)-cubical groups and add

some new results about this construction. We will then extend the construction of Pytlik

and Swarc [15] for free groups to discrete groups acting on a finite-dimensional CAT(0)-cube

complex and prove that this new family of representations is identical to that constructed

by Guentner and Higson. Finally, in Chapter 4, we will present an interesting example that

establishes a new result, that every 3-manifold group acts freely on a non-positively curved

space.

1.2 History

Geometric group theory is a relatively new area of study in Mathematics. It grew out

of combinatorial group theory and began to be recognized as a distinct topic in the 1980’s,

particularly with the publication of Gromov’s “Hyperbolic Groups” [8] in 1987. In general,

geometric group theory is a method used to explore the characteristics of finitely-generated

groups by letting the group act on a particular space and by analyzing the connections

between the group’s algebraic properties and the geometric and topological properties of the

spaces being acted upon. Often the space being acted upon is the Cayley graph of the group

itself, with the word metric giving the metric space structure. In this dissertation, we will

extend this to examine a discrete group G acting on the vertex set of a finite-dimensional

CAT(0)-cube complex.

In the last half of the 20th century, harmonic analysis on a free group was extensively

studied and Hilbert space representations of the free group were an integral tool in this

research. In 1986, Pytlik and Szwarc [15] constructed a particularly useful family of uniformly

bounded representations of the free group F acting (by translation) on `2(F). In 1990, Valette

[17] constructed another family of representations, using an entirely di↵erent (and arguably

simpler) method of Pimsner [14], in the more general setting of a discrete group acting on

2



the vertices of a simplicial tree. Valette [17] then showed that this second family is identical

to the family constructed earlier by Pytlik and Szwarc in the case of the free group acting

on its Cayley graph by translation.

Trees are simple examples of CAT(0)-cube complexes and it might seem natural to won-

der if we might be able to generalize these constructions in this direction. In 2007, Guentner

and Higson [9] succeeded in generalizing the work of Pimnser and Valette, using analogous

methods, to construct a holomorphic family of uniformly bounded representations of a dis-

crete group that admits an action on a finite-dimensional CAT(0)-cube complex. Moreover,

when applied to a tree, these representations are exactly those of Pimsner and Valette. In

this dissertation, we will generalize the construction of Pytlik and Szwarc to CAT(0)-cubical

groups and prove that, as in the simpler tree case, the family of representations constructed

is identical to the family constructed using cocycles by Guentner and Higson. We will also

demonstrate an interesting example of a CAT(0)-cubical group and use it to establish a new

result concerning 3-manifold groups.

1.3 The constructions for the free group

It is much easier to understand the constructions for a CAT(0)-cubical group if one first

understands the constructions for the free group, particularly as the former are generaliza-

tions of the latter. There is a slight di↵erence in the literature that must be addressed

(however, this di↵erence is easily rectifiable at a later stage). In the Pytlik-Szwarc construc-

tion [15], the free group F is considered to be acting on its Cayley graph, essentially by

translation. In the cocycle construction of Pimsner and Valette [14,18], the authors initially

consider a more general setting, that of a topological group acting on a tree. In the later

works comparing these constructions, the topological group is restricted to the free group

and the tree is restricted to its Cayley graph. We will generalize these comparisons in this

chapter to a discrete group acting on a tree.
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1.3.1 The cocycle construction

As mentioned, the cocycle construction of Pimsner and Valette [14,18] is more general,

examining groups acting on simplicial trees. Let G be a discrete group and let X be the set

of vertices of a simplicial tree. The natural distance d(x, y) on X is the length of the shortest

edge-path between x and y, where each edge is of length 1. An action of G on X will be an

action G⇥X ! X : (g, x) 7! gx, that preserves the distance d on X by isometries. We may

say equivalently that G acts by tree automorphisms.

Suppose that ⇡ : G ! B(H) is some unitary representation of the group G on the Hilbert

space H. A function c : X ⇥X ! B(H) is a cocycle on X for ⇡ if it satisfies the following

conditions for all x, y, z 2 X and all g 2 G:

(1) c(x, x) = 1;

(2) c(x, y)c(y, z) = c(x, z);

(3) c(gx, gy) = ⇡(g)c(x, y)⇡(g)�1.

In our case, H will be `2(X) where X is the set of vertices of a simplicial tree on which a

discrete group G acts and the representation ⇡ will be the natural permutation representation

of G. Cocycles are useful in this setting in that if c is a cocycle for ⇡ and we fix x 2 X, then

⇡
c

(g) = c(x, gx)⇡(g) defines a representation of G into B(`2(X)). Moreover, if c is uniformly

bounded, that is, if

sup
x,y2X

||c(x, y)|| < 1,

then ⇡
c

as constructed is uniformly bounded, which is to say that there is a constant C > 0

such that ||⇡
c

(g)|| < C for all g 2 G. Additionally, if c(x, y) = c(y, x)⇤ for all x and y, that

is, if c(x, y) is unitary, then the representation ⇡
c

is unitary.

Let z 2 D = {z : |z| < 1} and define w =
p
1� z2, where we use the principal branch of

the square root (and note that this will be standard throughout this dissertation). Let ⇡(g)

be the natural permutation representation of G on `2(X). For all v 2 X, let �
v

denote the
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characteristic function of the one element set {v}. Let x, y 2 X be the vertices of an edge.

Define c
z

(x, y) 2 B(`2(X)) by

c
z

(x, y)�
v

=

8
>>>>>><

>>>>>>:

w�
x

� z�
y

, if v = x,

w�
y

+ z�
x

, if v = y,

�
v

, otherwise.

It is perhaps easier to consider c
z

(x, y) as the matrix

0

B@
w z

�z w

1

CA ,

on the two dimensional subspace spanned by the ordered basis {�
x

, �
y

}, and as the identity

on the orthogonal complement of this subspace.

Lemma 1.3.1. Let x, y 2 X be the vertices of an edge. Then c
z

(y, x) = c
z

(x, y)�1.

Proof. Let x, y 2 X be the vertices of an edge. Then we have

c
z

(y, x)�
v

=

8
>>>>>><

>>>>>>:

w�
y

� z�
x

, if v = y,

w�
x

+ z�
y

, if v = x,

�
v

, otherwise,

and on the ordered basis {�
x

, �
y

}, we may consider c
z

(y, x) as the matrix

0

B@
w �z

z w

1

CA ,

and the identity on the orthogonal complement of this subspace. As each operator is the
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identity on this orthogonal complement, and as on the subspace itself

c
z

(x, y)c
z

(y, x) =

0

B@
w z

�z w

1

CA

0

B@
w �z

z w

1

CA =

0

B@
w2 + z2 �zw + zw

�zw + zw z2 + w2

1

CA =

0

B@
1 0

0 1

1

CA ,

we have that c
z

(y, x) = c
z

(x, y)�1.

Note also that if z is a real number, c
z

(x, y) = c
z

(y, x)⇤, that is, c
z

(x, y) is unitary. It is

now possible to define the cocycle c
z

(x, y) 2 B(`2(X)) for arbitrary x, y 2 X. If x and y are

arbitrary vertices in the tree, define

c
z

(x, y) = c
z

(v0, v1)cz(v1, v2) · · · cz(vn�1, vn),

where x = v0, v1, . . . , vn = y are the vertices along any edge-path from x to y. Any path

from x to y can be reduced to the geodesic from x to y by edge cancellation as trees have

no cycles and c
z

(u, v) = c
z

(v, u)�1 for every u and v joined by an edge. Thus this definition

of c
z

(x, y) is independent of path and c
z

(x, y) is well-defined.

Lemma 1.3.2. The operator c
z

(x, y), as defined above, is a cocycle for ⇡.

Proof. The first two cocycle properties are clear. We will show that c
z

(gx, gy) = ⇡(g)c
z

(x, y)⇡(g)�1

for x, y 2 X and g 2 G. If x = y, then c
z

(x, y) = 1 = c
z

(gx, gy), and the result is obvious. If

x and y are the vertices of an edge then, by the distance preserving properties of the group

action, gx and gy are also the vertices of an edge and we must consider three possibilities.

Let b 2 X. If b 6= x, y, then gb is neither gx nor gy, and c
z

(gx, gy)⇡(g)�
b

= c
z

(gx, gy)�
gb

=

�
gb

and ⇡(g)c
z

(x, y)�
b

= ⇡(g)�
b

= �
gb

. If b = y, then ⇡(g)c
z

(x, y)�
y

= ⇡(g)(w�
y

+ z�
x

) =

w�
gy

+ z�
gx

and c
z

(gx, gy)⇡(g)�
y

= c
z

(gx, gy)�
gy

= w�
gy

+ z�
gx

. If b = x, the calculations

are similarly simple. For adjacent vertices x, y 2 X, we then have ⇡(g)�1c
z

(gx, gy)⇡(g) =

c
z

(x, y).

Now let x, y 2 X be arbitrary vertices. Label the vertices of any path from x to y

6



by x = v0, v1, . . . , vn = y. As the group action of G preserves distance, we have that

gx = gv0, gv1, . . . , gvn = gy is a path from gx to gy and

⇡(g)�1c
z

(gx, gy)⇡(g) = ⇡(g)�1

 
nY

i=1

c
z

(gv
i�1, gvi)

!
⇡(g)

=
nY

i=1

⇡(g)�1c
z

(gv
i�1, gvi)⇡(g)

=
nY

i=1

c
z

(v
i�1, vi)

= c
z

(x, y).

In order to define the representation, we must fix a vertex x 2 X. The family of rep-

resentations is then {⇡
z

: z 2 D} where ⇡
z

(g) = c
z

(x, gx)⇡(g). Valette [17] then shows

that the representation just constructed is uniformly bounded by reference to the uniformly

bounded representation constructed by Pytlik and Szwarc [15] (outlined below). In Guent-

ner and Higson’s paper on CAT(0)-cubical groups [9], they show by direct methods that the

cocycle construction for trees is uniformly bounded. We will need the CAT(0)-cubical group

analogue of these direct methods later in Chapter 3.

1.3.2 The Pytlik-Szwarc construction

In their construction [15], Pytlik and Szwarc do not initially require the free group to have

finitely many generators. However, we will restrict ourselves to this case. Let F be a free

group with a fixed finite set of free generators E. The association between the free group

and the set of reduced words consisting of elements of E [ E�1, with no adjacent factors

aa�1 or a�1a (a 2 E), is well known and carefully presented in [5]. Define the length of x

to be the number of letters in the reduced word associated with x, with the provision that

|e| = 0, where e is the identity element of F. Define x to be the element of F obtained from

7



x by deleting the last letter and �
x

to be the characteristic function of the one point set {x}.

Finally define c
c

(F) to be the space of all complex functions on F with finite support, that

is, c
c

(F) is the space that consists of all linear combinations of �
x

, x 2 F. These will later

serve as a basis for `2(F).

As the vertices of the Cayley graph of F are the group elements, we must use some unusual

notation. If the group element we are considering is to be used to make the translation

operator ⇡(g), we will use the standard g and h for the group elements. However, if we are

considering the group element as a vertex of the Cayley graph we will use x, y, u and v.

This will cease to be an issue after Chapter 1.

For g 2 F, let ⇡(g) be the translation operator defined by ⇡(g)(↵(x)) = ↵(g�1x) where ↵

is a complex function on F. Let P : c
c

(F) ! c
c

(F) be the linear operator defined by P �
x

= �
x

for x 6= e and P �
e

= 0.

Lemma 1.3.3. The linear operator I � zP is invertible with inverse I + zP + z2P 2 + . . .

Proof. Let f 2 c
c

(F). Then f =
kP

i=1
z
i

�
x

i

for some x
i

2 F, 1  i  k. Let n = max{|x
i

| : 1 

i  k}. Then Pmf = 0 for all integers m > n so that

f = (I � zn+1P n+1)f

= (I � zP )(I + zP + z2P 2 + · · ·+ znP n)f

= (I � zP )(I + zP + z2P 2 + . . . )f.

Note that the infinite sum I + zP + z2P 2 + . . . is finite when applied to any element of

c
c

(F). Define the representation ⇡o

z

of F on c
c

(F) by

⇡o

z

(g) = (I � zP )�1⇡(g)(I � zP ),

that is, the conjugation of the left regular representation by the linear operator I�zP . Pytlik

8



and Szwarc then show that ⇡o

z

extends uniquely to a uniformly bounded representation of F on

`2(F) and that the family of representations is holomorphic on {z : |z| < 1}. The construction

is not yet complete, however. Although {⇡o

z

: |z| < 1} is now a holomorphic family of

uniformly bounded representations of F on `2(F), the authors improve these representations

to get a new class of representations with some useful properties as follows.

Let T : `2(F) ! `2(F) be the orthogonal projection onto the one-dimensional subspace

{z�
e

: z 2 C}. For |z| < 1, define the linear operator T
z

: `2(F) ! `2(F) by T
z

= I � T +wT

where w =
p
1� z2 and we again use the principal branch of the square root. In particular

T
z

�
x

=

8
>><

>>:

�
x

, if x 6= e,

w�
x

, if x = e.

It is clear that T
z

is bounded and a simple calculation yields that T�1
z

= I �T + 1
w

T . Define

the representation ⇡
z

of F on `2(F) by

⇡
z

= T�1
z

(I � zP )�1⇡(g)(I � zP )T
z

.

The improved holomorphic family of uniformly bounded representations is then given by

{⇡
z

: |z| < 1}.

1.3.3 The first two constructions are identical for discrete groups

acting transitively on trees

It has been shown that the first two constructions are identical on the free group [17].

However, it is more interesting to extend the Pytlik/Szwarc construction for the free group

[15] to discrete groups acting transitively on a simplicial tree and then show that this con-

struction is identical to the cocycle construction. Let X be the set of vertices of a tree on

which a discrete group G acts transitively. As in the cocycle construction, fix a vertex x

9



(x being e in the Cayley graph of the free group case above) and define d(x, y) to be the

length of the shortest edge-path between x and y where each edge is of length 1. For a

vertex v, with v 6= x, define v to be the unique vertex on the geodesic from v to x such that

d(x, v) = d(x, v)�1 and d(v, v) = 1, that is, v is on the geodesic from v to x but “one closer”

to x.

Define P to be the operator defined by P �
v

= �
v

if v 6= x and P �
x

= 0. Pytlik and

Szwarc’s construction and their proof that the representations constructed are uniformly

bounded rely only on the geometry of the Cayley graph of the free group as a tree and do

not involve its regularity. Let {⇡P

z

}
z2D be the adapted family constructed using the operator

P [15] but with the fixed point x instead of the group element e.

Let {⇡C

z

}
z2D be the family of uniformly bounded representations constructed using the

cocycle method [17] above. The following lemma is adapted from Pytlik and Szwarc [15]

and the second is from Guentner and Higson [9].

Lemma 1.3.4. For every z 2 D, if x is the fixed vertex used to define the representation

⇡P

z

, then ⇡P

z

(g)�
x

= zd(x,gx)�
x

+
d(x,gx)�1P

k=0
zkwP k�

gx

.

Proof. Let z 2 D and g 2 G.

⇡P

z

(g)�
x

= T�1
z

(I � zP )�1⇡(g)(I � zP )T
z

�
x

= T�1
z

(I � zP )�1⇡(g)(I � zP )w�
x

= T�1
z

(I � zP )�1⇡(g)w�
x

= T�1
z

(I � zP )�1w�
gx

= T�1
z

(I + zP + z2P 2 + . . . )w�
gx

= T�1
z

(w�
gx

+ wzP �
gx

+ wz2P 2�
gx

+ · · ·+ wzd(x,gx)�1P d(x,gx)�1�
gx

+ wzd(x,gx)�
x

)

= zd(x,gx)�
x

+
d(x,gx)�1X

k=0

zkwP k�
gx

.

10



Lemma 1.3.5. For every z 2 D, if x is the fixed vertex used to define the representation,

then ⇡C

z

(g)�
x

= ⇡P

z

(g)�
x

.

Proof. Let z 2 D and g 2 G. Let x = v0, v1, . . . , vn = gx be the vertices on the geodesic

path from x to gx.

⇡C

z

(g)�
x

= c
z

(x, gx)⇡(g)�
x

= c
z

(v0, v1) · · · cz(vn�1, vn)�gx

= c
z

(v0, v1) · · · cz(vn�2, vn�1)(w�gx + z�
v

n�1)

= c
z

(v0, v1) · · · cz(vn�3, vn�2)(w�gx + wz�
v

n�1 + z2�
v

n�2)

= . . .

= w�
gx

+ wz�
v

n�1 + wz2�
v

n�2 + · · ·+ wzn�1�
v1 + zn�

v0

= w�
gx

+ wzP �
gx

+ wz2P 2�
gx

+ · · ·+ wzd(x,gx)�1P d(x,gx)�1�
gx

+ zn�
x

= ⇡P

z

(g)�
x

.

This leads to the following proposition involving ⇡P

z

, and therefore ⇡C

z

.

Proposition 1.3.6. Let G be a discrete group that acts transitively on the set X of vertices

of a simplicial tree. For every z 2 D, the representations ⇡P

z

and ⇡C

z

of G are cyclic with

cyclic vector �
x

.

Proof. Let z 2 D and v 2 X. If v = x, then ⇡P

z

(e)�
v

= T�1
z

(I � zP )�1⇡(e)(I � zP )T
z

�
x

=

�
x

and ⇡C

z

(e)�
x

= c
z

(x, x)�
x

= �
x

. Hence �
x

is in the sets span{⇡P

z

(g)�
x

: g 2 G} and

span{⇡C

z

(g)�
x

: g 2 G}.

Now suppose v 6= x. As G is transitive, there must exist g 2 G such that gx = v. as G

acts transitively onX there must exist h 2 G such that hx = gx and as d(x, gx) = d(x, gx)�1

and P �
gx

= �
gx

, then

11



⇡P

z

(h)�
x

= T�1
z

(I � zP )�1⇡(h)(I � zP )T
z

�
x

= T�1
z

(I � zP )�1⇡(h)(I � zP )w�
x

= T�1
z

(I � zP )�1⇡(h)w�
x

= T�1
z

(I � zP )�1w�
hx

= T�1
z

(I � zP )�1w�
gx

= T�1
z

(I + zP + z2P 2 + . . . )w�
gx

= T�1
z

(w�
gx

+ wzP �
gx

+ wz2P 2�
gx

+ · · ·+ wzd(x,gx)�1P d(x,gx)�1�
gx

+ wzd(x,gx)�
x

)

= zd(x,gx)�
x

+
d(x,gx)�1X

k=0

zkwP k�
gx

which yields

⇡P

z

(g)�
x

� z⇡P

z

(h)�
x

=

0

@zd(x,gx)�
x

+
d(x,gx)�1X

k=0

zkwP k�
gx

1

A� z

0

@zd(x,gx)�
x

+
d(x,gx)�1X

k=0

zkwP k�
gx

1

A

=
d(x,gx)�1X

k=0

zkwP k�
gx

�
d(x,gx)�2X

k=0

zk+1wP k+1�
gx

=
d(x,gx)�1X

k=0

zkwP k�
gx

�
d(x,gx)�1X

k=1

zkwP k�
gx

= w�
gx

.

We now have �
v

= �
gx

= 1
w

�
⇡P

z

(g)�
x

� z⇡P

z

(h)�
x

�
(where hx = gx) and, as ⇡P

z

(g)�
x

=

⇡C

z

(g)�
x

for all g 2 G, we also have �
v

= �
gx

= 1
w

�
⇡C

z

(g)�
x

� z⇡C

z

(h)�
x

�
. As G acts transi-

tively onX, for each v 2 X, there must exist k 2 G such that v = kx. This, together with the

first result of this proof, shows that span{�
v

: v 2 X} = span{�
gx

: g 2 G} ✓ span{⇡P

z

(g)�
x

:

12



g 2 G} = span{⇡C

z

(g)�
x

: g 2 G} and the span of {�
v

: v 2 X} is norm-dense in `2(X).

Therefore ⇡P

z

and ⇡C

z

are cyclic representations of G with cyclic vector �
x

.

As the two representations agree on a cyclic vector, we have the following theorem.

Theorem 1.3.7. Let G be a discrete group that acts transitively on the set X of vertices

of a simplicial tree and let ⇡C

z

and ⇡P

z

be constructed as above. For every z 2 D, the

representations ⇡C

z

and ⇡P

z

are equal.

1.3.4 The first two constructions are identical for discrete groups

acting on trees

We have now seen, by a minor extension of previous work [17], that the two constructions

are identical if the discrete group acting on a simplicial tree is acting transitively. However,

if the group is not acting transitively, we may not use the previous argument involving cyclic

vectors. However, it is possible to demonstrate that the two constructions are identical in

the more general case in which the group is discrete but not necessarily acting transitively.

This argument is similar to the one we use later in the setting of CAT(0)-cube complexes.

As before, for the rest of this section, let G be a discrete group acting (not necessarily

transitively) on a simplicial tree with vertex set X and let ⇡P

z

and ⇡C

z

be as constructed above

(with the cocycle c
z

(x, v) as in the cocycle construction of ⇡C

z

). We will need to generalize

our notation as the proofs below will often involve varying the fixed vertex used in the two

constructions. For all z 2 D and v 2 X, let ⇡P

z,v

and ⇡C

z,v

be the representations constructed,

as above, with fixed vertex v 2 X.

Lemma 1.3.8. Let x, v 2 X. For every z 2 D, the operator ⇡C

z,x

(g) is equal to c
z

(x, v)⇡C

z,v

(g)c
z

(v, x).

Proof. Let z 2 D, g 2 G and x, v 2 X. We then have ⇡C

z,x

(g) = c
z

(x, gx)⇡(g) and ⇡C

z,v

(g) =

c
z

(v, gv)⇡(g). Note also that c
z

(gv, gx)⇡(g) = ⇡(g)c
z

(v, x) as c
z

is a cocycle for ⇡. We then

13



have

c
z

(x, v)⇡C

z,v

(g)c
z

(v, x) = c
z

(x, v)c
z

(v, gv)⇡(g)c
z

(v, x)

= c
z

(x, gv)⇡(g)c
z

(v, x)

= c
z

(x, gv)c
z

(gv, gx)⇡(g)

= c
z

(x, gx)⇡(g)

= ⇡C

z,x

(g).

We must now tie the two families of constructions together. We first generalize the linear

operators P and T
z

from the Pytlik-Szwarc construction [15] to reflect varying base points,

essentially by introducing the base points into the notation. For u, v 2 X, u 6= v, define

u
v

to be the unique vertex on the geodesic from u to v but one vertex closer to v. We may

then define P
z,v

to be the linear operator defined by P
z,v

�
u

= �
u

v

when u 6= v and P
z,v

�
v

= 0.

Define the linear operator T
v

: `2(X) ! `2(X) to be the orthogonal projection onto the

one-dimensional subspace {z�
v

: z 2 C} and then define T
z,v

= I�T
v

+wT
v

where, as usual,

w =
p
1� z2 using the principal branch of the square root. Then we have

⇡P

z,v

(g) = T�1
z,v

(1� zP
z,v

)�1⇡(g)(1� zP
z,v

)T
z,v

.

For ease of notation we define c̃
z

(x, v) to be T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

.

Proposition 1.3.9. Let x, v 2 X. Then for every z 2 D we have c
z

(x, v) = c̃
z

(x, v) on

c
c

(X).

Proof. If v = x, then, c
z

(x, v) = 1, as it is a cocycle, and c̃
z

(x, x) = T�1
z,x

(1 � zP
z,x

)�1(1 �

zP
z,x

)T
z,x

= 1.
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Note also that if x, v and u 2 X,

c̃
z

(x, u)c̃
z

(u, v) = T�1
z,x

(1� zP
z,x

)�1(1� zP
z,u

)T
z,u

T�1
z,u

(1� zP
z,u

)�1(1� zP
z,v

)T
z,v

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

= c̃
z

(x, v).

If d(x, v) = 1, then x and v are adjacent. Let a 2 X. We have several cases to consider.

The first case is that a is neither x nor v. Then as x and v are adjacent (and recall that we

are working with a simplicial tree), P
z,x

�
a

= P
z,v

�
a

. Moreover

(1� zP
z,x

)�1(1� zP
z,v

) = (1 + zP
z,x

+ z2P 2
z,x

+ · · · )(1� zP
z,v

)

= (1 + zP
z,x

+ z2P 2
z,x

+ . . . )� (zP
z,v

+ z2P
z,x

P
z,v

+ z3P 2
z,x

P
z,v

+ · · · )

= 1 + z(P
z,x

� P
z,v

) + z2P
z,x

(P
z,x

� P
z,v

) + z3P 2
z,x

(P
z,x

� P
z,v

) + · · ·

so that (1� zP
z,x

)�1(1� zP
z,v

)�
a

= �
a

. Hence

c̃
z

(x, v)�
a

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

�
a

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)�
a

= T�1
z,x

�
a

= �
a

= c
z

(x, v)�
a

.
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The second case is that a is v. Then

c̃
z

(x, v)�
v

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

�
v

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)w�
v

= T�1
z,x

(1� zP
z,x

)�1w�
v

= T�1
z,x

(1 + zP
z,x

+ z2P 2
z,x

+ · · · )w�
v

= T�1
z,x

(w�
v

+ zw�
x

)

= w�
v

+ z�
x

= c
z

(x, v)�
v

.

The third and final case when d(x, v) = 1 is that a is x. Then

c̃
z

(x, v)�
x

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

�
x

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)�
x

= T�1
z,x

(1� zP
z,x

)�1(�
x

� z�
v

)

= T�1
z,x

(1 + zP
z,x

+ z2P 2
z,x

+ · · · )(�
x

� z�
v

)

= T�1
z,x

(�
x

� z�
v

� z2�
x

)

= T�1
z,x

((1� z2)�
x

� z�
v

)

= T�1
z,x

(w2�
x

� z�
v

)

= w�
x

� z�
v

= c
z

(x, v)�
x

.

Let n > 1 and suppose that c
z

(x, v) = c̃
z

(x, v) if d(x, v) < n. As d(x, v) = n > 1, then x and

v are no longer adjacent. However, there must exist a unique geodesic from x to v. Label
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the vertices of this geodesic x = v0, v1, v2, . . . , vn = v. Then

c
z

(x, v) = c
z

(v0, vn�1)cz(vn�1, vn) = c̃
z

(v0, vn�1)c̃z(vn�1, vn) = c̃
z

(x, v).

Corollary 1.3.10. Let x, v 2 X. For every z 2 D, the operator ⇡P

z,x

(g) is equal to

c
z

(x, v)⇡P

z,v

(g)c
z

(v, x).

Proof. Let z 2 D, g 2 G and x, v 2 X. Then

c
z

(x, v)⇡P

z,v

(g)c
z

(v, x) = c̃
z

(x, v)⇡P

z,v

(g)c̃
z

(v, x)

= c̃
z

(x, v)T�1
z,v

(I � zP
z,v

)�1⇡(g)(I � zP
z,v

)T
z,v

T�1
z,v

(I � zP
z,v

)�1(I � zP
z,x

)T
z,x

= c̃
z

(x, v)T�1
z,v

(I � zP
z,v

)�1⇡(g)(I � zP
z,x

)T
z,x

= T�1
z,x

(1� zP
z,x

)�1(1� zP
z,v

)T
z,v

T�1
z,v

(I � zP
z,v

)�1⇡(g)(I � zP
z,x

)T
z,x

= T�1
z,x

(1� zP
z,x

)�1⇡(g)(I � zP
z,x

)T
z,x

= ⇡P

z,x

(g).

We now reach the conclusion of this chapter.

Theorem 1.3.11. For every z 2 D and x 2 X, the representations ⇡P

z,x

and ⇡C

z,x

are equal.

Proof. Let z 2 D, g 2 G and x, v 2 X. We will prove by induction that ⇡P

z,x

(g)�
v

= ⇡C

z,x

(g)�
v

for all x, v 2 X. The case that d(x, v) = 0 is Lemma 1.3.5.

Let d(x, v) = 1. As ⇡C

z,x

(g) = c
z

(x, v)⇡C

z,v

(g)c
z

(v, x) and ⇡C

z,x

(g) = c
z

(x, v)⇡C

z,v

(g)c
z

(v, x),
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we have

⇡C

z,x

(g)�
v

� ⇡P

z,x

(g)�
v

= c
z

(v, x)⇡C

z,x

(g)w�
v

� c
z

(v, x)⇡P

z,x

(g)w�
v

= c
z

(v, x)⇡C

z,x

(g)w�
v

� c
z

(v, x)⇡C

z,x

(g)z�
x

� c
z

(v, x)⇡P

z,x

(g)w�
v

+ c
z

(v, x)⇡P

z,x

(g)z�
x

= c
z

(v, x)⇡C

z,x

(g)c
z

(x, v)�
v

� c
z

(v, x)⇡P

z,x

(g)c
z

(x, v)�
v

= ⇡C

z,v

(g)�
v

� ⇡P

z,v

(g)�
v

= 0.

Given n � 0, assume that ⇡P

z,x

�
v

= ⇡C

z,x

�
v

for all x, v 2 X with d(v, x) < n. Let u 2 X such

that d(x, u) = n � 1. Then there exists v on the geodesic from x to u such that d(x, v) � 1.

Note that v may be u. By Proposition 1.3.10, if v 6= u then

c
z

(v, x)⇡P

z,x

(g)�
u

= ⇡P

z,v

(g)c
z

(v, x)�
u

= ⇡P

z,v

(g)�
u

= ⇡C

z,v

(g)�
u

(by the induction hypothesis)

= ⇡C

z,v

(g)c
z

(v, x)�
u

= c
z

(v, x)⇡C

z,x

(g)�
u

(by Lemma 1.3.8),

hence ⇡P

z,x

(g)�
u

= ⇡C

z,x

(g)�
u

. If v = u, let v
x

be the vertex on the geodesic from u to x such

that d(u, v
x

) = 1. Note that d(x, v
x

) = n� 1. Then

c
z

(v, x)⇡P

z,x

(g)�
u

= ⇡P

z,v

(g)c
z

(v, x)�
v

= ⇡P

z,v

(g)(w�
v

� z�
v

x

)

= ⇡C

z,v

(g)(w�
v

� z�
v

x

) (by the induction hypothesis and Lemma 1.3.5)

= ⇡C

z,v

(g)c
z

(v, x)�
v

= c
z

(v, x)⇡C

z,x

(g)�
u

(by Lemma 1.3.8),
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hence ⇡P

z,x

(g)�
u

= ⇡C

z,x

(g)�
u

. This concludes the proof.
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Chapter 2

CAT(0)-Cube Complexes

2.1 Motivations

In Chapter 3 we will generalize the results of Chapter 1 to discrete groups acting on finite

dimensional CAT(0)-cube complexes. As geometric group theory is such a young area of

mathematical research, some definitions may vary between authors so this chapter will serve

to clarify what we mean by a finite dimensional CAT(0)-cube complex. Most of the following

has been covered more generally by Martin Bridson in his dissertation [4] and in his book

with Andre Haefliger [5], amongst other authors, however we will adapt these results to our

particular needs.

In this chapter we will define CAT(0)-cube complexes geometrically. However, it may aid

the reader’s understanding to be introduced to a combinatorial approach. In this approach,

a cube complex is a set X, called the set of vertices, together with a collection of finite subsets

of X , called the cubes of X, with the following properties:

(1) every vertex is a cube;

(2) the intersection of every two cubes is either empty or a cube;

(3) for every cube C, there is an integer n � 0 and a bijection from C to the

vertices of a Euclidean cube of side length 1 and dimension n such that the
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cubes in X that are subsets of C correspond precisely to the sets of vertices

of the faces (of all dimensions) of the Euclidean cube.

It is di�cult to define what is meant by the CAT(0) condtion from this combinatorial

description. Therefore we will construct a cube complex geometrically below, closely follow-

ing the definitions and methods of Bridson and Haefliger [5] but narrowed to our particular

needs. We will then define a CAT(0) space and establish the characteristics of a finite

dimensional CAT(0)-cube complex.

2.2 CAT(0) Spaces

We begin with some definitions. Let (X, d) be a metric space. A geodesic segment is a

topological arc which is isometric to a closed interval of of the real line such that the length

of a geodesic segment from x to y in X is equal to d(x, y). If every pair of points in X can

be joined by a geodesic segment, we say that (X, d) is a geodesic metric space. A geodesic

triangle � in a metric space X is a triple of points x, y and z in X together with paths

joining each pairwise (called the sides) that are geodesic segments in the metric space X.

A comparison triangle � for � is a triple of points x, y and z in Euclidean space with

geodesic segments joining each pairwise such that d(x, y) = d(x, y), d(y, z) = d(y, z) and

d(x, z) = d(x, z). Such a triangle must exist for all x, y and z in X [5]. Note that this

triangle is unique up to isometry.

With this we may establish the thin triangles property of a CAT(0) space. Given a point

p 2 [x, y], point p in [x, y] is called a comparison point for p if d(x, p) = d(x, p). We extend

this definition to comparison points in [x, z] and [y, z] similarly. If every point x 2 X has a

neighborhood such that for all geodesic triangles � in that neighborhood and for all points

p and q in � with comparison points p and q 2 �, we have that d(p, q)  d(p, q), then X

locally satisfies the CAT(0) inequality and we will say that X is non-positively curved (which

is sometimes called locally CAT(0)). If all geodesic triangles in X satisfy this inequality we
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will say that X is CAT(0).

2.3 Cube complexes

Let the unit n-cube In be the n-fold product [0, 1]n which is isomorphic to a cube in

Euclidean n-space. For a particular cube In = [0, 1]n, define a face to be a subset of the

form

S =
nY

i=1

S
i

where S
i

2 {{0}, {1}, [0, 1]} for all 1  i  n,

and a proper face to be any face S such that S 6= In. We may then construct a cube complex

by “glueing” cubes together in a particular way.

We will define a cube complex K as in Bridson-Haefliger [5] to be the quotient of a disjoint

union of cubes X = q
�2⇤I

n

�

�

by an equivalence relation ⇠ with the requirement that the

restrictions p
�

: In�

�

! K of the natural projection p : X ! K = X/⇠ satisfy:

(1) for every � 2 ⇤ the map p
�

is injective;

(2) for �, µ 2 ⇤, if p
�

(In�

�

) \ p
µ

(Inµ

µ

) 6= ; then there is an isometry h
�,µ

from a

face T
�

⇢ S
�

onto a face T
µ

⇢ S
µ

such that p
�

(x) = p
µ

(x0) if and only if

x0 = h
�,µ

(x).

In e↵ect, the equivalence relation constructs the cube complex by “glueing” cubes to-

gether and identifying matched vertices with no cube being glued to itself and at most one

glueing isometry between any two cubes. Note also that our definition of a cube complex

yields the property that the intersection of every two cubes is either empty or a cube and

also the other combinatorial properties mentioned above.

If n = max{n
�

|� 2 ⇤} exists, we say that the cube complex is finite dimensional. In

this dissertation, we will only work with finite dimensional cube complexes. Also, for the

rest of this dissertation, we will use the term “cubes” for images of the cubes from X in K

and also for the images of all their proper faces in K. As in the case of trees, we will call a
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0-cube a vertex and a 1-cube an edge. We define an interior point of the cube complex K to

be a point that does not lie in any proper face of K and the interior of K to be the set of

all its interior points. Finally, we note for the interested reader that Bridson and Haefliger

[5] refer to the cube complexes constructed above as cubical complexes and refer to more

general complexes of cubes, without the same restrictions, as cubed complexes. We now have

the following lemma.

Lemma 2.3.1. For every point x 2 K, there is a unique cube in K containing x in its

interior. It is a face of every cube in K containing x.

Proof. Let x be a point in K. Suppose two cubes in K contain x. Then the intersection

of those two cubes also contains x and this intersection is also a cube in K. This cube

has dimension at most the minimum dimension of the two original cubes and is contained in

both of the original cubes. Therefore there must be a cube of minimum dimension containing

x.

We will call this unique cube the support of x 2 K, denoted supp(x).

2.4 Defining a metric on a cube complex

Much of Chapter 3 will depend on CAT(0)-cube complexes being complete geodesic metric

spaces. As such, we must define a metric and show this to be the case. Note that the metric

defined in this chapter will not in fact be either of the two metrics we use in Chapter 3,

but instead allows for their existence. Moreover, the K = X/⇠ that we have defined above

includes all points in the disjoint union of cubes, either on faces or interior to a cube, whereas

in Chapter 3 we will use X to refer only to the set of vertices of the cube complex and the

metrics we establish will be defined only for these vertices.

Let K be a cube complex, as defined above, and assume that it is connected, that is,

that every pair of points can be connected by an n-string as follows. For x, y 2 K, define an
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n-string ⌃ from x to y to be a sequence ⌃ = (v0, v1, v2, . . . , vn) such that v0 = x and v
n

= y

with each v
i

2 X and such that, for 1  i  n, there exists a cube C
i

containing v
i�1, vi. As

each pair v
i�1, vi is in C

i

, which is isomorphic to a Euclidean cube and the gluing maps are

isometries, we can adopt the usual Euclidean metric for each pair. Call each such submetric

d
C

i

. We may then define the length of ⌃ to be

l(⌃) =
nX

i=1

d
C

i

(v
i�1, vi),

and the intrinsic pseudometric on X to be d(x, y) = inf{l(⌃) : ⌃ a string from x to y}. It is

clear from the construction that d is non-negative, symmetric and that d also satisfies the

triangle inequality. In order to prove that the intrinsic psuedometric defined above is indeed

a metric, we need to show that d(x, y) = 0 if and only if x = y. For this we will need the

following definition. For a cube C 2 K containing x, define ✏(x, C) = inf{d
C

(x, F ) : F a

face of C and x /2 F}, with the added condition that if C is the 0-cube consisting solely of

x, then ✏(x, C) = 1. Further define ✏(x) = inf{✏(x, C) : C ⇢ K a cube containing x}. Note

that this implies that ✏(x)  1 as we are working with a connected non-trivial cube complex.

Proposition 2.4.1. The intrinsic pseudometric, defined above, is a metric.

Proof. Let x 2 K. If x 2 C ⇢ D where C and D are cubes of K, then ✏(x, C) = ✏(x,D).

Therefore for any cube C 2 K with x 2 C, ✏(x, C) = ✏(x, supp(x)). If x is a vertex, that

is, if supp(x) is the zero-dimensional cube containing x, then ✏(x) = 1 as we are in a cube

complex. Otherwise ✏(x) � ✏(x, supp(x)) > 0 by Euclidean geometry. Therefore ✏(x) > 0 for

all x 2 K.

Let y 2 K and d(x, y) < ✏(x). We can then see that any cube C containing y also

contains x. To show this we will instead show that if ⌃ = (x0, x1, . . . , xm

) is an m-string

of length `(⌃) < ✏(x) from x = x0 to y = x
m

, with m � 2, then ⌃0 = (x0, x2, . . . , xm

)

is an (m � 1)-string with `(⌃0)  `(⌃), which is su�cient. Moreover, this will imply that

d(x, y) = d
C

(x, y).
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Let the m-string from x to y be defined as above. There must be a cube C2 containing

x1 and x2. Since `(⌃) < ✏(x) we have that x0 = x also belongs to C2. Then d
C2(x0, x2) 

d
C2(x0, x1) + d

C2(x1, x2), hence `(⌃0)  `(⌃).

We then have that for any two vertices x, y 2 X, if d(x, y) = 0  ✏(x), then any cube C

containing y contains x and d(x, y) = d
C

(x, y) = 0, hence x = y.

We define a geodesic metric space to be a metric space in which every pair of points in K

can be connected by a geodesic segment. We conclude this section with the following result

from Bridson’s dissertation.

Theorem 2.4.2 ([4]). If the connected cube complex K is finite-dimensional, then (K, d) is

a complete geodesic space.

2.5 CAT(0)-cube complexes

We may now define CAT(0)-cube complexes and examine some of their properties. We will

first need to define the link of a vertex, which we will denote Lk(v). We will follow the

methods of Sageev [3]. Let C be a cube in X. We define a local edge of C to be a subinterval

of length 1/3 on an edge of C with a vertex of C at one end of this subinterval. A local

edge in K is then the image of a local edge in C. For each vertex v 2 K we can then define

Lk(v) to be the simpicial complex with a vertex for every local edge in K containing v and

in which a set of vertices in span a simplex if and only if they all came from the same cube

C in X. We will also need the following definition. The abstract simplicial complex L is

called a flag complex if every finite subset of its vertices that are pairwise joined by edges

also spans a simplex in L.

In their book, Bridson and Haefliger [5] refine a result of Gromov from abstract simplicial

complexes to cubed complexes which, as mentioned above, are more general than the cube

complexes we have defined. A slight refinement then gives the following theorem.
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Theorem 2.5.1 (Gromov’s Link Condition [5, 11]). A finite dimensional cube complex is

non-positively curved if and only if the link of each of its vertices is a flag simplicial complex.

We will use this theorem together with the following theorem to establish our result.

Theorem 2.5.2 (Cartan-Hadamard [5]). If a complete, non-positively curved metric space

is simply connected, then it is a CAT(0)-space.

So we have reduced the problem of establishing that a complete, simply connected metric

space is CAT(0) to proving that it is non-positively curved. Moreover, we have established

an arguably easier method to determine whether a cube complex is non-positively curved.

Theorem 2.5.3. A cube complex is CAT(0) if and only if it is simply connected and satisfies

Gromov’s link condition.

As we will not be using the metric defined above in Chapter 3, it will helpful to to be

able to consider whether a cube complex K is simply connected without referring to the

metric topology. Let K
m

be K with the metric topology, and K
q

be K with the quotient

topology. It is known that K
q

is finer than K
m

so that if i is the identity map on K, then

i : K
q

! K
m

is continuous [12]. However, it is known that if K is not locally finite, then i

is not a homeomorphism [12]. However, we have the following.

Proposition 2.5.4 ([11, 12]). Let K be a cube complex . Then the identity map i : K
q

! K
m

is a homotopy equivalence.

Corollary 2.5.5. A cube complex is simply connected in the quotient topology if and only if

it is simply connected in the metric topology.

2.6 Further definitions and properties of CAT(0)-cube

complexes

We must now establish some definitions and properties of CAT(0) cube complexes. Let K

be a CAT(0) cube complex as defined above. Recall that K = X/⇠ but, for ease of notation,
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we will use X instead of K, as is the convention. For a given cube C = [0, 1]n ⇢ X, define a

midplane to be an (n�1)-dimensional plane with coordinates {x1, x2, . . . , xn

} where x
i

= 1/2

for some i 2 {1, 2, . . . , n} and all other x
j

2 [0, 1]. We may form an equivalence relation on

the midplanes of our cube complex K. Given two midplanes M and N , we say that they

are hyperplane equivalent if there is a sequence of midplanes M = M0,M1, . . . ,Mj

= N such

that M
i

\ M
i+1 is also a midplane for all i 2 {1, 2, . . . , n � 1}. We define a hyperplane to

be an equivalence class of midplanes and we will call two hyperplanes parallel if they do not

intersect. There are several properties of hyperplanes that we will need.

Lemma 2.6.1 ([16]). Every hyperplane in X separates X into exactly two components.

For two vertices x, y 2 X, define H(x, y) to be the set of all hyperplanes separating x

and y and define the geometric distance from x to y, denoted, d(x, y), to be the minimum

length n of an edge-path x = v0, v1, . . . , vn = y between them. Note that this is not the same

metric we defined in Section 2.4 but this is what we will mean by d(x, y) from this point

onward.

We now list several properties of hyperplanes in CAT(0)-cube complexes.

Proposition 2.6.2 ([16]). An edge-path in a CAT(0) cube complex from vertices x to y

crosses each hyperplane in H(x, y). An edge-path from x to y is a geodesic if and only if it

crosses only the hyperplanes of H(x, y) and crosses each one of these exactly once.

Corollary 2.6.3. For any two vertices x, y 2 X, the geometric distance d(x, y) is equal to

|H(x, y)|.

Corollary 2.6.4 ([9]). Let x, y and v be vertices in a CAT(0) cube complex X. The following

are equivalent:

(1) v lies on a geodesic from x to y;

(2) d(x, y) = d(x, v) + d(v, y);

(3) H(x, v) \H(v, y) = ;;
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(4) H(x, v) \H(v, y) = ; and H(x, v) [H(v, y) = H(x, y);

(5) H(x, v) ✓ H(x, y);

(6) H(x, v) ✓ H(x, y) and H(v, y) ✓ H(x, y).

Proposition 2.6.5 ([13]). A hyperplane in a CAT(0) cube complex X does not self-intersect.

In fact, if a vertex x 2 X is adjacent to a hyperplane H, then there is a unique edge adjacent

to x that crosses H.

Proposition 2.6.6 ([13]). If two hyperplanes in a CAT(0) cube complex X intersect and

are both adjacent to the same vertex, then they intersect in a square containing that vertex.

Proposition 2.6.7 ([9]). Let H1, . . . , Hn

be hyperplanes in a CAT(0) cube complex X, all

adjacent to a vertex x 2 X. If there is a vertex y 2 X such that each hyperplane H
i

separates

x from y, then there is a cube of dimension n in which all the hyperplanes H
i

intersect.

Proposition 2.6.8 ([9]). Two parallel hyperplanes, that is, non-intersecting, separate a

CAT(0) cube complex into exactly three components.

We will also need several properties of cube complexes in Chapter 3 that are less directly

related to hyperplanes. We first borrow some definitions from Niblo and Reeves [13], who

define a cube-path as follows. Let {C
i

}n0 be a sequence of cubes, each of dimension at least

1, such that for 1  i  n, C
i�1 \ C

i

= v
i

where v
i

is a vertex of the cube complex. That

is, each cube meets its successor in a single vertex. We call this sequence a cube-path if C
i

is the (unique) cube of minimal dimension containing v
i

and v
i+1. Note that vi and v

i+1 are

diagonally opposite vertices of C
i

. We define v0 to be the vertex of C0 that is diagonally

opposite v1, and v
n+1 to be the vertex of C

n

that is diagonally opposite v
n

. We call the

v
i

, vertices of the cube-path and v0 the initial vertex and v
n+1 the terminal vertex of the

cube-path. We define the length of a cube-path to be to be the number of cubes in the

sequence. Note that a cube-path defines a family of edge-paths from v0 to v
n+1 which travel

from v
i

to v
i+1 via a geodesic in the 1-skeleton of C

i

.
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We are mainly interested in a particular type of cube-path which functions somewhat

like a geodesic. Let x and y be vertices in K. Then there are a set of hyperplanes, H(x, y),

separating x and y. A cube-path from x = v0, v1, . . . , vn = y is a normal cube-path if, for

all 1  i  n, the vertex v
i�1 is separated from v

i

by all hyperplanes in H(v
i�1, y) that

are adjacent to v
i�1. The length of a normal cube-path will then be the number of vertices

in this sequence. Alternatively, we may think of the length as the number of cubes in the

sequence.

Proposition 2.6.9 ([13]). Given two vertices x, y 2 X, there is a unique normal cube-

path from x to y. (The order is important here, since in general normal cube-paths are not

reversible.)

Proposition 2.6.10 ([13]). A normal cube-path achieves the minimum length among all

cube-paths joining its endpoints.

Proposition 2.6.11 ([13]). Given a normal cube-path {C
i

}n0 with C
i�1 \ C

i

= v
i

for all

1  i  n (y = v0, x = v
n

), then every edge-path through the set {v
i

}n1 such that the

edge-path from v
i�1 to v

i

is a geodesic for 1  i  n is a geodesic from y to x.

We will be using two di↵erent metrics in Chapter 3. We have already defined the ge-

ometric distance between two vertices to be the minimum length of an edge-path between

them and we now define the cubic distance between two vertices to be the length of a normal

cube-path between them. Note that although normal cube-paths are not reversible, this

distance is symmetric [13]. The final definition we will need is that an action of a group on

a cube complex X is an action on the set of vertices of X that maps cubes to cubes.
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Chapter 3

The Constructions for

CAT(0)-Cubical Groups

3.1 The cocycle construction of Guentner and Higson

In their 2007 paper “Weak Amenability of CAT(0)-Cubical Groups” [9], Guentner and

Higson constructed a holomorphic family of uniformly bounded representations of a discrete

group acting on a CAT(0)-cube complex. They accomplished this by extending the cocycle

method that Pimsner and Valette [14,18] had used for discrete groups acting on trees. We will

present this construction below with some clarifications of our own. In particular, Guentner

and Higson [9] did not need to exactly calculate the matrix coe�cients of their representation

in order to prove that their representation was uniformly bounded. We will need to clarify

these as we will be extending the construction of Pytlik and Szwarc [15] and proving that

the representations that we have constructed are equal to those constructed by Guentner

and Higson for any particular z 2 D. Note that we will henceforth use X for the set of a

vertices of a CAT(0)-cube complex, as is the convention.

The following is a summary of the work of Guentner and Higson [9]. As before, let

z 2 D and let w =
p
1� z2. Let X be the set of vertices of a CAT(0)-cube complex and
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let x and y be adjacent vertices in X, that is, x and y are connected by an edge. Let H

be the hyperplane that separates x and y. We will orient this hyperplane by denoting the

half-space containing x by H+ and the half-space containing y by H�. The sets of vertices

adjacent to H will be of particular interest to us. Denote by @H+ the set of vertices adjacent

to H that are in H+ and denote by @H� the set of vertices adjacent to H that are in H�.

For a vertex v 2 @H±, there is a unique edge adjacent to v crossing H [13]. Define v to be

the unique vertex opposite v across H. As in the case of trees, define a bounded operator

c
z

(x, y) on `2(X) by

c
z

(x, y)�
v

=

8
>>>>>><

>>>>>>:

w�
v

� z�
v

, if v 2 @H+

w�
v

+ z�
v

, if v 2 @H�

�
v

, if v /2 @H+ [ @H�

Although this operator is analogous to the one constructed in the tree case, there is a

significant di↵erence as it is nontrivial on the basis vector �
v

for every v adjacent to H. As

a result, it may be non-trivial on basis vectors other than �
x

and �
y

.

For every pair of vertices v and v adjacent across H, the two dimensional subspace

spanned by the ordered basis {�
v

, �
v

} is reducing for c
z

(x, y). The subspace spanned by all

�
v

such that v is not adjacent to H is also reducing for c
z

(x, y). Further c
z

(x, y) is the direct

sum of a family of operators on these two-dimensional subspaces and the identity operator

on their joint orthogonal complement.

As in the case for trees, if v 2 @H+, c
z

(x, y) is given by the matrix

0

B@
w z

�z w

1

CA

on the two-dimensional subspace with ordered basis {�
v

, �
v

}. We may extend c
z

(x, y) to

edge-paths as before also. If x, y 2 X with x = v0, v1, . . . , vn = y an edge-path from x to y,
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then define

c
z

(x, y) = c
z

(v0, v1)cz(v1, v2) · · · cz(vn�1, vn).

As in the tree case, it is easy to verify that c
z

(u, v)�1 = c
z

(v, u) for every pair of adjacent

vertices u, v 2 X and for every z 2 D. However, proving that the edge-path definition of

c
z

(x, y) is independent of path is slightly more involved than in the tree case.

Proposition 3.1.1 ([9]). The expression c
z

(x, y) = c
z

(v0, v1)cz(v1, v2) · · · cz(vn�1, vn) defin-

ing c
z

(x, y) for general x, y 2 X is independent of the edge-path v0, v1, . . . , vn connecting x

to y.

The key di↵erence from the tree case is that even with cancellation of inverse operators,

there may be more than one edge-path between two vertices in the case of CAT(0)-cube

complexes. We begin with a definition. A corner move transforms an edge-path by changing

a string in the path from {u, v, w} to {u, t, w} where {u, v, t, w} form a square (2-cube) in

the cube complex. Note that a corner move alters neither the endpoints of an edge-path

nor its length. The authors then quote a result of Sageev [16] that demonstrates that any

two paths in such a complex with the same endpoints are related by a sequence of simple

cancellations and corner moves and that such transformations leave c
z

(x, y) unaltered.

Guentner and Higson then prove that c
z

: X ⇥ X ! B(`2(X)) is a cocycle for the

permutation representation of G on `2(X). This allows the authors, once a particular x 2 X

is fixed, to construct the family of representations {⇡
z

: z 2 D} of G into the bounded

invertible operators on `2(X) defined by

⇡
z

(g) = c
z

(x, gx)⇡(g).

As in the case for trees, the operator ⇡
z

(g) is a polynomial in z and w with coe�cients in

B(`2(X)), hence the family {⇡
z

(g) : z 2 D} is holomorphic. The authors then prove that

the cocycle c
z

(x, y) is uniformly bounded for each z 2 D, which further implies that the

representation ⇡
z

is uniformly bounded for each z 2 D. We will refer the reader to Guentner
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and Higson’s paper [9] for the details as this proof is quite involved. For x, y 2 X, the

authors [9] define the matrix coe�cient c
ab

by

c
z

(x, y)�
b

=
X

a2X

c
ab

�
a

,

which yields c
ab

= hc
z

(x, y)�
b

, �
a

i and the following result. Note that d(a, b) will be the

geometric distance between a and b. Guentner and Higson conclude their calculations with

the following proposition.

Proposition 3.1.2 ([9]). Let x and y be vertices of X. For a, b 2 X, if c
ab

is nonzero for

some z 2 D, then

c
ab

= ±zd(a,b)w`,

for some non-negative integer ` not exceeding twice the dimension of X.

Our contribution will be to determine the sign of such c
ab

and to clarify the value of `.

We will need several propositions and lemmas of Guentner and Higson [9] which we will state

without proof. We will then state and prove our new assertions but it may be helpful for the

reader to have a brief preview of the methods. The central idea is to construct a geodesic

from x to y that allows us to more easily calculate the exponent ` of w and to determine

the sign of c
ab

. Although this geodesic allows us to easily calculate the matrix coe�cients,

its construction is fairly elaborate.

We now need several definitions. For two vertices u, v 2 X, recall that H(u, v) is defined

to be the set of all hyperplanes separating u and v. We then define a geodesic order on

H(u, v) to be linear order on H(u, v) for which there exists a geodesic edge-path from u to

v such that H < H 0 if and only if the path crosses H before it crosses H 0. Finally, for a set

S of vertices in X, the convex hull of S is defined to be the intersection of all half-spaces

containing the vertices of S.

We will need the following results, some of which we will state without proof.
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Lemma 3.1.3 ([9]). Let x and y be two vertices in X. If c
ab

is nonzero for some z 2 D,

H(a, b) ✓ H(x, y).

Proposition 3.1.4 ([9]). Let x, y and b be vertices of X. If c
ab

is nonzero for some z 2 D,

then a lies in the convex hull of {x, y, b}.

Lemma 3.1.5 ([9]). A linear ordering {H1, . . . Hn

} on H(x, y) is a geodesic ordering if and

only if the vertex v0 = x is adjacent to H1 and for each i = 1, . . . , n the vertex v
i

obtained

by successively reflecting v0 across H1, . . . , Hi�1 is adjacent to H
i

. In this case the sequence

of vertices v0, . . . , vn is a geodesic edge-path from x to y.

Lemma 3.1.6 ([9]). If c
ab

is nonzero for some z 2 D, then every geodesic order on H(x, y)

induces a geodesic order on H(a, b).

Our contributions now follow.

Lemma 3.1.7. Let H and K be two non-intersecting hyperplanes in H(x, y). If there exists

a geodesic order on H(x, y) with H < K, then H < K in every geodesic order on H(x, y).

Proof. Let H and K be two non-intersecting hyperplanes in H(x, y) and suppose there

exists a geodesic order H(x, y) with H < K. Let H+ be the half-space corresponding to the

hyperplane H that contains x and H� the opposite half-space. Define K+ similarly. Then

H+ \K� = ;, hence H+ is properly contained in K+. Therefore any geodesic from x to y

must cross H before it crosses K.

Corollary 3.1.8. For any two vertices u, v 2 X, if H,K 2 H(u, v) do not intersect, then

neither u nor v can be adjacent to both hyperplanes.

Lemma 3.1.9. For any two vertices u, v 2 X, if H 2 H(u, v) and H is not adjacent to

v then there must exist K 2 H(u, v) such that H and K do not intersect. Moreover, there

exists one such K with v adjacent to K.

34



Proof. Let H 2 H(u, v) with H not adjacent to v. Construct a geodesic u = u0, u1, . . . , un

=

v with corresponding geodesic order {H1, H2, . . . , Hn

} = H(u, v). Then H = H
i

for some 1 

i  n� 1. If H
i+1 does not intersect H we are done. Suppose otherwise. As H

i+1 intersects

H, by Proposition 2.6.6, u
i+1 must be adjacent to H = H

i

. The same argument then holds

for u
i+2, . . . , un

= v which is a contradiction. Hence there must exist K 2 H(u
i+1, v) that

does not intersect H
i

. If K is not adjacent to v, we may repeat this process with until we

find a K 0 that is adjacent to v. As K 0 is parallel to K, it is also parallel to H.

Lemma 3.1.10. With the above notation, if c
ab

is nonzero, then there do not exist two

non-intersecting hyperplanes in H(a, b) with a on the same side of each hyperplane as y.

Proof. Let c
ab

be nonzero and suppose that H and K are two non-intersecting hyperplanes

in H(a, b) with a on the same side of each hyperplane as y. By a previous lemma, any

geodesic from x to y must cross one of these first. Without loss of generality, let H occur

first in every geodesic from x to y. Let H+ and K+ be the half-spaces formed by H and K

respectively with x in that half-space and let H� and K� be the half-spaces formed by H

and K respectively with y in that half-space.

Let v be a vertex on a geodesic from x to y that is after H on the geodesic but before

k. Then as b is in H+, the support of c
z

(v, y)�
b

is contained in H+ because H is not used

in c
z

(v, y). Further the support of c
z

(x, y) is contained in K+. Moreover, the support of

c
z

(x, y)�
b

= c
z

(x, v)c
z

(v, y)�
b

is contained in K+ as K is not used in c
z

(x, v). This implies

the contradiction that c
ab

is zero.

For two vertices x, y 2 X, we define the interval [x, y] to be the set of all vertices on

a geodesic edge-path from x to y. One may also describe this set as the vertices in the

intersection of all half-spaces containing x and y. Note that if v 2 [x, y], no hyperplanes

separate v from both x and y.

We must also establish some new notation. Define t(a, b) to be the number of hyperplanes

in H(a, b) that separate a and x. For three vertices u, v, c 2 X, define H(u, v; c) to be the set
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of hyperplanes that separate u from v and also separate u from c with the added condition

that they also be adjacent to c. The sets H(x, y; a) and H(y, x; b) will be of particular

interest to us. We will denote by H(x, y; a)�H(y, x; b) the symmetric di↵erence of these two

sets and define `(a, b) to be the cardinality of this set.

Lemma 3.1.11. With the above notation, if c
ab

is nonzero, then

H(y, x; b)\H(a, b) [ H(x, y; a)\H(a, b) = H(y, x; b)�H(x, y; a).

Proof. Let H 2 H(y, x; b)\H(a, b). Then H must separate x from y and b from y. Hence b

must be on the same side of H as x. As H does not separate a from b, we must also have

that a is on the same side of H as x, which further implies that H /2 H(x, y; a). Similarly,

if H 2 H(x, y; a)\H(a, b), then H must separate x from y and x from a but not a from b.

Hence b must be on the same side of H as y which implies that H /2 H(y, x; b). Therefore

H(y, x; b)\H(a, b) [ H(x, y; a)\H(a, b) ✓ H(y, x; b)�H(x, y; a).

Let H be a hyperplane in H(y, x; b)�H(x, y; a) and assume for a contradiction that

H 2 H(a, b). Either H 2 H(y, x; b)\H(x, y; a) or H 2 H(x, y; a)\H(y, x; b), so first consider

the case that H 2 H(y, x; b)\H(x, y; a). As H /2 H(x, y; a), we must have that H does not

separate x from a or H is not adjacent to a.

Suppose that the former is true, that is, suppose that H does not separate x from a. As

H 2 H(y, x; b), H separates y from b and y from x, so b and x must be on the same side of

H. Hence H does not separate a and b which is a contradiction.

Now suppose that the latter is true, that is, that H is not adjacent to a. Recall that b is

on the same side of H as x, so as H 2 H(a, b), a is on the same side of H as y. Hence H

must be oriented in reverse in any geodesic order of H(x, y) and its induced geodesic order

of H(a, b). Furthermore, as H is not adjacent to a, there must exist one hyperplane H 0 that

separates a from b that does not intersect H. As H 0 does not intersect H we must have that

H 0 2 H(a, b) also. This hyperplane H 0 will also be oriented in reverse in the geodesic orders

36



of H(x, y) and H(a, b) which contradicts our assumption that c
ab

is nonzero by the previous

lemma.

The case that H 2 H(x, y; a)\H(y, x; b) is exactly analogous to the case for H 2

H(y, x; b)\H(x, y; a).

For the following lemmas we will need several new vertices. Define a0 to be the vertex

that is separated from a by all of the hyperplanes in H(x, y; a) and a1 to be the vertex

separated from a0 by all of the hyperplanes in H(x, y; a)\H(a, b). Note that we may think of

a1 as the vertex separated from a by all of the hyperplanes in H(x, y; a)\H(a, b). Simlarly,

define b0 to be the vertex that is separated from b by all of the hyperplanes in H(y, x; b) and

b1 to be the vertex separated from b0 by all of the hyperplanes in H(y, x; b)\H(a, b). We may

then think of b1 as the vertex separated from b by all the hyperplanes in H(y, x; b)\H(a, b).

Lemma 3.1.12. With the vertices constructed above, if c
ab

is nonzero then H(a, a1) =

H(b, b1).

Proof. Let H 2 H(a, a1) = H(x, y; a) \ H(a, b). Then a and y are in one half-space with

respect to H and b, x and a1 are in the other and a is adjacent to H. Suppose H is not in

H(b, b1) = H(y, x; b) \H(a, b). Then b must not be adjacent to H. By Lemma 3.1.9, there

must exist K 2 H(a, b) ✓ H(x, y) such that H and K do not intersect with a on the same

side of each hyperplane as y, contradicting Lemma 3.1.10.

Let H 2 H(b, b1) = H(y, x; b) \H(a, b).Then b and x are in one half-space with respect

to H and a, y and b1 are in the other and b is adjacent to H. Suppose H is not in H(a, a1) =

H(x, y; a) \H(a, b).Then a must not be adjacent to H. Again by Lemma 3.1.9, there must

exist K 2 H(a, b) ✓ H(x, y) such that H and K do not intersect with a on the same side of

each hyperplane as y, contradicting Lemma 3.1.10.

Lemma 3.1.13. With the vertices constructed above, if c
ab

nonzero then H(a1, b1) = H(a, b).

Proof. As noted above, H(a, a1) = H(x, y; a) \ H(a, b) and H(b, b1) = H(y, x; b) \ H(a, b).

Let H 2 H(a1, b1). If H separates a and a1 then we must have H 2 H(a, b). Suppose H does
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not separate a and a1 and assume H is not in H(a, b). Then H separates b and b1 which is

a contradiction as H(b, b1) ✓ H(a, b).

Let H 2 H(a, b). Suppose H /2 H(a1, b1). Then H separates a from a1 but does not

separate b from b1, or vice versa, either of which is a contradiction as H(a, a1) = H(b, b1) by

Lemma 3.1.12.

Lemma 3.1.14. With the above notation, if c
ab

is nonzero and a and b are in the interval

[x, y], then any geodesic from y to x that passes through a1 and b1 must pass through b1 before

a1.

Proof. Assume otherwise, then there must be a hyperplane H in H(a1, b1) = H(a, b) with

a1 on the same side of H as y and b1 on the same side of H as x. However a may not be in

the same half-space with respect to H as x and b1 as then H separates a and a1 which is a

contradiction as H(a, a1) = H(x, y; a) \H(a, b) so H must separate x and a. Hence a is in

the same half-space as y and a1 and, as H 2 H(a, b), b must be in the same half-space as x.

As b and b1 are then in the same half-space with respect toH, we have thatH /2 H(b, b1) =

H(y, x; b) \H(a, b). However H 2 H(a, b) and H separates y from b, so we must have that

b is not adjacent to H. By Lemma 3.1.9, there must exist K 2 H(a, b) ✓ H(x, y) such that

H and K do not intersect with a on the same side of each hyperplane as y, contradicting

Lemma 3.1.10.

Lemma 3.1.15. With the above notation, if c
ab

is nonzero and a and b are in the in-

terval [x, y] there is a geodesic order on H(x, y) such that H(y, x; b)\H(a, b) < H(a, b) <

H(x, y; a)\H(a, b).

Proof. By the previous lemma, any geodesic through a1 and b1 from y to x passes through b1

first. This geodesic order will be induced by the following geodesic: first follow any geodesic

from y to b0; then follow any geodesic from b0 to b1; then follow any geodesic from b1 to a1;

then follow any geodesic from a1 to a0; and, finally, follow any geodesic from a0 to x.
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We first note that H(b0, y) = H(b, y)\H(y, x; b) and H(b1, b0) = H(y, x; b)\H(a, b), hence

both sets are subsets of H(b, y). As b0 is separated from b1 by H(y, x; b)\H(a, b) ✓ H(y, b)

we have that this geodesic passes through b0 before b1 and that H(b1, b0), and H(b0, y) are

disjoint.

As H(b1, b0) = H(y, x; b)\H(a, b), we can see that H(b1, b0) and H(a, b) are disjoint. Now

suppose that there exists H 2 H(a, b) that is also in H(b0, y) = H(b, y)\H(y, x; b). Then a

and y are in the same half-space with respect to H and b and x are in the other half-space.

As H /2 H(y, x; b), H must not be adjacent to b. Then, as before, by Lemma 3.1.9, there

must exist K 2 H(a, b) ✓ H(x, y) such that H and K do not intersect with a on the same

side of each hyperplane as y, contradicting Lemma 3.1.10.

An analogous result to this argument gives us that the sets H(x, a0), H(a0, a1) andH(a, b)

are pairwise disjoint which, together with the lemmas above, establishes the result.

Recall that our goal is to determine the sign and the exponent of w of the matrix coe�-

cients c
ab

. We will accomplish this by following the geodesic that we have constructed above.

We will see that every hyperplane in H(a, b) will contribute a factor of z or �z and that every

hyperplane in H(y, x; b)�H(x, y; a) will contribute a factor of w. To accomplish this we will

need some new notation. For a fixed geodesic order on H(x, y), let x = v0, . . . , vn = y be the

corresponding geodesic edge-path from x to y with corresponding hyperplanes H1, . . . , Hn

.

For a given a and b, we will also have a sequence {c0, . . . , cn} that will be induced by this

geodesic order in a manner outlined below. In particular, let c0 = b. We will now define a

second sequence ⌃
↵

= (k
↵

, `
↵

, t
↵

) recursively for ↵ = 0, 1, . . . , n. We define ⌃0 = (0, 0, 0).

Assume that ⌃0, . . . ,⌃↵

and c0, . . . , c↵ have been defined. Consider the hyperplane H
n�↵

.

We will define ⌃
↵+1 and c

↵+1 by considering the relationship between this hyperplane and

the vertices c
↵

, a and x.

(1) If H
n�↵

is not adjacent to c
↵

, then c
↵+1 = c

↵

and ⌃
↵+1 = ⌃

↵

;

(2) If H
n�↵

is adjacent to c
↵

but does not separate a from c
↵

, then c
↵+1 = c

↵
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and ⌃
↵+1 = ⌃

↵

+ (0, 1, 0), that is, `
↵+1 = `

↵

+ 1 and the remaining k and t

are unchanged;

(3) If H
n�↵

is adjacent to c
↵

and separates a from c
↵

, then c
↵+1 is the vertex c

↵

adjacent to c
↵

across H
n�↵

and:

(a) if H
n�↵

does not separate a from x then ⌃
↵+1 = ⌃

↵

+ (1, 0, 0), that is,

k is incremented by 1 and ` and t are unchanged;

(b) if H
n�↵

does separate a from x then ⌃
↵+1 = ⌃

↵

+ (1, 0, 1), that is, k

and t are incremented by 1 and ` is unchanged.

We will need the following lemma.

Lemma 3.1.16. Let H be a hyperplane and f 2 `2(X). If the support of f is contained in

one half-space with respect to H and H /2 H(u, v), then the support of c
z

(u, v)f is contained

in the same half-space with respect to H.

Proof. Let H be a hyperplane and let u and v be adjacent vertices in X. Let K be the

hyperplane separating u and v. Let y 2 X. If y is not adjacent to K, then c
z

(u, v)�
y

= �
y

and the result holds. If y is adjacent to K then c
z

(u, v)�
y

= w�
y

± z�
y

where y is the vertex

adjacent to y across K. In either case, both y and y are in the same half-space with respect

to H as they are adjacent across K. This naturally extends to cocycles where u and v are

not adjacent and, as span{�
x

|x 2 X} is a basis for `2(X), to `2(X).

Proposition 3.1.17. With the above notation, if c
n

6= a then c
ab

is zero, and if c
n

= a, then

c
ab

= (�1)tnzknw`

n.

Proof. We will now prove by induction that

c
ab

= (�1)t↵zk↵w`

↵ [c
z

(v0, v1) . . . cz(vn�↵�1vn�↵

)�
c

↵

(a)] . (3.1)
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If ↵ = 0, we must show that c
ab

= [c
z

(v0, v1) . . . cz(vn�1vn)�b(a)], which is the definition of

c
ab

. Now assume for some fixed 0  ↵ < n� 1 that (3.1) holds. We then wish to show that

c
ab

= (�1)t↵+1zk↵+1w`

↵+1
⇥
c
z

(v0, v1) . . . cz(vn�↵�2vn�↵�1)�c
↵+1(a)

⇤
.

However, this is equivalent to showing that

(�1)t↵zk↵w`

↵ [c
z

(v0, v1) . . . cz(vn�↵�1vn�↵

)�
c

↵

(a)] =

(�1)t↵+1zk↵+1w`

↵+1
⇥
c
z

(v0, v1) . . . cz(vn�↵�2vn�↵�1)�c
↵+1(a)

⇤
. (3.2)

Case 1: Suppose H
n�↵

is not adjacent to c
↵

. By definition, c
↵+1 = c

↵

and ⌃
↵+1 = ⌃

↵

and,

since c
↵

is not adjacent to H
n�↵

, we have that c
z

(v
n�↵�1, vn�↵

)�
c

↵

= �
c

↵

= �
c

↵+1 . Hence (3.2)

follows.

Case 2: H
n�↵

is adjacent to c
↵

but does not separate a from c
↵

. Then c
↵+1 = c

↵

and ⌃
↵+1 =

⌃
↵

+ (0, 1, 0) and c
z

(v
n�↵�1, vn�↵

)�
c

↵

= w�
c

↵

� z�
c

↵

. However, by Lemma 3.1.16, we have

that c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵

(a) = 0, hence

LHS of (3.2) = (�1)t↵zk↵w`

↵ [c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1) (w�c
↵

)] (a)

= (�1)t↵zk↵w`

↵

+1
⇥
c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵+1

⇤
(a)

= RHS of (3.2).

Case 3: Suppose H
n�↵

is adjacent to c
↵

and separates a from c
↵

. Then c
↵+1 is the vertex c

↵

adjacent to c
↵

across H
n�↵

.

Subcase (i): If the hyperplane does not separate a from x, then ⌃
↵+1 = ⌃

↵

+(1, 0, 0) and

c
z

(v0, v1) . . . cz(vn�↵�1, vn�↵

)�
c

↵

= c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)
�
w�

c

↵

+ z�
c

↵+1

�
.
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However, by Lemma 3.1.16, we have that c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵

(a) = 0, hence

LHS of (3.2) = (�1)t↵zk↵w`

↵

⇥
c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)
�
z�

c

↵+1

�⇤
(a)

= (�1)t↵zk↵+1w`

↵

⇥
c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵+1

⇤
(a)

= RHS of (3.2).

Subcase (ii):If the hyperplane does separate a from x, then ⌃
↵+1 = ⌃

↵

+ (1, 0, 1) and

c
z

(v0, v1) . . . cz(vn�↵�1, vn�↵

)�
c

↵

= c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)
�
w�

c

↵

� z�
c

↵+1

�
.

However, by Lemma 3.1.16, we have that c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵

(a) = 0, hence

LHS of (3.2) = (�1)t↵zk↵w`

↵

⇥
c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)
�
�z�

c

↵+1

�⇤
(a)

= (�1)t↵+1zk↵+1w`

↵

⇥
c
z

(v0, v1) . . . cz(vn�↵�2, vn�↵�1)�c
↵+1

⇤
(a)

= RHS of (3.2).

We now have that c
ab

= (�1)tnzknw`

n�
c

n

(a) which is only nonzero if c
n

= a and, in that

case, c
ab

= (�1)tnzknw`

n .

We may now conclude with the following result.

Proposition 3.1.18. With the above notation, if c
ab

is nonzero and a and b are in the

interval [x, y], then c
ab

= (�1)t(a,b)zd(a,b)w`(a,b).

Proof. By Proposition 3.1.17, c
ab

= (�1)tnzknw`

n and this calculation is independent of the

geodesic chosen from x to y. We will follow the geodesic from Lemma 3.1.15, which divides

H(x, y) into the geodesic order H(b0, y) < H(b1, b0) < H(a1, b1) < H(a0, a1) < H(x, a0)

where H(a1, b1) = H(a, b), H(a0, a1) = H(x, y; a)\H(a, b) and H(b0, b1) = H(y, x; b)\H(a, b)

by the construction of a0, a1, b0 and b1.
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As we follow this geodesic from y to x, all of the hyperplanes in H(y, b0) are not adjacent

to c0 = b by the construction of b0. Thus they fall into the first case of Proposition 3.1.17,

that is, ⌃
↵+1 = ⌃

↵

. Hence these hyperplanes to not increment k, t or `. Note that c
↵

= b

for these hyperplanes.

We next follow the geodesic through all of the hyperplanes ofH(b0, b1) = H(y, x; b)\H(a, b).

Each of these fall into the second case of Proposition 3.1.17, that is, each of these is adjacent

to c0 = b but does not separate a from c0. Hence ⌃
↵+1 = ⌃

↵

+ (0, 1, 0), that is, for each of

these, `
↵+1 = `

↵

+ 1. Again note that c
↵

= b for these hyperplanes.

We next follow the geodesic through all of the hyperplanes of H(a1, b1) = H(a, b). Each

of these fall into the third case of Proposition 3.1.17, that is, each of these is adjacent to c
↵

,

but does not separate a from c
↵

. If the hyperplane does not separate a from x, then ⌃
↵+1 =

⌃
↵

+ (1, 0, 0). If the hyperplane does separate a from x, then then ⌃
↵+1 = ⌃

↵

+ (1, 0, 1). At

the end of this process, c
↵

= a.

We next follow the geodesic through all of the hyperplanes ofH(a1, a0) = H(x, y; a)\H(a, b).

Each of these fall into the second case of Proposition 3.1.17, that is, each of these is adjacent

to c
↵

= a but does not separate a from c
↵

= a. Hence ⌃
↵+1 = ⌃

↵

+(0, 1, 0), that is, for each

of these, `
↵+1 = `

↵

+ 1.

Finally we follow the geodesic through H(a0, x). Each hyperplane in this set is not

adjacent to c
↵

= a, so falls into the first case of Proposition 3.1.17, that is, ⌃
↵+1 = ⌃

↵

.

Hence these hyperplanes to not increment k, t or `.

From this geodesic we can see that t
n

= t(a, b), k
n

= d(a, b), and `
n

= `(a, b) as these

were defined above.

We will see in the conclusion of Section 3.3, that this result is enough for our needs,

even though we have restricted ourselves to the case that a and b are in the interval [x, y].

However, we can calculate these matrix coe�cients in full generality. Define the median of

three vertices x, y and v to be the unique vertex in [x, y] \ [y, v] \ [v, x], and we denote this

vertex m(x, y, v) [10]. This yields the following three lemmas.
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Lemma 3.1.19. Let x, y, v 2 X. For any hyperplane H, if two of the three vertices are in

the same half-space with respect to H, then the median, m(x, y, v) is in that half-space.

Proof. Let x, y, v 2 X. Let H be a hyperplane with x and y in the same half-space

with respect to H. The interval [x, y] lies entirely in the same half-space as x and y and

m(x, y, v) 2 [x, y], hence is also in this half-space.

Lemma 3.1.20. Let x, y and v be vertices in X and H 2 H(x, y). Then H separates y

from v if and only if H separates y from m(x, y, v).

Proof. Suppose H separates y from v, then x and v are in the same half-space and then

m(x, y, v) must be in this half-space by the previous lemma. Now let H separate y from

m(x, y, v) and assume y does not separate y from v. Then we have a contradiction of the

previous lemma as m(x, y, v) must be in the same half-space as y and v.

Note that we may reverse the order of x and y in the above lemma to obtain the same

result for the vertex x. Note also that this implies that for any hyperplane H in H(x, y),

the median m(x, y, v) must be in the same half-space with respect to H as v. For ease of

notation, for a vertex u 2 X, define u0 to be m(x, y, u) and and note that this vertex is in

the interval [x, y]. We will now examine some properties of medians.

Lemma 3.1.21. For vertices x, y, a and b in X, if H(a, b) ⇢ H(x, y), the set of hyperplanes

H(a0, b0) is contained in the set of hyperplanes H(a, b).

Proof. Let H 2 H(a0, b0). Then H must separate x and y as, if not, then x and y are on the

same side of H and hence both medians are also on that side. Suppose then that H does not

separate a and b. Then a and b are on the same side of H. If x is on this same side, then so

are a0 and b0 and again H fails to separate these medians. If x is on the other side, then as

H separates x from y, we have that a, b and y are on the same side of H and, as before, H

fails to separate the medians. Hence H 2 H(a, b) and we have that H(a0, b0) ✓ H(a, b).
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Lemma 3.1.22. For vertices x, y, a and b in X, if H(a, b) ⇢ H(x, y) then H(a, b) =

H(a0, b0).

Proof. By the previous lemma, we have that H(a0, b0) ✓ H(a, b). Let H 2 H(a, b). Then

H separates a fom b and also x from y. Suppose a is in the same half-space as x. Then by

Lemma 3.1.19, a0 is in the same half-space as x. As H is in H(a, b) and H(x, y), b is in the

same half-space as y and, by Lemma 3.1.19, b0 is in this half-space also. Hence H 2 H(a0, b0).

If a is in the same half-space as y a similar argument shows that H 2 H(a0, b0). Therefore

H(a, b) ✓ H(a0, b0), hence H(a, b) = H(a0, b0).

Corollary 3.1.23. If H 2 H(x, y) and u is adjacent to H then u0 is adjacent to H. More-

over, in this case, if u is the vertex adjacent to u across H, then u0 is adjacent to (u)0 across

H.

Proof. Let H, u and u be as above. Then by Lemma 3.1.22, H(u0, (u)0) = H(u, u) = {H}.

Hence u0 is adjacent to (u)0 across H.

Lemma 3.1.24. For vertices x, y, a and b in X,if H(a, b) ✓ H(x, y), then H(y, x; b) ✓

H(y, x; b0) and H(x, y; a) ✓ H(x, y; a0). Furthermore H(y, x; b)\H(a, b) ✓ H(y, x; b0)\H(a, b)

and H(x, y; a)\H(a, b) ✓ H(x, y; a0)\H(a, b).

Proof. The first assertion is clear from Lemmas 3.1.20 and 3.1.23. The second assertion is

clear from the first.

In order to calculate the coe�cient c
ab

in general, we will be comparing the coe�cients

c
ab

and c
a

0
b

0 . These are not exactly equal as the following examples in the cube complex

Z� Z will show. Note that c
ab

= z3w and c
a

0
b

0 = z3w2.
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We will need the following lemmas to connect the related values of c
ab

and c
a

0
b

0 . In the

following, let a, b 2 X and let c
↵

and ⌃
↵

= (k
↵

, `
↵

, t
↵

) be as constructed in the process

above for these vertices and let c⇤
n

and ⌃⇤
n

= (k⇤
↵

, `⇤
↵

, t⇤
↵

) be the corresponding values when

following the process for a0 and b0.

Lemma 3.1.25. With the above notation, if H(a, b) ⇢ H(x, y), then for all 0  ↵  n, we

have H(a, c
↵

) ⇢ H(a, b).

Proof. We prove this by induction. When ↵ = 0, c0 = b so H(a, c
↵

) = H(a, b). Suppose for

some 0  ↵ < n, we have H(a, c
↵

) ⇢ H(a, b). By the process used to create the c
↵

, we have

that c
↵+1 = c

↵

except in the case that the hyperplane being crossed is adjacent to c
↵

and

also separates c
↵

from a.

In this case, c
↵+1 = c

↵

, the vertex across H from c
↵

, so H(a, c
↵+1) = H(a, c

↵

)\{H} ⇢

H(a, b).

Corollary 3.1.26. With the above notation, if H(a, b) ⇢ H(x, y), then for all 0  ↵  n,

we have H(a, c
↵

) = H(a0, c0
↵

).

Proof. This is an immediate consequence of the previous lemma and Lemma 3.1.22.

Lemma 3.1.27. With the above notation, if H(a, b) ⇢ H(x, y), then c⇤
↵

= c0
↵

for all 0 

↵  n.

Proof. We will prove by induction, for all 0  ↵  n, that c⇤
↵

= c0
↵

. When n = 0, we have

c0 = b and c⇤0 = b0, hence c⇤0 = c00. Now suppose c⇤
↵

= c0
↵

for some 0  ↵ < n. Recall that the

next hyperplane we cross is H
n�↵

.

Case 1: Suppose H
n�↵

is adjacent to c
↵

and H 2 H(a, c
↵

). By Corollary 3.1.23, we have that

H
n�↵

is also adjacent to c0
↵

= c⇤
↵

and by Corollary 3.1.26, H 2 H(a0, c0
↵

) = H(a0, c⇤
↵

). Then

c
↵+1 is the vertex across H

n�↵

from c
↵

and c⇤
↵+1 is the vertex across H

n�↵

from c⇤
↵

, so, again

by Corollary 3.1.23, c⇤
↵+1 = c0

↵+1.
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Case 2: Suppose H
n�↵

is adjacent to c
↵

and H /2 H(a, c
↵

). By Corollary 3.1.23, we have that

H
n�↵

is also adjacent to c0
↵

= c⇤
↵

and by Corollary 3.1.26, H /2 H(a0, c0
↵

) = H(a0, c⇤
↵

). Then

c
↵+1 = c

↵

and c⇤
↵+1 = c⇤

↵

, so c⇤
↵+1 = c0

↵+1.

Case 3: Suppose H
n�↵

is not adjacent to c
↵

. Then c
↵+1 = c

↵

and we have two possibilities.

If H
n�↵

is not adjacent to c⇤
↵

= c0
↵

, then c⇤
↵+1 = c⇤

↵

, so again c⇤
↵+1 = c0

↵+1. If Hn�↵

is adjacent

to c0
↵

, we still have that c⇤
↵+1 = c⇤

↵

= c0
↵

= c0
↵+1 unless H

n�↵

is in H(a0, c⇤
↵

). We will see that

this is not possible.

Recall that by Corollary 3.1.26, we have H(a, c
↵

) = H(a0, c0
↵

) = H(a0, c⇤
↵

). Suppose H
n�↵

is adjacent to c⇤
↵

= c0
↵

and H
n�↵

is in H(a0, c⇤
↵

) = H(a, c
↵

). As c
↵

is not adjacent to H
n�↵

,

by Lemma 3.1.9 there must exist a hyperplane K in H(a, c
↵

) that does not intersect H with

c
↵

adjacent to K.

Then by Corollary 3.1.23, K is adjacent to c0
↵

. However, we then have H,K 2 H(a0, c0
↵

)

with both adjacent to c0
↵

, in which case it has been shown that H and K must intersect [13],

which is a contradiction. This concludes the proof.

Corollary 3.1.28. With the above notation, if c
ab

is nonzero, then c
a

0
b

0 is nonzero.

Proof. By Proposition 3.1.17, if c
ab

is non-zero, then c
n

= a. Then, by Lemma 3.1.27, we

have that c⇤
n

= a0. Finally, again by Proposition 3.1.17, we have that c
a

0
b

0 is nonzero.

We wish now to establish a relationship between c
ab

and c
a

0
b

0 as we have previously shown

that c
a

0
b

0 can be exactly calculated. We will see that c
ab

and c
a

0
b

0 di↵er only by a factor of

w. In order to do so, we will again refer to the geodesic of Lemma 3.1.15, but constructed

for a0 and b0 in this case.

We will also need a new definition. Consider the sets (H(y, x; b0)\H(a0, b0))\(H(y, x; b)\H(a, b))

and (H(x, y; a0)\H(a0, b0))\(H(x, y; a)\H(a, b)). Note that by Lemmas 3.1.11 and 3.1.22 and

Corollary 3.1.28, if c
ab

is nonzero, these sets are disjoint. Define r(a, b) to be the cardinality

of this disjoint union.
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Lemma 3.1.29. With the above notation, if c
ab

is nonzero, then c
ab

= w�r(a,b)c
a

0
b

0.

Proof. By Proposition 3.1.17, if c
ab

is nonzero, then c
ab

= (�1)tnzknw`

n . By Corollary

3.1.28, we then have that c
a

0
b

0 is nonzero and, again by Proposition 3.1.17, we then have

that c
a

0
b

0 = (�1)t
⇤
nzk

⇤
nw`

⇤
n . Moreover, by Proposition 3.1.1, we also have that these calcu-

lations are independent of the geodesic chosen from x to y. We will follow the geodesic

from Lemma 3.1.15, calculated using a0 and b0, which divides H(x, y) into the geodesic

order H((b0)0, y) < H((b0)1, (b0)0) < H((a0)1, (b0)1) < H((a0)0, (a0)1) < H(x, (a0)0) where

H((a0)1, (b0)1) = H(a0, b0) = H(a, b),H((a0)0(a0)a1) = H(x, y; (a0))\H(a0, b0) � H(x, y; a)\H(a, b)

andH((b0)0, (b0)1) = H(y, x; b0)\H(a0, b0) � H(y, x; b)\H(a, b) by the construction of (a0)0, (a0)1, (b0)0

and (b0)1.

As we follow this geodesic from y to x, all of the hyperplanes in H(y, (b0)0) are not

adjacent to c⇤0 = b0 by the construction of (b0)0. By Corollary 3.1.23, these hyperplanes are

not adjacent to c0 = b either. Thus ⌃⇤
↵+1 = ⌃⇤

↵

and ⌃
↵+1 = ⌃

↵

. Note that c⇤
↵

= c⇤0 = b0 and

c
↵

= c0 = b for these hyperplanes.

We next follow the geodesic through all of the hyperplanes ofH((b0)0, (b0)1) = H(y, x; b0)\H(a0, b0).

We have seen in Proposition 3.1.18 that each of these is adjacent to c⇤0 = b0 but does not sep-

arate a0 from c⇤0. Hence ⌃
⇤
↵+1 = ⌃⇤

↵

+(0, 1, 0). By Corollary 3.1.26, each of these hyperplanes

separates a from c0. However a hyperplane in this set may or may not be adjacent to c0. If

the hyperplane is in H(y, x; b)\H(a, b), then ⌃
↵+1 = ⌃

↵

+ (0, 1, 0) = ⌃⇤
↵

+ (0, 1, 0) = ⌃⇤
↵+1.

Otherwise, that is, if the hyperplane is in (H(y, x; b0)\H(a, b))\H(y, x; b)\H(a, b)), then

⌃
↵+1 = ⌃

↵

= ⌃⇤
↵

= ⌃⇤
↵+1 � (0, 1, 0). Again note that c⇤

↵

= c⇤0 = b0 and c
↵

= c0 = b for

these hyperplanes.

We next follow the geodesic through all of the hyperplanes of H((a)01, (b)
0
1) = H(a0, b0) =

H(a, b). We have seen in Proposition 3.1.18 that each of these is adjacent to c⇤
↵

, but does

not separate a0 from c⇤
↵

. By Lemma 3.1.26, each such hyperplane is adjacent to c
↵

but

does not separate a from c
↵

. If the hyperplane does not separate a0 from x, then ⌃⇤
↵+1 =

⌃⇤
↵

+ (1, 0, 0). By Lemma 3.1.20, each such hyperplane does not separate a from x, so
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⌃
↵+1 = ⌃

↵

+(1, 0, 0) = ⌃⇤
↵

+(1, 0, 0) = ⌃⇤
↵+1. If the hyperplane does separate a from x, then

then ⌃⇤
↵+1 = ⌃⇤

↵

+ (1, 0, 1). By Lemma 3.1.20, each such hyperplane does separate a from

x, so ⌃
↵+1 = ⌃

↵

+ (1, 0, 1) = ⌃⇤
↵

+ (1, 0, 1) = ⌃⇤
↵+1. Note at the end of this process, c⇤

↵

= a0

and c
↵

= a.

We next follow the geodesic through all of the hyperplanes ofH((a0)1, (a0)0) = H(x, y; (a0))\H(a0, b0).

We have seen in Proposition 3.1.18 that each of these is adjacent to c⇤
↵

= a0 but does not sep-

arate a0 from c⇤
↵

= a0. Hence ⌃⇤
↵+1 = ⌃

↵

+(0, 1, 0)⇤. By Corollary 3.1.26, no such hyperplane

separates a from c
↵

. However a hyperplane in this set may or may not be adjacent to c
↵

= a.

If the hyperplane is in H(x, y; a)\H(a, b), then ⌃
↵+1 = ⌃

↵

+(0, 1, 0) = ⌃
↵

+(0, 1, 0)⇤ = ⌃⇤
↵+1.

Otherwise, that is, if the hyperplane is in (H(x, y; a0)\H(a, b))\H(x, y; a)\H(a, b)), then

⌃
↵+1 = ⌃

↵

= ⌃⇤
↵

= ⌃⇤
↵+1 � (0, 1, 0). Again note that c⇤

↵

= a0 and c
↵

= a for these hyper-

planes.

Finally we follow the geodesic through H((a0)0, x). Each hyperplane in this set is not

adjacent to c⇤
↵

= a0, so ⌃⇤
↵+1 = ⌃⇤

↵

. By Corollary 3.1.23, each of these is also not adjacent to

c
↵

= a, so ⌃
↵+1 = ⌃

↵

.

By Proposition 3.1.17, we have that these processes correctly calculate the values of

c
a

0
b

0 and c
ab

and, by the above, we can see that the only di↵erence between these val-

ues occurs in the union of the disjoint sets (H(y, x; b0)\H(a, b))\H(y, x; b)\H(a, b)) and

(H(x, y; a0)\H(a, b))\H(x, y; a)\H(a, b)). That is, t
n

= t⇤
n

,k
n

= k⇤
n

and `
n

di↵ers from `⇤
n

by a factor of w for every hyperplane in the above mentioned disjoint union. As the geodesic

used traverses all of H(x, y), this su�ces for the result.

Lemma 3.1.30. With the above notation, if H(a, b) ✓ H(x, y), then:

(1) t(a0, b0) = t(a, b);

(2) d(a0, b0) = d(a, b).

If, moreover, c
ab

is nonzero, then:

(3) `(a0, b0) = `(a, b) + r(a, b).

50



Proof. Recall that we defined t(a, b) to be the number of hyperplanes in H(a, b) that separate

a and x. As H(a0, b0) = H(a, b), by Lemma 3.1.20, this is exactly equal to t(a0, b0). This

proves the first assertion. The second assertion is a consequence of Lemma 3.1.22. The third

assertion is by the definition of `(a, b) and r(a, b).

Theorem 3.1.31. With the above notation, if c
ab

is nonzero, then c
ab

= (�1)t(a,b)zd(a,b)w`(a,b).

Proof. By the three previous lemmas,

c
ab

= w�r(a,b)c
a

0
b

0

= w�r(a,b)(�1)t(a
0
,b

0)zd(a
0
,b

0)w`(a0,b0)

= (�1)t(a
0
,b

0)zd(a
0
,b

0)w`(a0,b0)�r(a,b)

= (�1)t(a,b)zd(a,b)w`(a,b).

Our refinement of the result of Guentner and Higson, in the case that a and b are in the

interval [x, y], will be needed in Section 3.3. However, Guentner and Higson [9] used their

less refined result to show that the cocycle c
z

(x, y) defined above is uniformly bounded for

all z 2 D and therefore that the associated representation ⇡
z

= c
z

(x, y)⇡(g) is also uniformly

bounded for all z 2 D. As in the case of trees, when discussing more than one family of

representations, we will denote by {⇡C

z

: |z| < 1} the family of representations constructed

by Guentner and Higson using cocycles.

3.2 The Extension of the Construction of Pytlik and

Szwarc

As before, let G be a discrete group acting on a CAT(0)-cube complex with vertex set

X and, for x 2 X, let �
x

be the characteristic function of the one point set {x}. We will
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follow the methods used by Pytlik and Szwarc for the free group to construct a holomorphic

family of representations of G on `2(X). Define c
c

(X) ⇢ `2(X) to be the space of all finitely

supported complex functions on X. This space consists of all (complex) linear combinations

of the �
x

with x 2 X. As before, for all x, y 2 X, let d(x, y) be the geometric distance

between x and y.

Now fix a vertex x in X. For the remainder of this section, consider this same vertex

to be fixed . We define an admissable cube-path from y to a (in the direction of x), say

C = (C0, C1 . . . Cn

), to be one such that every hyperplane in every cube C
i

should separate

x and y with y 2 C0 and a 2 C
n

and also that each such hyperplane must separate a

from y. Given an admissable cube-path C = (C0, C1, . . . , Cn

) from y to a, the weight of C,

denoted w(C), is defined to be (�1)n where n is the number of even dimensional cubes in C.

Alternatively, w(C) =
nQ

i=0
(�1)dim C

i

�1.

For every vertex y 2 X, let C
x

(y) be the set of all vertices that are on a geodesic from y

to x and in a cube with y. Define P
j

: c
c

(X) ! c
c

(X) to be the linear operator such that

for all y and a 2 X ,

P
j

�
y

(a) =

8
>><

>>:

1, if a 2 C
x

(y), d(y, a) = j � 0

0, otherwise.

where d(y, a) is the geometric distance from y to a. Note that P0 is actually the identity

operator, P
j

�
y

= 0 for every j greater than the dimension of the cube complex and P
j

�
y

(a) 6=

0 implies that d(a, x)  d(y, x). We then define the linear operator Q
z

= zP1�z2P2+z3P3�

· · ·+ (�1)n�1znP
n

± . . . . Note that Q
z

�
y

will have only d� 1 nonzero terms, where d is the

dimension of the cube C
x

(y). We then also define the related operator P
z

= 1�Q
z

for later

ease of use. The following diagram shows a simple example of Q
z

�
y

for a three dimensional

cube. In this cube Q
z

�
y

= z�
v3 + z�

v5 + z�
v6 � z2�

v1 � z2�
v2 � z2�

v4 + z3�
v0 .
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Figure 3.3: Q
z

�
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Lemma 3.2.1. For every complex number z, the linear operator P
z

is invertible and

P�1
z

= 1 +Q
z

+Q2
z

+ . . . .

Proof. Let f 2 c
c

(X). Then f is a linear combination of �
v

, v 2 X, that is, f =
P

v2V c
v

�
v

for

some finite subset V ofX and complex numbers c
v

2 C, v 2 V . Let n = max{d(v, x) : v 2 V }

where x is the previously chosen fixed vertex. Then for m > n, Qm

z

�
v

= 0 for all v 2 V and

we have Qm

z

f=0. Therefore

f = (1�Qm

z

)f = (1�Q
z

)
�
1 +Q

z

+Q2
z

+ . . . Qm�1
z

�
f = (1�Q

z

)
�
1 +Q

z

+Q2
z

+ . . .
�
f.

We conclude that P�1
z

= 1 + Q
z

+ Q2
z

+ . . . , which is a well-defined linear operator as

(1 +Q
z

+Q2
z

+ . . . )f has only finitely many nonzero terms for every f 2 c
c

(X).

Lemma 3.2.2. Let a 2 X and f 2 c
c

(X). If (Q
z

f) (a) 6= 0 then there exists b 2 X such

that f(b) 6= 0 and a cube C such that a and b are vertices of C and all hyperplanes in C

separate b and x.

Proof. Let B ✓ X be the collection of all b such that a lies on an admissible cube-path from

53



b to x and that b is in a cube common with a. Then

((Q
z

)f) (a) = Q
z

X

b2B

f(b)�
b

(a) =
X

b2B

f(b)Q
z

�
b

(a).

Thus if (Q
z

f)(a) 6= 0, there must exist some b such that f(b) 6= 0 and Q
z

�
b

(a) 6= 0, the latter

implying that a and b are in the same cube.

We will now need some new notation. Let C(y, a) be the set of all admissible cube-paths

from a to y and let C
n

(y, a) be the subset of these consisting of all admissible cube-paths

from y to a of length n.

Proposition 3.2.3. Let y and a be vertices in X with d(y, a) � 1 and (Qn

z

�
y

) (a) 6= 0. Then

(Qn

z

�
y

) (a) = zd(y,a)
X

C2C
n

(y,a)

w(C). (3.3)

Proof. We will first prove this for n = 1. In this case y and a are in the same cube and

there is only one admissible cube-path of length 1 and the minimum dimension sub-cube

connecting a and y will have dimension d(y, a). Let C1 be this minimum dimension cube.

Then

(Q
z

�
y

) (a) = (�1)d(y,a)�1zd(y,a) = zd(y,a)(�1)dim C1�1 = zd(y,a)w(C1) = zd(y,a)
X

C2C
n

(y,a)

w(C)

Now for an arbitrary n, an admissible cube-path of cubic length n from y to a can be given

by a concatenation of an admissible cube-path of length 1 from y to a vertex one closer in cube

distance to a and an admissible cube-path of length n�1 from that vertex to a. Let this set of

vertices be denoted by {v
i

}
i2I and note that these form a cube with y. Further note that for

each 1  i  n, C1(y, vi) is a single element set. Then we may think of C
n

(y, a) as the disjoint
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union of the sets S
i

= {(D
i

, C1, . . . , Cn�1)|Di

2 C1(y, vi), (C1, . . . , Cn�1) 2 C
n�1(vi, a)}. Then

Qn

z

�
y

= Qn�1
z

(Q
z

�
y

)

=
X

i2I

Qn�1
z

�
(�1)d(y,vi)�1zd(y,vi)

�
�
v

i

.

Now assume that (3.3) holds for all 1  k < n. Then

Qn

z

�
y

(a) =
X

i2I

(�1)d(y,vi)�1zd(y,vi)Qn�1
z

(�
v

i

)(a)

=
X

i2I

(�1)d(y,vi)zd(y,vi)�1zd(vi,a)
X

C2C
n�1(v

i

,a)

w(C)

= zd(y,a)
X

i2I

(�1)d(y,vi)�1
X

C2C
n�1(v

i

,a)

w(C)

= zd(y,a)
X

i2I

w(D
i

)
X

C2C
n�1(v

i

,a)

w(C)

= zd(y,a)
X

E2C
n

(y,a)

w(E)

as w(D
i

) = (�1)d(y,vi)�1 and d(y, v
i

) + d(v
i

, a) = d(y, a) since v
i

is on a geodesic from y to a.

Therefore (3.3) holds.

Proposition 3.2.4. Let y and a be vertices in X. Then

X

C2C(y,a)

w(C) = 1.

Proof. We will prove this by induction on the geometric distance from y to a. Suppose

d(a, y) = 1. Then there is only one admissible cube-path from y to a. This cube is 1-

dimensional, hence has weight 1.

Suppose d(a, y) = n. The admissible cube-paths from y to a are determined by the

vertices one closer in cubic distance to y than a. As these vertices are all cubic distance one

from a, they are all in a cube with a. Moreover, they must be in a cube together as they are
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all on an admissible cube-path from y to a.

Hence these vertices, together with a, form a cube, say of dimension k. Note that this

cube contains 2k�1 vertices other than a which we will describe as V = {v
i

: 1  i  2k � 1}.

Let C(y, v
i

)C
i

be the set of all admissable cube-paths from y to v
i

concatenated with the

cube-path C
i

of cube-length 1 from v
i

to a. We may then describe the admissible cube-paths

from y to a as the disjoint union

C(y, a) =
2k�1[

i=1

C(y, v
i

)C
i

where C
i

is the single cube containing y and v
i

.

As this is a disjoint union, we may then calculate the sum of the weights counting the

vertices in increasing order of their geometric distance from y and noting that for a cube

of dimension k containing a, the number of vertices of geometric distance m from a is
�
k

m

�
.

Similar to above, we note that every admissible cube-path C 2 C(y, a) can be formed as

a concatenation of an admissible cube-path from y to some vertex v
i

2 V followed by the

cube-path of length 1 from v
i

to a. Let C
i

be the cube of minimum dimension containing v
i

and a and C
i

the cube-path of cubic length 1 from v
i

to a. This gives
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X

C2C(y,a)

w(C) =
2k�1X

i=1

X

D2C(y,v
i

)

w(D)w(C
i

)

=
2k�1X

i=1

X

D2C(y,v
i

)

w(D) · (�1)dim C

i

�1

=
2k�1X

i=1

(�1)dim C

i

�1

=
X

v

i

2V

(�1)dim C

i

�1

=

✓
k

1

◆
· (�1)0 +

✓
k

2

◆
· (�1)1 + · · ·+

✓
k

k

◆
· (�1)k�1

= 1,

where in the end, rather than sum over all vertices v
i

, we sum over the sets of vertices of

distance m from a, 1  m  k. The final equality is from the following well known result

about alternating binomial numbers:

kX

j=0

✓
k

j

◆
(�1)j(1)k�j = 0.

Note that if a = y or if a is not on a geodesic from y to x, Qn

z

�
y

(a) = 0 for all n by the

definition of Q
z

, hence P�1
z

�
y

(a) = 1.

Proposition 3.2.5. Let a be on a geodesic from y to x with a 6= y. Then P�1
z

�
y

(a) = zd(y,a).

Proof. Let a be on a geodesic from y to x, a 6= y. Then
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P�1
z

�
y

(a) =

 
1 +

1X

n=1

Q
z

!
�
y

(a)

= �
y

(a) +
1X

n=1

0

@zd(y,a)
X

C2C
n

(y,a)

w(C)

1

A

= 0 + zd(y,a)
X

C2C(y,a)

w(C)

= zd(y,a)

For z 2 C, |z| < 1, let w =
p
1� z2 where

p
1� z2 denotes the principal branch of

the square root. Let p be the maximum dimension cube in the cube complex. For each

vertex v let p
v

be the number of directions geodesics may start from v to x, that is, the

number of hyperplanes separating v from x and adjacent to v. Then define a linear operator

T
z

: c
c

(X) ! c
c

(X) by T
z

�
v

= wp�p

v�
v

. It is easy to see that T�1
z

�
v

= wp

v

�p�
v

.

We may now define a representation ⇡P

z

(g) of the group G into the invertible linear

transformations on c
c

(X). Let ⇡(g) : c
c

(X) ! c
c

(X) be the permutation representation of

G. Note that for f 2 c
c

(X), we have ⇡(g)f(x) = f(g�1x) and, in particular, ⇡(g)(�
x

) = �
gx

.

We define, for |z| < 1,

⇡P

z

(g) = T�1
z

P�1
z

⇡(g)P
z

T
z

and note that ⇡P

z

(g) is a conjugation of the permutation representation by P
z

T
z

.

As in Chapter 1, in the next section we will show that this representation is identical to

the cocycle representation of Guentner and Higson on c
c

(X). As such, our representation

will inherit the property of being uniformly bounded for all z 2 D and may then be extended

by continuity to `2(X).
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3.3 The two constructions are identical for discrete

groups acting on the cube complex

As in the case of trees, it is possible to prove that ⇡C

z

and ⇡P

z

are in fact identical if

the group G acts transitively on the set of vertices X of a CAT(0)-cube complex using

cyclic vectors. However, we wish to consider the more general case where the group is not

necessarily acting transitively on the cube complex.

Let z 2 D, let G be a discrete group acting on the CAT(0)-cube complex X. Let the two

families of representations ⇡C

z

and ⇡P

z

be constructed as above. As in the case for trees, we

will generalize our notation so that for all z 2 D and v 2 X, ⇡C

z,v

and ⇡P

z,v

will be the families

of representations constructed as above with initial fixed point v. Recall Propositon 3.1.28

which we restate.

Proposition 3.3.1. Fix a vertex x. Then for y 2 X and c
ab

= hc
z

(x, y)�
b

, �
a

i, if c
ab

is

nonzero, then c
ab

= (�1)t(a,b)zd(a,b)w`(a,b).

Recall here that H(y, x; b) was defined to be the subset of those hyperplanes in H(x, y)

that are adjacent to b and separate b from y; H(x, y; a) was defined similarly for a with

respect to x; `(a, b) was defined to be |H(y, x; b)�H(x, y; a)|; and t(a, b) was defined to be

the number of hyperplanes in H(a, b) with a on the same side as y.

Corollary 3.3.2. For all a 2 X on a geodesic from x to gx, h⇡C

z,x

(g)�
x

, �
a

i = zd(a,gx)w`(a,gx)

and `(a, gx) = |H(x, gx; a)|.

Proof. Recall that ⇡C

z

(g)�
x

= c
z

(x, gx)�
gx

. We have that H(gx, x; gx) = ; hence `(a, gx) =

|H(x, gx; a)|. Moreover, a is on a geodesic from x to gx, so t(a, gx) is the number of hyper-

59



planes in H(a, gx) with a on the same side as gx, hence t(a, gx) = 0.

h⇡C

z

(g)�
x

, �
a

i = hc
z

(x, gx)⇡(g)�
x

, �
a

i

= hc
z

(x, gx)�
gx

, �
a

i

= (�1)t(a,gx)zd(a,gx)w`(a,gx)

= zd(a,gx)w`(a,gx).

As in the tree case, we must now tie the two families of constructions together. As before,

we first generalize the linear operators P
z

and T
z

from the Pytlik-Szwarc construction. Each

was constructed using a fixed point x 2 X. We now wish to vary this fixed point so for all

v 2 X, define P
z,v

, Q
z,v

and T
z,v

to be the linear operators constructed using v 2 X as the

fixed point. In the new notation

⇡P

z,v

(g) = T�1
z,v

P�1
z,v

⇡(g)P
z,v

T
z,v

.

Lemma 3.3.3. Let z 2 D, g 2 G. Then for all x 2 X we have ⇡C

z,x

(g)�
x

= ⇡P

z,x

(g)�
x

.

Proof. Let v 2 X be on a geodesic from x to gx. Recall from Section 3.2 that for a particular

vertex v, we defined p
v

to be the number of hyperplanes adjacent to v that separate v from x

and p to be the dimension of the maximum dimension cube in the cube complex. Note that

in this case p
v

= |H(x, gx; v)| = `(v, gx) by the previous corollary. By Proposition 3.2.5,

for all vertices v on a geodesic from gx to x, P�1
z,x

�
gx

(v) = zd(v,gx) which further implies that
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hT�1
z

P�1
z,x

�
gx

, �
v

i = T�1
z

P�1
z,x

�
gx

(v) = wp

v

�pzd(v,gx). Then

h⇡P

z,x

(g)�
x

, �
v

i = hT�1
z,x

P�1
z,x

⇡(g)P
z,x

T
z,x

�
x

, �
v

i

= hT�1
z,x

P�1
z,x

⇡(g)P
z,x

wp�
x

, �
v

i

= hT�1
z,x

P�1
z,x

⇡(g)wp�
x

, �
v

i

= hT�1
z,x

P�1
z,x

wp�
gx

, �
v

i

= wp

vzd(v,gx)

= w`(v,gx)zd(v,gx)

= h⇡C

z,x

(g)�
x

, �
v

i.

If v 2 X is not on a geodesic from x to gx, then h⇡C

z,x

(g)�
x

, �
v

i = hc
z

(x, gx)�
gx

, �
v

i = 0 as

v is not in the interval [x, gx]. Furthermore

h⇡P

z,x

(g)�
x

, �
v

i = hT�1
z,x

P�1
z,x

⇡(g)P
z,x

T
z,x

�
x

, �
v

i

= hT�1
z,x

P�1
z,x

⇡(g)P
z,x

wp�
x

, �
v

i

= hwpT�1
z,x

P�1
z,x

⇡(g)(1�Q
z,x

)�
x

, �
v

i

= hwpT�1
z,x

P�1
z,x

⇡(g)�
x

, �
v

i

= hwpT�1
z,x

P�1
z,x

�
gx

, �
v

i.

By the construction of T�1
z,x

and P�1
z,x

, we can see that the support of T�1
z,x

P�1
z,x

�
gx

is the interval

[x, gx], hence h⇡P

z,x

(g)�
x

, �
v

i = 0, which completes the proof.

For the following lemma, recall that c
z

(gx, gv)⇡(g) = ⇡(g)c
z

(x, v) as c
z

is a cocycle for ⇡.

Lemma 3.3.4. Let x, v 2 X. If z 2 D then ⇡C

z,x

(g) = c
z

(x, v)⇡C

z,v

(g)c
z

(v, x).

Proof. Let z 2 D, g 2 G and x, v 2 X. Then ⇡C

z,x

(g) = c
z

(x, gx)⇡(g) and ⇡C

z,v

(g) =
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c
z

(v, gv)⇡(g). Hence,

c
z

(x, v)⇡C

z,v

(g)c
z

(v, x) = c
z

(x, v)c
z

(v, gv)⇡(g)c
z

(v, x)

= c
z

(x, gv)⇡(g)c
z

(v, x)

= c
z

(x, gv)c
z

(gv, gx)c
z

(gx, gv)⇡(g)c
z

(v, x)

= c
z

(x, gx)c
z

(gx, gv)⇡(g)c
z

(v, x)

= c
z

(x, gx)⇡(g)c
z

(x, v)c
z

(v, x)

= c
z

(x, gx)⇡(g)

= ⇡C

z,x

(g)

Proposition 3.3.5. Let x, v 2 X. Then for every z 2 D we have c
z

(x, v) = T�1
z,x

P�1
z,x

P
z,v

T
z,v

.

Proof. If v = x, then clearly c
z

(x, v) = 1 = T�1
z,x

P�1
z,x

P
z,v

T
z,v

. If d(x, v) = 1, then x and v are

adjacent. Let a 2 X and let H be the hyperplane separating x and v.

Case 1: a = v. Recall that for all y, a 2 X, we have T
z,y

�
a

= wp�p

a�
a

and T�1
z,y

�
a

=

wp

a

�p�
a

where p is the maximum dimension cube in the cube complex and p
a

is the number

of hyperplanes adjacent to a that separate a and x. Hence,

T�1
z,x

P�1
z,x

P
z,v

T
z,v

�
v

= T�1
z,x

P�1
z,x

P
z,v

wp�
v

= wpT�1
z,x

P�1
z,x

�
v

= wpT�1
z,x

(1 +Q
z,x

+Q2
z,x

+ · · · )�
v

= wpT�1
z,x

(�
v

+ z�
x

)

= wp(w1�p�
v

+ zw�p�
x

)

= w�
v

+ z�
x

= c
z

(x, v)�
v

.
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Case 2: a = x. In this case, there is one less hyperplane adjacent to a that separates a

and x. Hence

T�1
z,x

P�1
z,x

P
z,v

T
z,v

�
x

= T�1
z,x

P�1
z,x

P
z,v

wp�1�
x

= wp�1T�1
z,x

P�1
z,x

(�
x

� z�
v

)

= wp�1T�1
z,x

(1 +Q
z,x

+Q2
z,x

+ · · · )(�
x

� z�
v

)

= wp�1T�1
z,x

(�
x

� z�
v

� z2�
x

)

= wp�1T�1
z,x

(w2�
x

� z�
v

)

= wp�1(w2�p�
x

� zw1�p�
v

)

= w�
x

� z�
v

= c
z

(x, v)�
x

.

Case 3: a 6= x, v. This case must be split into three subcases.

Subcase i: Suppose that a is not adjacent to the hyperplane separating x and v.

Then Q
z,x

�
a

= Q
z,v

�
a

, T
z,x

�
a

= T
z,v

�
a

= wr and T�1
z,x

�
a

= T�1
z,v

�
a

= w�r for some positive

integer r. Moreover

P�1
z,x

P
z,v

= (1 +Q
z,x

+Q2
z,x

+ · · · )(1�Q
z,v

)

= (1 +Q
z,x

+Q2
z,x

+ · · · )� (Q
z,v

+Q
z,x

Q
z,v

+Q2
z,x

Q
z,v

+ · · · )

= 1 + (Q
z,x

�Q
z,v

) +Q
z,x

(Q
z,x

�Q
z,v

) +Q2
z,x

(Q
z,x

�Q
z,v

) + · · ·

= 1 + P�1
z,x

(Q
z,x

�Q
z,v

).
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This, together with the fact that Q
z,x

�
a

= Q
z,v

�
a

, gives

T�1
z,x

P�1
z,x

P
z,v

T
z,v

�
a

= T�1
z,x

(1 + P�1
z,x

(Q
z,x

�Q
z,v

))wr�
a

= wrT�1
z,x

(�
a

+ P�1
z,x

(Q
z,x

�Q
z,v

)�
a

)

= wrT�1
z,x

�
a

= �
a

= c
z

(x, v)�
a

.

Subcase ii: Suppose a is adjacent to H and in the same half-space as v.

In this subcase, and in the following subcase, we will prove the equivalent result P
z,x

T
z,x

c
z

(x, v) =

P
z,v

T
z,v

. Let a be the vertex adjacent to a acrossH, that is, in the same half-space as x. Then

T
z,v

�
a

= T
z,x

�
a

= wT
z,x

�
a

= wr for some positive integer r. Let C be the first cube in the

normal cube-path from a to x, C
x

be the first cube in the normal cube-path from a to x and

C
v

the first cube in the normal cube-path from a to v. Note that the set of vertices of C is the

disjoint union of the sets of vertices of C
x

and C
v

. We will examine the vertices of C
x

and C
v

separately. Note also that if b 2 X is not in C, hQ
z,v

T
z,v

�
a

, �
b

i = 0 = hQ
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i.

If b 2 C
v

, let d(b, a) = n. Then d(b, a) = n + 1, hP
z,x

�
a

, �
b

i = 0 and hP
z,v

T
z,v

�
a

, �
b

i =

hP
z,v

wr�
a

, �
b

i = (�1)nznwr. We also have that
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hP
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i = hP
z,x

T
z,x

(w�
a

+ z�
a

), �
b

i

= hwP
z,x

T
z,x

�
a

, �
b

i+ hzP
z,x

T
z,x

�
a

, �
b

i

= hwP
z,x

wr�1�
a

, �
b

i+ hzP
z,x

wr�
a

, �
b

i

= hwrP
z,x

�
a

, �
b

i+ hwrzP
z,x

�
a

, �
b

i

= (�1)nznwr + 0

= hP
z,v

T
z,v

�
a

, �
b

i.

If b 2 C
x

, let d(b, a) = n. Then d(b, a) = n + 1 and hP
z,v

T
z,v

�
a

, �
b

i = hP
z,v

wr�
a

, �
b

i = 0. We

also have that

hP
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i = hP
z,x

T
z,x

(w�
a

+ z�
a

), �
b

i

= hwP
z,x

T
z,x

�
a

, �
b

i+ hzP
z,x

T
z,x

�
a

, �
b

i

= hwP
z,x

wr�1�
a

, �
b

i+ hzP
z,x

wr�
a

, �
b

i

= (�1)n+1zn+1wr + (�1)nzn+1wr

= 0

= hP
z,v

T
z,v

�
a

, �
b

i.

Subcase iii: Suppose a is adjacent to H and in the same half-space as x.

As before, let a be the vertex adjacent to a across H which is now in the same half-space

as v. ThenT
z,x

�
a

= wT
z,v

�
a

= wT
z,x

�
a

= wr for some positive integer r. As before, let C

be the first cube in the normal cube-path from a to x, C
x

the first cube in the normal path

from a to x and C
v

the first cube in the normal path from a to v. Note that we again have

that the set of vertices of C is the disjoint union of the set of vertices of C
x

and C
v

and that
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if b 2 X is not in C, hP
z,v

T
z,v

�
a

, �
b

i = 0 = hP
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i.

If b 2 C
v

, let d(b, a) = n. Then d(b, a) = n� 1, hwP
z,x

wr�
a

, �
b

i = 0 and hP
z,v

T
z,v

�
a

, �
b

i =

hP
z,v

wr�1�
a

, �
b

i = (�1)nznwr�1 and

hP
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i = hP
z,x

T
z,x

(w�
a

� z�
a

), �
b

i

= hwP
z,x

T
z,x

�
a

, �
b

i � hzP
z,x

T
z,x

�
a

, �
b

i

= hwP
z,x

wr�
a

, �
b

i � hzP
z,x

wr�1�
a

, �
b

i

= 0� (�1)n�1znwr�1

= hP
z,v

T
z,v

�
a

, �
b

i.

If b 2 C
x

, let d(b, a) = n. Then d(b, a) = n � 1 and hP
z,v

T
z,v

�
a

, �
b

i = hP
z,v

wr�1�
a

, �
b

i =

(�1)n�1zn�1wr�1 and

hP
z,x

T
z,x

c
z

(x, v)�
a

, �
b

i = hP
z,x

T
z,x

(w�
a

� z�
a

), �
b

i

= hwP
z,x

T
z,x

�
a

, �
b

i � hzP
z,x

T
z,x

�
a

, �
b

i

= hwP
z,x

wr�
a

, �
b

i � hzP
z,x

wr�1�
a

, �
b

i

= (�1)n�1zn�1wr+1 � (�1)nzn+1wr�1

= (�1)n�1zn�1wr�1(w2 + z2)

= (�1)n�1zn�1wr�1

= hP
z,v

T
z,v

�
a

, �
b

i.

If d(x, v) > 1, then x and v are no longer adjacent. However, Guentner and Higson

[9] have previously shown that c
z

(x, v) is not dependent on the geodesic (or even path)

chosen from x to v. Label the vertices of any particular geodesic from x to v by x =

v0, v1, v2, . . . , vn = v. Note that for 0  i < n� 1,
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T�1
z,v

i

P�1
z,v

i

P
z,v

i+1Tz,v

i+1T
�1
z,v

i+1
P�1
z,v

i+1
P
z,v

i+2Tz,v

i+2 = T�1
z,v

i

P�1
z,v

i

P
z,v

i+2Tz,v

i+2 .

Therefore

c
z

(x, v) = c
z

(v0, v1)cz(v1, v2)cz(v2, v3) · · · cz(vn�1, vn)

= T�1
z,v0

P�1
z,v0

P
z,v

n

T
z,v

n

= T�1
z,x

P�1
z,x

P
z,v

T
z,v

.

Corollary 3.3.6. Let x, v 2 X. For every z 2 D, the representation ⇡P

z,x

(g) is equal to

c
z

(x, v)⇡P

z,v

(g)c
z

(v, x).

Proof. Let z 2 D, g 2 G and x, v 2 X. Then

c
z

(x, v)⇡P

z,v

(g)c
z

(v, x) = T�1
z,x

P�1
z,x

P
z,v

T
z,v

T�1
z,v

P�1
z,v

⇡(g)P
z,v

T
z,v

T�1
z,v

P�1
z,v

P
z,x

T
z,x

= T�1
z,x

P�1
z,x

⇡(g)P
z,x

T
z,x

= ⇡P

z,x

(g).

Theorem 3.3.7. For every z 2 D and x 2 X, the representations ⇡P

z,x

and ⇡C

z,x

are equal.

Proof. Let z 2 D, g 2 G. We have already seen that for all x 2 X, ⇡P

z,x

(g)�
x

= ⇡C

z,x

(g)�
x

. Fix

x 2 X and let v 2 X. We will prove the assertion by induction on the geometric distance

from x to v. Let d(x, v) = 1. Then the only admissible cube-path from x to v is the edge
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joining x and v. We then have that

c
z

(v, x)⇡C

z,x

(g)w�
v

� c
z

(v, x)⇡P

z,x

(g)w�
v

= c
z

(v, x)⇡C

z,x

(g)z�
x

+ c
z

(v, x)⇡C

z,x

(g)w�
v

� c
z

(v, x)⇡P

z,x

(g)z�
x

� c
z

(v, x)⇡P

z,x

(g)w�
v

= c
z

(v, x)⇡C

z,x

(g)(z�
x

+ w�
v

)� c
z

(v, x)⇡P

z,x

(g)(z�
x

+ w�
v

)

= c
z

(v, x)⇡C

z,x

(g)c
z

(x, v)�
v

� c
z

(v, x)⇡P

z,x

(g)c
z

(x, v)�
v

= ⇡C

z,v

(g)�
v

� ⇡P

z,v

(g)�
v

(by Corollary 3.3.6)

= 0.

As w is a nonzero complex number and c
z

(x, v) is an invertible operator, we then have

⇡C

z,x

(g)�
v

= ⇡P

z,x

(g)�
v

.

Now assume that the assertion holds for all vertices y 2 X such that d(x, y)  n � 1.

Let v 2 X be such that d(x, v) = n. Then by the cocycle construction of Guentner and

Higson, c
z

(x, v)�
v

is a linear combination of elements of the set {�
y

|d(y, x)  n, y on a

geodesic from v to x} and hc
z

(x, v)�
v

, �
v

i = wk for some positive integer k. We may then let

c
z

(x, v)�
v

= wk�
v

+ ⇠ where ⇠ is a linear combination of �
y

with all y such that d(x, y) < n.

By the induction hypothesis, ⇡C

z,x

(g)⇠ = ⇡P

z,x

(g)⇠. Recalling again that c
z

(v, x) is invertible

and that w is nonzero, we have that

c
z

(v, x)⇡C

z,x

(g)wk�
v

� c
z

(v, x)⇡P

z,x

(g)wk�
v

= c
z

(v, x)⇡C

z,x

(g)wk�
v

+ c
z

(v, x)⇡C

z,x

(g)⇠ � c
z

(v, x)⇡P

z,x

(g)wk�
v

� c
z

(v, x)⇡P

z,x

(g)⇠

= c
z

(v, x)⇡C

z,x

(g)(wk�
v

+ ⇠)� c
z

(v, x)⇡P

z,x

(g)(wk�
v

+ ⇠)

= c
z

(v, x)⇡C

z,x

(g)c
z

(x, v)�
v

� c
z

(v, x)⇡P

z,x

(g)c
z

(x, v)�
v

= ⇡C

z,v

(g)�
v

� ⇡P

z,v

(g)�
v

(by Corollary 3.3.6)

= 0
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As before, we then have ⇡C

z,x

(g)�
v

= ⇡P

z,x

(g)�
v

.

Our family of representations inherits the properties of being holomorphic and uniformly

bounded from the work of Guentner and Higson.
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Chapter 4

An Example

4.1 Constructing a Cube Complex in H3

As the representations that we have studied and created above are of groups acting on a

CAT(0)-cube complex, in this chapter we will examine an example of a group acting on a

non-positively curved (or locally CAT(0)) cube complex which yields an interesting result.

We will investigate how three manifold groups can act freely on a non-positively curved cube

complex. By a three manifold group we will mean the fundamental group of a compact

orientable three manifold without boundary. The group we will examine will be a finite

index subgroup of the orbifold group U of the Borromean rings and it will be acting on a

quotient space of H3. [6]

In order to construct the cube complex we wish to examine, we must first examine a

tessellation of H3 by dodecahedra, hence we will need the following geometry. A regular

Euclidean dodecahedron can be cubulated into 8 cubes in a natural way, as indicated below

in Figure 4.2, where we have depicted a cube-like polyhedron C0 contained in the unit cube

in the positive octant. The coordinates are the usual (x, y, z) coordinates and P,Q and R

are faces of C0.
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Figure 4.1: The Borromean Rings

Let H be the order 8 group generated by reflections in the xy, xz and yz planes so that

H is isomorphic to Z2 � Z2 � Z2. Then for any choice of a, 0 < a < 1, we define D(a) to be

the union of h(C0) for all h 2 H. In particular, if we let a = 1
2(3 �

p
5), the three planes

P,Q and R depicted in Figure 4.2 intersect at the point (t, t, t) with t = 1
2(
p
5 � 1). Note

that t = 1� a.

Lemma 4.1.1. The polyhedron D(a) is a regular Euclidean dodecahedron.

Proof. We can see that the faces of C0 that are subsets of the axis planes will be internal

in D(a), hence need not be considered. As |H| = 8, the resulting polyhedron will have 24

quadrangular faces. However, pairs of these are coplanar and form 12 regular pentagons.

As an example, from the vertices of P we can calculate a normal vector to P to be

(1, 0, 1 � a). Let P 0 be the face of the polygon resulting in reflecting P in the xz plane. It

will have vertices (1, 0, 0), (1,�a, 0), (t,�t, t) and (a, 0, 1). From these vertices we find the
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y

x

z

(1, 0, 0)
(1, a, 0)

(a, 0, 1)

(0, 0, 1)

(0, 1, 0)

(0, 1, a)(t, t, t)

P
R

Q

Figure 4.2: Topological Cube

same normal vector hence P and P 0 are coplanar.

Denote by P ⇤ the pentagon consisting of the union of P and P 0. It has vertices (1,�a, 0),

(1, a, 0), (t, t, t), (a, 0, 1), and (t,�t, t). It is easy to show that these form a regular pentagon

and further that the other 22 faces of the polygon form 11 more regular pentagons.

Thus D = D(a) is naturally decomposed into eight “topological” cubes by the eight

octants. We can then choose a sphere at infinity centered at the origin, of minimum radius

t
p
3 =

p
3
2 (

p
5�1), and our regular dodecahedron becomes a regular hyperbolic dodecahedron

in the Klein model for H3. In particular, if we let the radius of the sphere at infinity be the

square root of the golden mean, we arrive at a useful result.

Lemma 4.1.2. Let the radius of the sphere at infinity be
q

1
2(
p
5 + 1), then the dihedral

angle of the dodecahedron becomes 90�.

Proof. Let S1 denote the sphere at infinity. Let P ⇤ be the pentagon composed of P from

72



Figure 4.2 together with its reflection in the xz plane P 0, as in the proof of Lemma 4.1.1. We

have seen that a normal vector to P ⇤ is (1, 0, 1�a) hence P ⇤ sits in the plane x+(1�a)z = 1.

For ease of notation, we will denote this plane P1. Let Q⇤ be the adjacent pentagon that

shares an edge with P ⇤ adjoining the vertices (1,�a, 0) and (1, a, 0). It is easy to show that

Q⇤ sits in the plane x+ (a� 1)z = 1. Denote this plane Q1.

Let R denote the radius of the sphere at infinity. The planes P1 and Q1 intersect S1

in circles that intersect at two points, one of which is (1,
p
R2 � 1, 0). As we are working in

the Klein model, the dihedral angle between the two planes will be the same as the angle

of intersection of these two circles. As (1, 0, 1� a) is normal to P1, it is also normal to the

circle P1 \ S1. We also have that (1,
p
R2 � 1, 0) is normal to P1 \ S1, hence their cross

product is a tangent vector to this circle. It is slightly simpler to use t = 1� a to calculate

this cross product to be (�t
p
R2 � 1, t,

p
R2 � 1). Similarly, (1, 0, a� 1) and (1,

p
R2 � 1, 0)

are normal to Q1 \ S1 and their cross product is (t
p
R2 � 1,�t,

p
R2 � 1). If we then set

the dot product of these two vectors to be zero, it is then simple algebra to show that the

solution is R =
q

1
2(
p
5 + 1).

A presentation of the hyperbolic orbifold group U of the Borromean rings is given by

U = ha, b, c|a4, b4, c4, abcbc = bcbca, bcaca = cacab, cabab = ababci

where a, b and c represent rotations of 90o in the axes drawn in the dodecahedron above and

S3 = H3/U is defined by pasting matching faces of the dodecahedron, hence has singular

set the Borromean rings [6]. For example, in the dodecahedron, any 2 pentagons that share

a common edge that lies on an axis of rotation are pasted together by the 90� rotation in

that axis.

The group U always contains rotations, both 90� and 180�, hence does not act freely on

H3. However, s U is a Kleinian group, we are guaranteed that there exists a finite index

subgroup of U that does act freely [2]. We will shortly define this subgroup.
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From the presentation of U we see that we can define a homomorphism ↵ that maps a, b

and c to 1 in Z4. We simply check the relations to establish that this is a homormorphism.

We may then define a subgroup A of U to be the kernel of this homomorphism. A is then a

subgroup of index 4. Moreover a, b and c represent rotations and any nontrivial rotation will

be conjugate to aj, bj or cj where j = 1, 2 or 3 [6]. This follows from the fact that any two

oriented meridians corresponding to the same oriented component of a link are conjugate

in the fundamental group of the complement of that link and from the fact that the only

orientation preserving hyperbolic isometry with a fixed point is a rotation [6]. It follows from

this observation that the kernel of ↵, A, contains no rotations, hence acts freely on H3.

Thus we have a 4-fold regular branched covering of S3, with branch set the Borromean

rings. We shall denote manifold that is the branch cover of S3 by W . The cover W is a

compact hyperbolic manifold (not just orbifold), tessellated by four dodecahedra [7]. This

tessellation of W by four dodecahedra lifts to a tessellation of H3 using the universal covering

space map ⇢ : H3 �! W and pulling back the tessellation.

Note that as the dodecahedra in H3 are regular right dihedral angled dodecahedra, two

distinct dodecahedra in H3 intersect in a common pentagonal face of both, in a common

edge, in a common vertex or not at all. Our decomposition of each dodecahedra into 8

cube-like polyhedra then lifts to a decomposition of W into 32 cubes. This decomposition

of W then lifts to a decomposition of H3 into “topological” cubes.

There are two types of vertices of each of these cubes, vertices that don’t belong to

axes of rotation and vertices that do. Those that don’t belong to axes of rotation have

neighborhoods that are embedded as, if we remove the axes of rotation, we have a covering

space map from H3�{axes of rotation} to S3�{the Borromean rings}. The link of a vertex

is defined by local edges and there can be no identification of local edges. The axes that do

belong to axes of rotation have links that look like a double cone on an octagon (see figure

4.3. below). If the group contains a rotation, the link in the quotient space will contain

a bigon and the quotient space would not be non-positively curved. However, we will see
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below that our group contains no rotations, hence the quotient space will be non-positively

curved.

Alternatively, we may examine the links of the vertices of W . There are two types of

vertices. One type has a dihedral angle of 90o and the link of these types of vertices can be

seen in the first figure below. The second has a dihedral angle of 45o and the link of these

can be seen in the second figure below. In each case, the trianglular simplices of these links

are embedded in a topological cube in H3, hence each link is a flag simplicial complex and

W is non-positively curved.

Figure 4.3: Links of vertices in W

We can define homeomorphisms from the hyperbolic cube-like polyhedra to Euclidean

cubes in such a way that the Bridson-Haefliger definition of a cube complex in Chapter 2

above is satisfied.

4.2 Establishing the Group and Conclusions

Now let M be an arbitrary closed oriented 3-manifold with three manifold group ⇧, that

is, ⇧ is the fundamental group of M (⇧ = ⇡1(M)). As before, let U be the orbifold group

of the Borromean rings and A the kernel of the homomorphism ↵ defined above. Let G be

the finite index subgroup of U such that the quotient space of H3 under the action of G is

homeomorphic to M which is guaranteed to exist [6]. Let TOR(G) be the subgroup of G
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generated by the rotations in G.

Lemma 4.2.1. With the above definitions, both A \ G and TOR(G) are normal subgroups

of G.

Proof. As A is the kernel of a homomorphism from U to Z4, A is a normal subgroup of U .

Hence A \ G is a normal subgroup of G ⇢ U . Let t be a generator in TOR(G) and g 2 G.

As t is a rotation, it has finite order, say n. Then (gtg�1)n = gtng�1 = e, hence gtg�1 is a

rotation, hence a generator in TOR(G). Since the generating set is closed under conjugation,

TOR(G) is closed under conjugation.

Lemma 4.2.2. Any one 90� rotation in TOR(G) together with A \G generates G.

Proof. It is clear from the proof of the universality of U (ref) that the group G that gives

rise to M always contains 90� rotations. Let g 2 G. Let t be any 90� rotation in G. Suppose

↵(g) = i where i = 0, 1, 2 or 3. Then ↵(t4�ig) = 0, hence t4�ig = a 2 A. Therefore

g = tia 2 tiA.

The previous lemma gives a commutative diagram of group inclusions shown below in

Figure 4.4. Note that all subgroups are normal subgroups.

G

TOR(G)

>

A \G

<

A \ TOR(G)

><

Figure 4.4: Subgroups

We will need a theorem of Armstrong .

Theorem 4.2.3 ([1]). Let M be a 3-manifold, let G be the subgroup of U such that H3/G ⇠=

M and let TOR(G) be the subgroup of G generated by rotations. Then ⇡1(M) is isomorphic

to G/TOR(G).
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The diagram of group inclusions in the previous section, together with a basic result from

group theory, and Armstrong’s theorem yield the following corollary.

Corollary 4.2.4. With the above notation, ⇡1(M) ⇠= (A \G)/(A \ TOR(G))

We now have another diagram of group inclusions e�A\TOR(G)�A\G which yields

a series of covering space maps

H3 �! H3/(A \ TOR(G)) �! H3/(A \G).

Note that in this example we have regular coverings as the corresponding subgroups are

normal.

Then, by covering space theory, as the group A is acting freely, and as H3 is the simply

connected universal cover for both of these spaces, we have ⇡1(H3/(A \ TOR(G))) = A \

TOR(G) and ⇡1(H3/(A\G)) = A\G. Therefore the group of covering space transformations

of H3/(A \ TOR(G)) as a covering space of H3/(A \G)) is isomorphic to

(A \G)/(A \ TOR(G)) ⇠= ⇡1(M).

Moreover, all of the covering space maps preserve the cubulation of the space H3/(A \

TOR(G)) induced by the cubulation of H3. We may summarize the preceding in a theorem.

Recall that a non-positively curved space need not be simply connected.

Theorem 4.2.5. Let ⇧ be a 3-manifold group. Then there is a non-positively curved cube

complex, H3/(A \ TOR(G)), on which ⇧ acts freely.

Proof. As A acts freely, A\G and A\TOR(G) act freely. As a result, both H3/(A\G) and

H3/(A \ TOR(G)) satisfy the link condition and are therefore non-positively curved.

As the action preserves dimension, we can then restrict the above covering space maps

to the 2-skeleton which yields the following corollary.
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Corollary 4.2.6. Let ⇧ be a 3-manifold group. Then there are 2-dimensional cube com-

plexes K and L such that ⇧ acts freely preserving the cubulation on K as a group of deck

transformations with base space L.

Proof. In this case, the cube-complex K is the 2-skeleton of the cube-complex H3/(A \ G)

and the cube-complex L is the 2-skeleton of the cube complex H3/(A \ TOR(G)).
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