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ABSTRACT 

 

Selenium (Se) is a micronutrient essential for life and important for proper 

neurological and immune function, reproductive viability, and cardiovascular health. In 

the body, it acts through incorporation into selenoproteins, which can function as 

antioxidants that protect cells from oxidative damage and maintain many other cellular 

functions. This dissertation focused on the roles of Selenoprotein P and M (Sepp1 and 

SelM) in learning and memory. 

Sepp1 is primarily thought to transport Se to the tissues, including the brain, for 

synthesis of other selenoproteins. Sepp1 has been shown to colocalize with amyloid 

beta plaques in postmortem brains from patients diagnosed with Alzheimer’s disease 

(AD) (1). Sepp1-/- mice on selenium deficient diets have severe neurological 

impairments with major motor function deficits, and impaired hippocampal dependent 

synaptic function and memory, similar to deficits seen in AD. We hypothesize that 

Sepp1 has a localized function in the brain, independent of its function in transporting 

selenium to the brain and other body tissues.  

SelM has antioxidant properties and is highly expressed in the brain (2). The 

hippocampus, one of the areas in which SelM is expressed, is involved in learning and 

memory acquisition. A study using an AD mouse model having a mutant form of 

presenilin-2 resulted in suppression of SelM expression (3). We report here that SelM-/- 

male, but not female mice, lack hippocampal long-term potentiation (LTP), which is a 

cellular model for learning and memory. These results suggest that SelM has an integral 

sex-specific role in synaptic plasticity, learning and memory.  

To determine the direct role for Sepp1 in the brain, we developed a novel mouse 

model that has restored SEPP1 expression in forebrain neurons of Sepp1-/- mice. The 

successful restoration of LTP in Sepp1-/- mice with locally restricted SEPP1 gene rescue 

to forebrain neurons highlights the critical role Sepp1 plays in synaptic plasticity as well 

as enabling synthesis of SelM and other selenoproteins that are required for learning 

and memory. We elucidate the important neuroprotective properties of these 

selenoproteins in memory and learning, serving as a foundation for further studies to 

understand their roles in Alzheimer's disease and other neurodegenerative disorders. 



CHAPTER I 

 

INTRODUCTION 

  

 Selenium (Se) is a nutritional trace mineral essential for human health that is 

acquired primarily through dietary intake. The recommended daily allowance (RDA) for 

adults is 55µg/day, with 400 µg/day as the tolerable maximum before the onset of 

adverse effects (4).The primary source of Se is found initially in soil which is converted 

into nutrients for crops and livestock. Although soil and food in most regions of the 

United States have adequate selenium, some soils in other parts of the world, such as 

China and New Zealand, are selenium deficient.   

 Se is incorporated into selenoproteins as the 21st amino acid, selenocysteine. 

Many of the twenty-five known selenoproteins in humans, of which 24 are also found in 

rodents, have antioxidant properties that protect cells from oxidative stress (5–7). Se 

deficiency and/or mutations and polymorphisms in selenoprotein genes and cofactors 

(8) have been implicated in many diseases and conditions including neurodegeneration 

(1), infertility (9,10), cardiovascular disease, immune disorders, and cancer (11–13) in 

humans; (14). Low plasma selenium levels have been associated with intestinal 

malabsorption syndrome, cystic fibrosis, rheumatoid arthritis, neoplasia, and other 

clinical disorders in human beings (15). In certain Se-deficient areas of China, in which 

the population received less than 10 µg Se per day, led to development of Keshan 

disease, a prevalent but preventable cardiomyopathy that can be treated with Se 

supplementation (16,17).  While Se is a vital micronutrient, excessive Se intake can 

lead to toxicity, a condition known as selenosis. Excessive chronic consumption of more 

than 910 µg Se per day can lead to clinical selenosis in which symptoms such as hair 

loss, brittle hair, gastrointestinal disturbances, and a garlic odor from the breath and 

skin are exhibited and in extreme cases can lead to death (18,19).   

 Despite much progress in studying members of this unique family of proteins, the 

properties and functions of many of the selenoproteins are still not clearly understood. 

Vertebrate selenoproteins have been highly conserved through evolution. Coupled with 

the fact that Se is required for life and implicated in a host of diseases, further 
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elucidating the diverse functions and mechanisms of the family of selenoproteins may 

make critical contributions to treating many diseases and health conditions. This chapter 

provides an overview of the current understanding of Se and members of the 

selenoprotein family, including two that are central to this study, selenoprotein P 

(Sepp1) and selenoprotein M (SelM). 

 

Brief History of Selenium 

 The discovery of selenium dates back to 1817 when Jöns Jacob Berzelius, a 

Swedish chemist, stumbled upon what he thought was tellurium, as he was analyzing 

contaminants in sulfuric acid produced in his factory(20). Berzelius’ discovery of Se, 

which he named after the Greek moon goddess, Selene, established him as one of the 

world’s leading chemists in the 19th century.  

 Se can be found directly below sulfur and above tellurium in the periodical table 

and shares similar chemical properties with sulfur (21). Se is a fairly reactive element 

and combines directly and hydrochemically with both metals and non-metals (21). It 

combines easily with hydrogen, fluorine, chlorine, and bromine and reacts with nitric and 

sulfuric acids. It forms compounds called selenides when combined with certain metals. 

Se has chemical characteristics similar to sulfur and can quickly become toxic at high 

doses; five times more poisonous than arsenic (21). Not only does Se dosage and 

accumulation have a narrow range between safety and danger, but the range of optimal 

beneficial action is very narrow (21). For this reason, Se was more widely known as a 

toxin to livestock and people in industrial jobs with reports of teratogenic effects and 

carcinogenicity. It was not until 1954 that the biological functions of Se in 

microorganisms were first reported (22).  

 Finally in 1957, 140 years after the discovery of selenium, Schwartz and Foltz 

published a seminal manuscript describing this essential trace element as a critical 

protective dietary component against necrotic liver degeneration in rodents. Since then, 

extensive research has further affirmed that selenium is in fact required for cellular 

function in most terrestrial and some aquatic animal life. In the 1970’s, biochemist 

Thressa Stadtman (23) made the critical discovery of selenocysteine (Sec), Eventually, 

this lead recognition of Se as the 21st amino acid. Se has unique properties in that it is 



3 
 

encoded by the UGA codon, which is normally a stop codon. The mechanism in which 

this recoding event occurs was not uncovered until the 1980’s. These early discoveries 

in the Se field have paved the way to a vast expansion in Se research that 

encompasses multiple areas of human health and disease, veterinary medicine, and 

plant sciences.  

 Research on selenium and its biological effects on human health has also grown 

immensely. Many studies and large clinical trials have been conducted to explore 

whether dietary selenium can be used as a therapeutic tool for a wide range of medical 

conditions including cancer, infertility, and immune disorders. A 4.5-year study, using a 

supplementation of  200 µg/day Se as selenized yeast, showed that two-thirds of 

participants had lower risk of developing prostate cancer, but it was the men with initially 

low Se levels who benefitted the most (24).  Another study revealed that low plasma 

selenium was associated with a 4 to 5-fold increased risk of prostate cancer (25). This 

lead to the Selenium and Vitamin E Cancer Prevention Trial (SELECT) trial, one of the 

largest cancer prevention studies conducted, which reported that Se or vitamin E, alone 

or in combination, at the doses and formulations used (Se=200 µg/day from L-

selenomethionine), vitamin E= 400 IU/d) did not prevent nor increase the risk of prostate 

cancer in this population of relatively healthy men (26,27).  

 In other studies that compared the level of zinc, selenium, glutathione peroxidase 

activity and antioxidant status in men with severe prostate inflammation, severe 

leukocytospermia, non-inflammatory oligozoospermia, and male partners of infertile 

couples, it was found that reduced levels of antioxidant activity and selenium levels in 

their seminal plasma regardless of inflammation status (28).  

  In young adults, it was also found that an optimal range of serum selenium  

between ∼82 and 85 μg/L was associated with reduced risk of depressive 

symptomatology (29) and Se-enriched diets not only prevent methylmercury (MeHg) 

toxicity, but can also rapidly reverse some of its most severe symptoms (30,31). These 

are just some examples of the numerous studies which demonstrate that a greater 

understanding of the biological functions of selenium and selenoproteins is warranted in 

order to harness this knowledge towards improving human health and the critical role it 

plays in all living organisms.  
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The Selenoprotein Family 

Selenium (Se) is a requisite micronutrient present in all major life forms, including 

eukaryotes, bacteria and archaea (32). This trace element is incorporated into 

selenoproteins as the 21st amino acid, selenocysteine (Sec) (33). Sec has a structure 

that is nearly identical with that of cysteine, with the exception of a single atom, 

selenium, in place of sulfur, giving Sec a lower pKa (5.2 versus 8.3) and higher 

reactivity (8). Selenoproteins can be up to two orders of magnitude more effective in 

catalysis than their cysteine homologs (34,35). This is most likely one of the major 

reasons that nature has invested in evolving Se-dependent pathways and the 

specialized machinery used for Se insertion into protein.  

 

Selenoproteins are present in most life forms. Selenoproteins often function as 

antioxidants in higher organisms, but are rare or absent in plants and fungi, with the 

exception of the green alga Chlamydomonas (32,36). Many components of the 

selenocysteine biosynthesis pathway have been conserved in archaea and eukaryotes 

that have selenoproteins (37). While there are more than 25 known selenoprotein genes 

found in vertebrate genomes, 25 in human beings and 24 in mice (32,38,39), there are 

only a few present in invertebrate genomes, three in Drosophilia melanogaster and one 

in Caenorhabditis elegans  (32,40,41).  

 Se exists in inorganic (selenate and selenite) and organic forms 

(selenomethionine and selenocysteine) (21,42). The bioavailable source of Se comes in 

many forms, but for most organisms, it occurs in the organic form of selenomethionine, 

and in the inorganic sodium selenate (i.e. supplements and animal food) (43). Both 

forms are sufficient sources of dietary Se, however metabolic studies report 

selenomethionine is more effectively absorbed and retained than selenite (44,45). 

Selenomethionine, a naturally occurring amino acid, is incorporated randomly in place 

of methionine. This is the most common source of selenium for livestock consuming 

natural feeds (46). L-selenomethionine is the primary form of selenium found in 

common foods such as Brazil nuts, cereal grain, legumes, and soybeans (47). 

Selenomethionine is absorbed in the small intestine via the sodium-dependent amino 
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acid transport system and the remaining that is not immediately metabolized is 

incorporated into organs with high rates of protein synthesis into the skeletal muscles, 

erythrocytes, pancreas, liver, kidney, stomach, the gastrointestinal mucosa, as well as a 

significant amount in the brain (44,48,49). Selenite and selenates are produced by soil 

microorganisms from less soluble forms of selenium that accumulate, and are converted 

to organic forms, mostly selenocysteine and selenomethionine and their methylated 

derivatives (42,50). Selenoprotein biosynthesis can be mediated by selenite and 

selenates but only selenomethionine is incorporated into proteins to be stored in the 

body and utilized through metabolic processes (44). Selenite, unlike selenomethionine, 

exerts its antioxidative effect indirectly and requires de novo synthesis (51). The 

beneficial range of selenium is quite narrow where either deficiency or excess can have 

adverse health effects. Selenite toxicity has extensively been shown to act through 

oxidative stress and generation of reactive oxygen species (ROS) (52). The mechanism 

for selenium toxicity through selenomethionine is not as well understood. A study in 

Saccharomyces cerevisiae suggest that selenomethionine toxicity involves production 

of superoxide radicals mediated by the trans-sulfuration pathway amino acids 

selenohomocysteine and/or selenocysteine, which are more reactive and are capable of 

generating superoxide radicals upon oxidation (52).  

 

Selenoprotein Function and Metabolism. Selenium containing proteins were 

originally detected by radioactive Se75 labeling (53,54) and they exhibit diverse tissue 

allocation. Subcellular localization also varies greatly, with some selenoproteins solely 

expressed in certain organelles or as transmembrane proteins, while others are 

secreted to extracellular spaces or plasma (8,55). Most selenoproteins can be 

categorized into two main groups according to the location of the Sec residue (Table 1) 

(34). One group of selenoproteins contain Sec very close to the C-terminus of the 

protein. Mammalian selenoproteins K, S, O, I, R (MsrB) and thioredoxin reductases 

(TRxRs) are examples of such proteins (34). Other proteins, such as mammalian 

selenoproteins H, M, T, V, W, Sep15, selenophosphate synthetase 2 (SPS2), thyroid 

hormone deiodinases (DIOs) and glutathione peroxidases (GPxs), have Sec in the N-

terminal segments of proteins, and often as part of the CxxU motif that corresponds to 
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the CxxC motif (two cysteines separated by two residues) in the active site of 

thioredoxin (34). Several selenoproteins have been characterized as antioxidant 

enzymes that alleviate damage caused by reactive oxygen species (ROS) (5–7), and 

may have potential roles as modulators of redox-regulated signal transduction (5). 

Three classes of selenoproteins, the GPxs, TRxRs and DIOs were among the 

first eukaryotic selenoproteins discovered and are the most extensively studied (8). The 

GPxs, the largest selenoprotein family in vertebrates, are integral to antioxidant 

glutathione pathways, providing protection from ROS, and are critical for antioxidant 

defense in humans (56). Five of the eight GPxs in humans (four in mice) are 

selenoenzymes (57,58). GPxs are hydroperoxidases that reduce hydrogen peroxide 

and alkyl hydroperoxides, using glutathione as a cofactor. The main reaction that 

glutathione peroxidase catalyzes is 2GSH + H2O2 → GS–SG + 2H2O (Fig. 3) (42).  

Members of the GPx family of enzymes vary in subcellular localization, substrate 

specificity, and some have multiple transcript variants and protein isoforms. GPx1, one 

of the first selenoenzymes discovered, is primarily found in cytoplasm of mammals and 

reduces hydrogen peroxide and organic hydroperoxides (59,60).GPx2 and GPx3 are 

extracellular enzymes with the former found in the intestines and the latter mainly in 

plasma (61). GPx4 differs from the other members in that it is a phospholipid 

hydroperoxidase that protects cells membranes from lipid peroxidation and is expressed 

in nearly all mammalian cells. GPx4 catalyzes the reduction of hydroperoxides and lipid 

peroxides producing the oxidized form of glutathione (GSH), glutathione disulfide 

(GSSG), which is then recycled by glutathione reductase and NADPH/H+. GPX4 

contains a selenocysteine as well as several cysteines with the ability to reduce protein 

thiols (62) 

There are three known isoforms of GPx4 that differ in subcellular location; 

cytosolic, mitochondrial (mGPx4), and nuclear (nGPx4). The last two have been 

implicated in recent studies to be essential for spermatogenesis and male 

fertility(63,64). The nuclear isoform of GPx4 is expressed in male germ cells. In 

knockout studies of GPx1, GPx2, GPx3 and GPx4 null mice, GPx4 is the only one that 

is embryonic lethal. Ran et al.,  whom showed that GPx4 deletion caused lethality, also 

generated an overexpressing GPx4 transgenic mouse model showing that other major 
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antioxidant enzymes such as Cu/Zn superoxide dismutase, manganese superoxide 

dismutase, particularly GPx1, and catalase, levels remained unaffected in their model 

and therefore concluded that GPx4 is uniquely involved in the ability to remove lipid 

hydroperoxides (65). Taken together, evidence from many studies indicates that of all 

the GPx’s, GPx4 is critical for embryonic development, prevents oxidative stress 

induced apoptosis in several cell types thereby increasing cell survival (66–68).  

Se and at least eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin 

reductase 2 (Txnrd2), selenoprotein I (SelI), selenoprotein U (SelU), glutathione 

peroxidase 1 (Gpx1), and Gpx2) has been shown to affect thyroid hormone metabolism 

in mammals (69). Thioredoxins (TRx) are involved in selenium metabolism, reducing 

selenium compounds and thereby providing selenide to synthesis of all selenoproteins 

(70). The TRxRs use NADPH for reduction of TRx in cellular redox pathways and have 

been found to be involved in cell proliferation, and clinical conditions including cancer, 

cardiomyopathy, and has been suggested to have a therapeutic role in for  HIV/AIDS 

patients (71,71,72).  

The iodothyronine deiodinases are involved in homeostatic function of thyroid 

hormone (73), thermogenesis, and play key roles in development and growth of the 

cardiovascular and muscle-skeleton systems, and cognitive function (74,75). 

Deiodinase types 1, 2 and 3 are encoded by DIO1, DIO2, DIO3, and belong to the 

iodothyronine deiodinase family. These enzymes catalyze release of iodine directly from 

the iodothyronine hormones (73). The identification of Sec in the active site of rat 

Deiodinase type 1 (D1) led the way to elucidate the key requirements for and 

mechanism of Sec incorporation in eukaryotes as well as the cDNAs that encode 

Deiodinases types 2 and 3 (74,76).These selenocysteine-dependent membrane 

proteins contribute to activation and inactivation of the initially released hormone 

precursor thyroxine (T4) into triiodothyronine (T3) or reverse triiodothyronine (rT3) in 

target cells (77). The enzymes catalyze a reductive elimination of iodine in which the 

different isoforms attack different iodine positions, oxidizing themselves, thus followed 

by a reductive recycling of the enzyme (77).  

Selenoprotein W (SelW) is highly expressed in skeletal muscle and found to be 

involved in white muscle disease in livestock (78). It is similar to the GPx family in that it 
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shares the redox motif and binds glutathione (79). Selenoprotein H (SelH) is a nuclear-

localized DNA-binding protein that may act as a transcription factor that is involved in 

cellular oxidative stress response (8,80). Selenoprotein I (SelI) was found to be the 

mammalian form of the phospholipid-synthesizing enzyme ethanolamine 

phosphotransferase (8,81). Selenoprotein R (SelR, also previously known as 

selenoprotein X (SelX) and also referred to as MsrB1) is a member of the methionine 

sulfoxide reductase family, important for reduction of sulfoxymethyl groups (8). 

Selenoproteins O and V (SelO and SelV, respectively) are two of the least known in this 

family. SelO is widely distributed, whereas SelV expression is limited to testes (32). 

Selenoprotein N (SelN) is localized to the endoplasmic reticulum (ER) membrane and 

may be necessary for proper muscle development (82). Selenoprotein S (SelS) is also 

ER-localized and is important for removal of misfolded proteins from the ER membrane 

(83).  

Selenoproteins K, M and T (SelK, SelM and SelT, respectively) and the 15 kDa 

selenoprotein 15 (Sep15) are small ER proteins whose functions are under investigation 

(55). SelT and Sep15 have both been reported to have antioxidant properties as well 

(84–86). Recent studies show SelT is expressed in pancreatic β- and δ-cells and is 

regulated by pituitary adenylate cyclase-activating polypeptide (PACAP) and is involved 

in the control of glucose homeostasis. The role of SelK in vertebrate function was 

recently found to be involved in atherosclerosis and palmitoylation (87). SelK is also 

involved in calcium Ca2+ flux in immune cells, the ER-associated protein degradation 

pathway, and was most recently reported to have an intermolecular diselenide bond 

with unusually high redox potential (88,89).  

Selenoprotein P (Sepp1 or SelP), one of the more well studied selenoproteins, is 

extracellularly released protein that transports Se from liver to other tissues and hence 

enables selenoprotein biosynthesis(1,3,90). Sepp1 has been implicated in having a 

protective function in conditions including neurodegeneration in Alzheimer’s disease 

(1,3,91). The critical role of Sepp1 in the nervous system will be discussed in further 

detail in this dissertation. This unique selenoprotein has also been suggested to play a 

critical role during development and normal male fertility (10). Numerous studies have 

shown that selenium plays an important role in reproductive health (9,92–94). Selenium 
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deficiency has been reported to be involved in several reproductive and obstetric 

complications including male and female infertility, miscarriage, preeclampsia, fetal 

growth restriction, preterm labor, and gestational diabetes (95).  

SelM was first discovered in 2002, when it was reported that human SelM is a 3 

kb gene containing 5 exons on chromosome 22 (96). The 3”UTR of the genes encoding 

rat, mouse, and human SelM lacks a canonical SECIS element but instead contains a 

conserved mRNA structure, in which cytidines take the place of adenosines but was 

previously considered invariant (96). This new form of the SECIS element in SelM was 

found to be able to still facilitate incorporation of the Sec (96). The 15 kDa SelM protein 

is localized to the ER with a thioredoxin-like domain (CxxU), suggesting an 

oxidoreductase function, catalyzing the reduction or rearrangement of disulfide bonds in 

the ER-localized or secretory proteins (97). The N-terminal peptide was confirmed to be 

necessary for protein translocation (96). Sep15 and SelM have a sequence homology of 

31% (97). However, it has a COOH-terminal extension with an ER retention signal that 

is highly flexible and therefore may participate in substrate binding or interaction with 

other protein factors (97,98). SelM is expressed in the heart, lung, kidney, stomach, 

intestine, skin, uterus, and placenta, but is most abundant in the brain (96). A recent 

study examined the structure-function relationship of SelM in hepatoma cell lines and 

primary hepatocytes in which SelM expression was upregulated in both mRNA and 

protein analysis (99). The results of the study suggests a role for SelM and its potential 

use as biomarker for hepatocellular carcinoma (99). However, most published studies 

on SelM have focused on its role in the brain. SelM has been shown to have 

neuroprotective functions and to be involved in regulating energy metabolism (2,100). 

Many selenoproteins have largely unknown functions, with some less well characterized 

than others. The known properties and functions of all selenoproteins are briefly 

summarized in Table 1. In this study we will focus on selenoprotein P and seloprotein 

M, briefly discussed here and in further detail throughout this body of work. 
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Selenium Distribution and Synthesis of Selenoproteins 

Hierarchy of Se Distribution 

 Selenium cycling through Sepp1 occurs at a high rate as indicated by the 3-4hr 

half-life of this protein in plasma (101). Roughly 25% of whole-body selenium passes 

through rat plasma daily (102). Plasma Sepp1 most likely supports homeostatic 

expression of GPxs, TRxRs and other selenoenzymes (8) through its role in supplying 

selenium to cells throughout the body (103). Deletion of Sepp1 differentially affects 

selenium supply to various tissues (104) and, therefore, affects selenoprotein levels, 

selenoprotein-synthesis factors, and also the turnover of selenoprotein mRNAs via the 

nonsense-mediated decay pathway (104). Se remains stable in testes and brain relative 

to other tissues, even in low Se conditions (101), in which Sepp1 may potentially be 

broken down to recycle Se or remain circulating in blood while gradually being taken up 

in brain and testes. Under low dietary selenium conditions, selenocysteine incorporation 

is inefficient, resulting in some selenoprotein mRNAs being degraded via nonsense-

mediated decay (105). Selenium deficiency down-regulates Gpx1 mRNA to 15% of the 

selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic 

selenoprotein mRNA, only to 61% (106). This strongly suggests that Sepp1 synthesis is 

favored in the liver over Gpx1 synthesis when selenium supply is limited, directing 

hepatocyte selenium to peripheral tissues in selenium deficiency (106). 

 Nonsense-mediated decay is a pathway that targets for degradation mRNAs 

containing premature termination codons (107). The presence of both a UGA codon and 

an RNA element downstream of the UGA were shown to be necessary for selenium-

dependent regulation of mRNA turnover (105).  Degradation of selenoprotein mRNAs 

under conditions of low Se is not uniform, with some transcripts being more sensitive to 

nonsense-mediated decay than others (108,109). Several factors may contribute to the 

sensitivity of selenoprotein mRNAs to nonsense-mediated decay (110) at different steps 

of the translation process (111). The energetically demanding, yet uniquely conserved 

process of incorporating the 21st amino acid, Sec and its translational mechanism that is 

utilized by a diverse family of proteins underscores how critical selenoproteins are for 

cellular function in many organisms throughout evolution(112). 
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Selenoprotein Synthesis  

 Selenocysteine (Sec) biosynthesis is unique in that it takes place on its tRNA, 

which recognizes the UGA codon, typically a stop codon (113). Thus, recoding of the 

UGA codon, located in the coding region of selenoprotein mRNAs, from a stop codon to 

a selenocysteine-insertion codon is required. During the unique translational 

mechanism of selenoprotein synthesis, cis- and trans-acting factors work synchronously 

to redirect translational machinery to insert selenocysteine at UGA codons instead of 

terminating polypeptide synthesis. These factors include an element in the 3′-UTR 

(untranslated region) of eukaryotic selenoprotein mRNAs, termed the Sec insertion 

sequence (SECIS), which was discovered following the cloning of another 

selenoprotein, iodothyronine deiodinase 1 (Dio1) (8,114). The selenocysteine insertion 

sequence (SECIS), originally studied in bacteria, is a RNA element with a unique stem-

loop structure that directs the cell to translate the UGA codon as Sec instead of a stop 

codon. The SECIS elements in bacteria, archae, and eukaryotes are distinct in 

structure, position and mechanisms of action (114,115). For instance, yeast and higher 

plants do not possess selenoproteins, as the Sec insertion machinery was lost during 

evolution (34).  In these organisms, cysteine-containing homologs of some 

selenoproteins are utilized instead (34).  

 All eukaryotic selenoproteins require a form of the SECIS element for recoding 

UGA to the Sec codon (116). The translational machinery within the cell typically 

identifies the UGA codon as a termination signal, thereby releasing the nascent 

polypeptide from the ribosome (115). The biosynthesis of selenocysteine on tRNA[Ser]Sec 

is catalyzed by selenocysteine synthase (117,118) and the tRNA[Ser]Sec-modifying 

enzyme phosphoseryl-tRNA[Ser]Sec kinase (111). The translation process also requires a 

SECIS-RNA binding protein (SBP2) (119,107) which recruits a specialized elongation 

factor (120,121), that delivers selenocysteyl-tRNA[Ser]Sec to the A-site of the ribosome. 

Another Sec-tRNA[Ser]Sec binding protein, SecP43, is required for methylation of the 2’-

hydroxyl-ribosyl moiety in the wobble position of the selenocysteyl-tRNA[Ser]Sec. The 

assembly of this selenosome protein complex may regulate the shuttling of the 

selenocysteine synthase-selenocysteyl-tRNA[Ser]Sec complex between the nucleus and 



12 
 

cytoplasm for early recruitment of the complexes on pre-mRNAs to circumvent NMD 

(Fig. 1) (122,123).  

 

Selenoproteins in Brain Function  

Selenium and many selenoproteins have protective functions in neuropathology. 

Selenium deficiency causes epileptic seizures in both humans and mice and 

supplementation has shown to reduce seizures (113,124). Selenium protects  neurons  

even  under glutathione  depletion (125). Several important selenoproteins with 

antioxidant functions are expressed in the brain, and may mitigate neurodegeneration 

(126). One such selenoprotein is GPx4 in which neuronal specific deletion causes 

severe neurodegeneration (57) and furthermore genetic deletion of GPx4 is 

embryonically lethal (127,128). GPx4 is not only involved in cerebral embryogenesis 

and hindbrain development (129) but is also expressed in neurons of cerebral cortex, 

hippocampus, and cerebellum but absent in glial cells of the adult brain (130,131), 

protecting them from oxidative injury (131,132). Interestingly, following brain injury 

specifically in the hippocampus, frontal and entorhinal cortex, cytosolic GPx4 (cGPx4) is 

highly upregulated in reactive astrocytes in the immediate area of induced brain lesions 

and the surrounding zone of deafferentiation where neurodegeneration was occurring 

(130,131). Upregulation of GPx4 expression was shown to be a beneficial effect, 

rescuing the cells from apoptosis, preventing further cell damage at and around sites of 

induced brain injury, determined by in vitro siRNA and apoptotic induction experiments 

(130,131).  

GPx1 has been shown to have a protective role in Parkinson’s Disease (PD), in 

which severe loss of dopamine-releasing neurons in the substantia nigra occur (8,133). 

In PD mouse models, deletion of GPx1 significantly increased dopamine loss and PD 

pathology, while overexpression had a protective effect (8,134,135). Neuronal system-

specific knockout of TRxR1 causes severe neurological symptoms, such as ataxia and 

tremor due to cerebral hypoplasia (57). Glutathione peroxidase 1 knockout (GPx1-/-) 

mice are viable and appear healthy when on a Se adequate diet, but exhibit increased 

susceptibility to oxidative stress-inducing agents paraquat and H202, wherein 30% of 
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neurons were killed, compared to wildtype controls on the same diet that were not 

affected (136). 

Extensive research has shown that many selenoproteins are involved in 

neurological development and function. In this investigation, we will primarily focus on 

selenoproteins P and M in neurological function, their significant roles in learning and 

memory, and how these new findings contribute to furthering our understanding of 

neurodegenerative conditions. 

 

Selenoprotein P 

Selenoprotein P (Sepp1) was first identified through biochemical studies in 1982 

(137). Sepp1 is an unusual selenoprotein, in that it contains multiple Sec residues;  ten 

Sec residues in humans and rodents, 16–18 in amphibians and fish, and 28 in sea 

urchins (8), while most selenoproteins typically have only one Sec residue per 

polypeptide chain. The C-terminal domain of Sepp1 contains nine Sec residues which 

are thought to be critical for the maintenance of Se levels in the brain and testes. The N-

terminal domain has only one Sec residue and potentially has antioxidant 

functions(101,138,139).  Transgenic mice lacking the Sec-rich C-terminus exhibit 

severe Se deficiency in brain in the absence of dietary Se supplementation, and have 

greater susceptibility to infections and morbidity (103,113).  

Sepp1 is primarily synthesized and secreted from hepatic cells to deliver 

selenium to other tissues and organs in the body (Fig. 2) (102). Sepp1 plays a central 

role in selenium homeostasis particularly in the brain and testes. Sepp1 has been found 

to be highly expressed in the liver, testes - specifically the Leydig cells, kidneys, and in 

lesser amounts in the gut and hematopoietic cells (140,141). Sepp1 is also synthesized 

in smaller amounts in the brain, where it has been found in glial cells and choroid plexus 

cells (142). Under selenium-deficient conditions, selenium is better retained in the testes 

and brain relative to the other organs suggesting that selenium is critical for 

maintenance of these tissues (143). 

Sepp1 is a ligand for the low-density lipoprotein (LRP)-related receptors 

apolipoprotein E receptor 2 (ApoER2 or LRP8) and megalin (LRP2), which may have 

roles in AD. ApoER2 facilitates the uptake of Sepp1 into the testis and allows retention 
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in the brain. In an elegant study by the Burk lab investigating the mechanism of 

selenium transport from systemic circulation to the brain, it was found that Sepp1 binds 

to ApoER2 by day 18 in fetal brain blood brain barrier (BBB) capillaries and choroid 

plexus (CP) (142) endothelial cells, suggesting that Sepp1 is in vesicles as well (142). 

Sepp1 and apoER2 were present in the same cellular compartment, while deletion of 

apoER2 abolished Sepp1 association with the choroid plexus, suggesting ApoER2-

mediated endocytosis of Sepp1 (142). 

Megalin (also known as LRP2), a member of the low-density lipoprotein receptor 

family (LDLR), is expressed in many tissues including the brain, in ependymal and 

choroid plexus cells (144–147). Megalin facilitates endocytosis of filtered Sepp1 

isoforms via the renal proximal convoluted tubule (PCT) cells (142,148). Deletion of 

Megalin results in severe malformations in the brain and other tissues, and most mice 

die within minutes after birth (149). Megalin null mice exhibit impaired proliferation of 

neuroepithelium that produced a holoprosencephalic syndrome, characterized by lack of 

olfactory bulbs, forebrain fusion, and a common ventricular system (150). Genetic 

deletion of megalin did not eliminate the presence of Sepp1 in either capillary or choroid 

plexus cells in day18 fetal brain and did not affect brain selenium concentration in adult 

mice fed a selenium-adequate diet (142). This particular study by Burk et al. has been 

the only study on the interaction of megalin and Sepp1 in the brain. Although it did not 

provide direct evidence for a megalin-Sepp1 interaction in the brain, neither did it rule 

one out (142). 

When selenium is limited, Sepp1 synthesis has priority over glutathione 

peroxidase synthesis (53, 57,58). Presumably, astrocytes secrete Sepp1, which is 

subsequently taken up by neurons via the ApoER2(153). Knock-out of Sepp1 or 

ApoER2 as well as neuron-specific ablation of selenoprotein biosynthesis results in 

neurological dysfunction in mice. Astrocytes, generally less vulnerable to oxidative 

stress than neurons, are capable of up-regulating the expression of antioxidant 

selenoproteins upon brain injury (154). 

Sepp1 also has important functions in normal male reproduction as well as 

during embryonic development. Sepp1 is suggested to function in oxidant protection 

(10,103,155) and has been shown to promote the survival of cells in culture (7,10). 



15 
 

Maintaining Sepp1 homeostasis is critical for overall Se balance. Impaired GPx4 

biosynthesis, due to selenium deficiency or to genetic defects in GPx4 or Sepp1, has 

been implicated in conditions such as infertility (93). The relationships between Sepp1, 

GPx4, and other selenoproteins in human diseases are important and merit further 

investigation. 

 

Selenoprotein P is required for normal brain function. Evidence shows that Sepp1 

gene deletion or Se deficiency lowered Se by similar amounts in cortex, midbrain, 

brainstem and cerebellum. However, Se in hippocampus was lowered by genetic 

deletion of Sepp1, but not by Se deficiency, suggesting that Sepp1 is more important for 

maintaining Se in hippocampus than in other brain regions (156). Mutant mice lacking 

the Sec-rich C-terminus exhibit severe deficiencies in brain Se if not supplemented in 

the diet and have greater susceptibility to infections and morbidity (113,157). Deletion of 

Sepp1 led to reduced Se content in plasma, kidney, testis and brain and accordingly, 

activities of selenoenzymes as well (158). Another study confirmed that on the mRNA 

level, Sepp1 KO mice on standard lab diets have been reported to have decreased 

GPx1, GPx4, and SelW in whole brain tissue corroborating with enzyme activity and Se 

levels previously reported (104) . 

Genetic deletion of Sepp1 in mice result in a multitude of neurological 

impairments such as neurological seizures and movement disorders particularly when 

placed on restricted selenium diets (8,101,159). Sepp1-/- mice on 0.1 mg Se/kg diet 

have very low selenium concentrations in the brain and testis, with severe 

pathophysiological consequences in each tissue (102). Selenium concentrations are 

very low in fetal Sepp1-/- mice as well. Selenium levels in brains of these Sepp1-/- mice 

were reduced to 43% but did return to Sepp1+/+ levels with a high selenium 

supplementation of 2 mg Se/kg (101). In testes however, selenium levels were 

decreased to 19% and did not increase even with the same high selenium 

supplementation suggesting targeted priority of Sepp1 towards the brain (101). Sepp1-/- 

mice fed a Se inadequate diet of less than 0.1 mg/kg, originally generated by the Burk 

lab, exhibited an abundance of deficiencies compared to their wild type counterparts 

including reduced weight, smaller body size, poor motor coordination development, and 
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strikingly reduced fertility (101). A study by the Burk lab showed genetic deletion of 

Sepp1 did not alter hepatic Se levels when maintained on a Se adequate diet (0.25 

ppm) (101). When Sepp1-/- mice were maintained on a diet with less than adequate Se, 

below 0.1 mg/kg, liver Se levels were then increased (101). Kidney selenium levels 

were reduced to 76% of normal levels and did increase to normal levels upon a 

selenium adequate diet of 0.25 mg/kg (101). Deletion of Sepp1 causes increased 

excretion of selenium in the urine and, as a result, decreases whole-body selenium 

(103,160). Sepp1-/- mice on a selenium deficient diet of 0.1 mg/kg developed spasticity 

and abnormal movements, performing poorly on motor coordination tests such as the 

rotorod and pole climb, whereas this diet provided sufficient selenium for wild type mice 

to perform normally on these tests (161).  

The results of the study indicate that the deletion of Sepp1 results in irreversible 

brain damage (103). Sepp1-/- mice on an adequate (0.25 ppm) or high Se (1 ppm) 

supplemented diet show increased survival rate, improved neuromotor function, 

resumed weight gain, stabilized neurological function but not to normal abilities (161). 

However, brain Se concentration did not increase (161) and importantly, synaptic 

plasticity deficits as shown by lack of LTP in these mice remain (162). ApoER2 is one of 

the known receptors to which Sepp1 binds. ApoER2-/- mice on a Se deficient diet 

showed similar neurological deficits to those of Sepp1-/- mice (103). The study suggests 

that interruption of Se supply evidenced by decreased Se uptake to the brain leading to 

neurological deficits was due to impairment to the Sepp1-ApoER2 pathway (103). 

Sepp1-/- mice are deficient in long term potentiation (LTP), a model for cellular learning 

and memory (162). The current data underscore the importance of Sepp1 in 

neurological function and a need to further understand the function of Sepp1. 

 

Selenoprotein M  

SelM is an endoplasmic reticulum (ER) protein that is abundantly expressed in 

the brain relative to other tissues (39,96), and has been reported to have 

neuroprotective properties. SelM is expressed in several regions, including the CA2 

region of the hippocampus- specifically CA2/CA3 regions, medial septum, 

somatosensory cortex, hypothalamus, thalamic reticular nucleus, ventral tegmentum, 
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and Purkinje layer of the cerebellum (100). Some other brain regions that were noted to 

have high levels of SelM expression included the ventral tegmental area, red nucleus, 

medial septum, and several structures associated with auditory processing (cochlear 

nucleus, olivary complex, lateral lemniscus) (100). Neuronal signaling is complex and 

involves many synchronous events. The following neuronal signaling processes 

coincide with areas where SelM is expressed and is briefly described here. The sensory 

information routed to the cortex via the thalamus must be prioritized. For instance, 

stimuli that signal danger or opportunity must be filtered and processed in a specific 

order. These processes are carried out via the thalamic reticular nucleus, between the 

thalamus and cortex (163) This represents an inhibitory interface, or attentional gating, 

which regulates the flow of information between the thalamus and cortex. Studies show 

that the thalamic reticular nucleus is involved in higher cognitive functions, including 

learning, memory, and spatial cognition (163). The medial septal area receives 

reciprocal connections from the hippocampus and cerebral cortex, cingulate gyrus and 

thalamus (164). The septal nuclei play a role in reward and reinforcement along with the 

nucleus accumbens (165). The cingulate gyrus is situated in the medial aspect of the 

cortex and receives inputs from the thalamus, and projects to the entorhinal cortex, 

which is involved with emotion formation and processing, learning, and memory (166).  

In one of the first studies to characterize SelM in neuronal function, Reeves et al. 

demonstrated that SelM modulates calcium release from intracellular ER stores during 

oxidative stress in response to H2O2 in HT22 hippocampus cells and C8-D1A 

cerebellum cell cultures and has a protective effect against oxidative stress in neuronal 

cells (2). Overexpression of SelM has been shown to prevent H2O2 induced oxidative 

stress while shRNA knockdown of SelM in HT22 cells and primary cortical cultures led 

to decreased viability and apoptotic cell death (2,8,97). Another study utilized a chicken 

model to confirm that SelM is also present in the chicken brain and a Se deficient diet 

resulted in downregulation of SelM mRNA and protein as reported in studies using 

rodent models (167). A study using an Alzheimer’s disease mouse model having a 

mutant form of presenilin-2 resulted in suppression of SelM expression (3). Mutations in 

the presenilin-2 gene cause autosomal-dominant early-onset Alzheimer's disease (168–

170).  A more recent study found that SelM interacts with Galectin-1 (Gal-1) using a 
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yeast-2-hybrid system and confirming their results various other tools such as 

fluorescent resonance energy transfer (FRET), glutathione-S-transfer (GST) pull-down 

and co-immunoprecipitation assays (171). Gal-1 is an endogenous mammalian lectin 

(171). This soluble protein is present both inside and outside cells, has both intracellular 

and extracellular functions, and is widely expressed in mouse brain neurons, neural 

stem cells, and neuroblasts (171,172). It regulates neural cell fates, such as cell 

proliferation, differentiation, and death (171,173), essential for neurogenesis and in the 

recovery from brain damage (171,174,175) and also plays important roles in adult 

neural stem cells under both physiological and pathological conditions (171,176). Gal-1 

deficiency led to attenuated proliferation of neural progenitors in the hippocampal 

dentate gyrus (DG) (171). The study posits that the neuroprotective action of SelM may 

be indirectly mediated by Gal-1. A study using a transgenic rat model, CMV/hSelM Tg 

rat, showed that SelM overexpression, and selenium treatment to induce a high 

antioxidant activity, affects global gene expression in the brain cortex contributing 

towards increased selenium bioavailability in the brain. One of the eight proteins the 

study found to be modulated by SelM overexpression was synaptotagmin-15 (SytXV), 

known to be a Ca2+ sensor that regulates Ca2+-dependent membrane trafficking, 

including endocrine exocytosis (177–179), synaptic vesicle exocytosis (179–181), and 

neurotransmitter release (181,182). Tg rats also had a higher rate of decrease in γ-

secretase activity. Part of the presenilin complex, γ-secretase plays an important role in 

the production of Aβ-42 peptide in the pathogenesis of AD (179).  

 Many members of the selenoprotein family are known to have multiple functions 

and also roles in metabolism. In a follow-up study, Pitts and Reeves et al., further 

described that the genetic deletion of SelM in mice resulted in increased adiposity 

leading to obesity which corroborated with the enriched SelM levels observed in the 

hypothalamic nuclei, an area involved in energy metabolism (100). The study also 

showed SelM-/- did not exhibit any apparent neurobehavioral deficits in regards to 

general locomotion and anxiety, motor learning and coordination, and spatial learning 

and memory (100). However, the SelM-/- mice did exhibit increase in body weight and 

adiposity suggesting that absence of SelM may effect metabolic function (100). SelM-/- 

male mice had elevated fasting insulin levels while SelM-/- female mice were 
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comparable to their wild-type counterparts. The study also revealed a gender difference 

in body composition and other metabolic measures. However, in this study we will show 

explicit evidence that SelM participates in regulating learning and memory by 

investigating its role in maintaining normal synaptic physiology. 

 

Selenoprotein P and Selenoprotein M are associated with Alzheimer’s disease 

pathology. Alzheimer’s disease (AD) is the most common cause of dementia, afflicting 

more than 5 million people in the United States alone. This debilitating disease involves 

the progressive loss of cognitive and behavioral function. AD is the sixth leading cause 

of death and is projected to affect 1 in 85 people in the next 40 years (183,184). A new 

case of AD is expected to develop every 33 seconds by 2050. In 2013, Alzheimer's was 

estimated to cost the nation $203 billion. This number is expected to rise to $1.2 trillion 

by 2050 (184). The hallmarks of Alzheimer’s disease are the characteristic extracellular 

plaques consisting of the amyloid beta (Aβ) protein and the presence of intracellular 

neurofibrillary tangles (183,184). The Aβ peptide contains either 40 or 42 amino acids, 

and is cleaved from the amyloid precursor protein (APP) by way of the β or γ secretases 

(185,186).The disease is also marked by a significant decrease in neurons, synapses, 

and thus synaptic plasticity. AD is also associated with lipid, protein and nucleic acid 

oxidation and neuronal death (187). Chronic, elevated oxidative stress precedes loss of 

neurological function and cell degeneration in AD and other neurodegenerative 

diseases (117).  

Strong evidence shows that many selenoproteins have properties that are 

beneficial in preventing human disease. Se has been proposed for treatment and 

prevention of AD and is being investigated in clinical trials. Published and preliminary 

data demonstrate that selenoproteins such as Sepp1 and SelM are involved in AD and 

undoubtedly required for normal brain function. Sepp1 has several protective properties, 

including binding of metals such as zinc, copper and mercury, and a redox domain 

reported to exhibit antioxidant properties. Sepp1 protein expression is increased in AD 

brain compared to normal brain. Previous work from Bellinger et al., has also 

demonstrated that Sepp1 associates with amyloid plaques and neurofibrillary tangles in 

the choroid plexus of post-mortem Alzheimer’s disease (AD) brain suggesting 
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potentially neuroprotective properties (2,39). Knockdown of Sepp1 increases 

neurotoxicity from Aβ peptides, supporting the protective role of this protein (1). Sepp1-

deficient mice have impaired spatial learning and dramatic impairments in synaptic 

signaling and plasticity. ApoE is a ligand for ApoER2 and other LRP receptors. The 

ApoE4 allele type is a genetic risk factor for AD (188). Megalin has a role in clearing Aβ 

from brain through the choroid plexus (189), and has polymorphisms that may also 

increase risk of AD (190,191). Both ApoER2 and megalin null animals are deficient in 

brain Se. Sepp1 is able to bind transition metal ions and modulate the Zn2+-mediated Aβ 

aggregation, ROS production and neurotoxicity (192).  

This study will further explore the role of Sepp1 in synaptic plasticity independent 

of its function in transporting selenium. Sepp1 is implicated in maintaining normal 

neurological function but its role in the brain and neurodegeneration, independent of Se 

transport remains unclear.  

SelM function has also been linked to neurodegenerative disease models and 

may have a role in preventing Alzheimer’s disease pathology. A previous study of mice 

overexpressing a human presenilin-2 (PS2) mutation associated with AD revealed 

suppressed SelM expression (3). This PS2 mutation results in an autosomal dominant 

familial form of early onset AD (185). The PS2 consists of two missense mutations in γ- 

secretase causing over-production of the amyloid-β peptide resulting in increased Aβ42 

in the plasma (170,185,193,194).  SelM activates the ERK but not MAPK pathway 

involving p38 and JNK, to attenuate alpha/gamma-secretase-mediated proteolysis and 

Tau phosphorylation to protect brain function (195). In a study utilizing selenium 

supplementation of SelM overexpressing transgenic rats the ERK signaling pathway 

was significantly increased in response to selenium treatment, and unchanged in non-

transgenic rats (195). SelM is capable of binding to transition metal ions and modulating 

the Zn2+-mediated Aβ aggregation, ROS production, and neurotoxicity (192). Most 

recently, overexpression of SelM has been shown to inhibit beta amyloid beta peptide 

(Aβ42) when cotransfected together in HEK-293T cells (196).  Despite recent 

characterizations and discoveries, the function of SelM, particularly in the brain, remains 

largely unknown. 
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Understanding how Sepp1 and SelM exert neuroprotective effects is vital in 

revealing the important association of these selenoproteins and their regulatory roles in 

neurodegenerative disorders such as Alzheimer’s disease. Elucidating the neurological 

function and neuroprotective mechanisms of selenoproteins would facilitate their 

application towards a therapeutic treatment of this debilitating neurodegenerative 

disease that has yet to have a cure.  

 

Synaptic Plasticity 

Synaptic plasticity refers to the process in which the connections between neurons 

otherwise known as synapses, strengthens or weakens over time in response to 

increase or decrease in activity (197). In 1949, Donald Olding Hebb first proposed 

synaptic plasticity as a mechanism for learning and memory. Two main forms of 

synaptic plasticity were proposed, long-term potentiation and long-term depression. The 

hippocampus, an important region involved in memory, learning, and neurogenesis, has 

been shown to be one of the first brain regions affected by AD. A multitude of factors 

are involved in regulating normal synaptic plasticity. The dentate gyrus of the 

hippocampal formation is also involved in adult neurogenesis (198). The subgranular 

layer (SGL) of the dentate gyrus is partially comprised of progenitor cells that proliferate, 

differentiate, and give rise to young neurons that can become integrated into existing 

neuronal circuits (198). Under physiological conditions, hippocampal-dependent 

learning has been linked to hippocampal neurogenesis, whereas deficits in adult 

hippocampal neurogenesis have been shown to correlate with disturbances in spatial 

learning and memory (198). 

Different forms of synaptic plasticity regulate different types of memory formation 

and learning, categorized as declarative (explicit) and non-declarative (implicit). 

Declarative memory, includes the memories of facts and events. Non-declarative 

memory, include the memories for skills and habits, a phenomenon called priming, 

simple forms of associative learning such as those observed in classical conditioning 

(i.e Pavlovian conditioning), and simple forms of non-associative learning such as 

habituation and sensitization (199). Long-term as opposed to short-term memories 

involve changes in protein synthesis, gene regulation, and often long-term memories 
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involve structural modifications. Studies have shown that changes can occur just 24 h 

after sensitization training (200,201). Neurons from trained animals exhibit greater 

number of branches and an increased number of synaptic varicosities than the neuron 

from the untrained animal (202).  

In the central nervous system (CNS), synaptic strength and activity-dependent 

synaptic plasticity are mainly dependent on the function of N-Methyl-d-aspartate 

receptors (NMDAR). NMDARs consist of two requisite GluN1 subunits and two 

additional GluN2 or GluN3 subunits that confer the specific properties of the receptor 

(203). NMDAR activity is partly regulated by phosphorylation and dephosphorylation on 

tyrosine residues in the cytoplasmic domains of the NMDA receptor NR2A or NR2B 

subunits by SFK (204,205), and phosphorylation increases ion conductance (205–209). 

These receptors are expressed on the postsynaptic side of excitatory synapses and 

regulate both synapse formation during development as well as synaptic plasticity in the 

adult brain by controlling Ca2+ flux into the neurons (205,210,211). These are one the 

mechanisms of action that occur in long-term potentiation (LTP) exhibited by the 

Schaffer collateral-CA1 region of the hippocampus (212,213).  

LTP is a form of synaptic plasticity thought to be involved in declarative memory, in 

which high frequency stimulation of neural pathway induces signal transmission that 

results in long-lasting increased synaptic efficacy between neurons (214).  LTP is a 

mechanism necessary to store a long-term memory. LTP, originally discovered in rabbit 

hippocampus, can be observed in other brain regions including but not limited to the 

cerebellum, amygdala, and cerebral cortex (215). Different regions of the brain exhibit 

variations of LTP and can be dependent on different molecules. LTP in the CA1 region 

of the hippocampus has been the primary model by which to study the cellular and 

molecular basis of memory (213).  There are many varieties, but a typical protocol to 

induce LTP can consists of two trains of high frequency stimulation, also referred to as 

the tetanus, (HFS: 100 Hz, 1sec) spaced 20 s apart (216) to afferent nerves resulting in 

augmentation of the postsynaptic neuron primarily in two manners . In hippocampal 

slices of wild type mice this stimulation protocol reliably induces LTP, characterized first 

by a transient and highly robust post-tetanic increase in the slope of the fEPSP that is 

followed by a sustained and less robust increase (216). Others forms of LTP depend on 
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metabotrophic glutamate receptor (mGluR), cyclic adenosine monophosphate cAMP or 

other molecules (217). Both LTP and long-term depression (LTD) are necessary as LTD 

prevents saturation of synapses due to continuous stimulation leading to loss of 

selectivity and as well as to prevent a positive feedback loop between synapse network 

activity, help maintain neural homeostasis (218,219). Briefly, LTD occurs in many 

regions of the brain, but has been studied mostly in the hippocampus and cerebellum 

(220). LTD is the process in which synaptic efficacy is reduced (220).  

Paired-pulse facilitation (PPF) is a form of short-term plasticity. When two pulses at 

a short interpulse interval are given to the afferent pathway, the postsynaptic response 

to the second stimulus is increased when compared with the first response (162). This 

phenomenon is understood to be due to residual calcium in the presynaptic terminal 

that facilitates neurotransmitter release upon the second stimulation, resulting in the 

subsequent increase in the post synaptic response (162,221). PPF can provide 

information regarding the loci of the LTP expression, whether changes in the response 

is mediated presynaptically and most likely not postsynaptically. When LTP expression 

occurs at a presynaptic loci, then it may alter PPF potentiation. Changes in PPF are 

inversely correlated to initial PPF responses. A smaller initial PPF is associated with an 

increase in PPF while a larger initial PPF was associated with a decrease in PPF with 

LTP (222). Alterations in PPF response within the same time course as LTP also 

suggest it is input specific and not due to nonspecific effects of high-frequency 

stimulation, changes in inhibition, active postsynaptic currents or their nonlinear 

summation, and PPF changed with the same time course as LTP (222).  

 

Conclusion 

In this study, we will focus on hippocampal NMDA receptor dependent LTP and the 

roles of selenoproteins P and M in maintaining proper synaptic plasticity. We elucidate 

that Sepp1 has a critical role in the brain, regulating hippocampal dependent synaptic 

plasticity, independent of its known function of selenoprotein distribution to all tissues in 

the body. Further investigation is important for elucidating the functions and 

mechanisms of selenoproteins to understand how altering levels of Se and different 
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selenoproteins may affect neurological function and neurodegenerative conditions such 

as AD. 
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Figure 1. Selenoprotein biosynthesis pathway. Phosphorylation of Se by 

selenophosphate synthetases (SPS) is used to synthesize selenocysteine (Sec) from 

serine directly on the tRNASec by the enzyme Sec synthetase. tRNASec is transported to 

the nucleus with many bound cofactors. The protein selenoprotein binding protein 2 

(SBP2) binds to the selenocysteine insertion sequence (SECIS) element in the 3’ UTR 

of selenoprotein messages, engaging the tRNASec complex along with bound cofactors. 

The assembled complex is transported from the nucleus for translation to protein 

(8,122). Schematic adapted from Bellinger et al., 2009 (8).    



26 
 

 

Figure 2. Selenoprotein P biosynthesis pathway. Sepp1 is principally synthesized in 

the liver, and secondarily in smaller amounts in the brain. Sepp1 is thought to transport 

selenium to other tissues in the body. Sepp1 binds to the low-density lipoprotein 

receptor ApoER2 in brain and testes and Megalin in kidneys. 
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Figure 2. Glutathione Redox Cycle 

GSH represents reduced monomeric glutathione, and GS–SG represents glutathione 

disulfide. The selenol of a selenocysteine residue is oxidized by hydrogen peroxide. 

This process yields a derivative with a seleninic acid (RSeOH) group. The selenenic 

acid is then converted back to the selenol with a reaction beginning with GSH to form 

the GS-SeR and water (58,223). A second GSH molecule reduces the GS-SeR 

intermediate back to the selenol, releasing GS-SG as the by-product. Glutathione 

reductase then reduces the oxidized glutathione to complete the cycle: GS–SG + 

NADPH + H+ → 2 GSH + NADP+ (58,223).  
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Table 1. Mammalian selenoproteins: localization and functions 

Selenoprotein Localization Function References 

15 kDa 

selenoprotein 

(Sep15) 

ER Trx-like fold, regulated by ER stress, interacts with 

UDP-glucose:glycoprotein glucosyltransferase, 

potentially involved in glycoprotein folding in the ER 

(57,98,224, 

225) 

Thyroid hormone 

deiodinase 1 

(DI1, Dio1) 

Plasma 

membrane 

removes iodine from the outer ring of T4 in the 

thyroid to produce plasma T3–catalyzes 

deiodination and thus inactivation of T3 

(226,227) 

Thyroid hormone 

deiodinase 2 

(DI2, Dio2) 

ER converts T4 to T3 locally in tissues including 

pituitary, brown fat, and brain 

(228) 

Thyroid hormone 

deiodinase 3 

(DI3, Dio3) 

Plasma 

membrane 

catalyzes deiodination of T4 to T3 in peripheral 

tissues 

(227,229) 

Glutathione 

peroxidase 1 

(GPx1) 

Cytosol GSH-dependent detoxification of H2O2 (highly 

expressed in liver, kidney, erythrocytes), Se 

deficiency leads to nonsense mediated decay of 

GPx1 mRNA 

(230) 

Glutathione 

peroxidase 2 

(GPx2) 

Cytosol GSH-dependent detoxification of H2O2 (highly 

expressed in the epithelium, particularly in the 

intestine and lung) 

(231,232) 

Glutathione 

peroxidase 3 

(GPx3) 

Extracellular, 

CSF 

GSH-dependent detoxification of H2O2 (synthesized 

predominantly by kidneys and secreted to plasma), 

protects against oxidative stress in thyroid, involved 

in protection of cardiovascular system through 

modulation of nitrous oxide levels 

(233,234) 

Glutathione 

peroxidase 4        

(GPx4, PHGPx) 

Cytosol, 

mitochondria, 

nucleus 

(testis-

specific) 

has cytosolic, nuclear and mitochondrial isoforms–

protects lipids from H2O2-mediated oxidation, 

structural protein in sperm, sensor of oxidative 

stress, and pro-apoptotic signals 

(235) 
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Glutathione 

peroxidase 6 

(GPx6) 

Cytosol GSH-dependent detoxification of H2O2 (enriched in 

the olfactory epithelium) 

(232) 

Selenoprotein H 

(SelH) 

Nucleus Trx-like fold, protects cells from H2O2, involved in 

transcription, increases mitochondrial biogenesis 

and CytC production–AT-hook family protein. In 

response to redox flux, facilitates synthesis of genes 

responsible for de novo GSH synthesis  

(80,85,236) 

Selenoprotein I 

(SelI) 

Membrane may be involved in phospholipid biosynthesis (39) 

Selenoprotein K 

(SelK) 

ER 

membrane 

modulates Ca+2  influx that affects immune cell 

function–component of ERAD; involved in the 

Derlin-dependent ERAD of glycosylated misfolded 

proteins; involved in proteolytic modulation in 

macrophage activation via calpain/calpastatin 

system 

(88) 

Selenoprotein M 

(SelM) 

ER Trx-like fold, thiol-disulfide oxidoreductase, protects 

neurons from oxidative stress; may be involved 

cytosolic calcium regulation, involved in body weight 

regulation, and energy metabolism 

(237) 

Selenoprotein N 

(SelN,SEPN1,Se

lN1) 

ER 

membrane 

expressed in skeletal muscle, heart, lung, and 

placenta; regulates redox state of the intracellular 

calcium-release channel, ryanodine receptor (RyR); 

affects Ca+2  homeostasis, SelN gene mutations 

cause congenital myopathy such as multiminicore 

diesease 

(238,239) 

Selenoprotein O 

(SelO) 

Mitochondria has Cys-XX-Sec motif, largest mammalian 

selenoprotein, widely distributed throughout many 

tissues, important in redox function, expression not 

greatly affected by Se dificiency status, Sel O 

deficiency leads to impairment of chondrocyte cell 

differentiation, viability, and proliferation 

(39) 
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Selenoprotein P 

(SelP, Sepp1) 

Extracellular facilitates Se transport to peripheral tissues, 

primarily the brain and testes particularly during low 

Se status, and antioxidant function; important for 

sperm and oogenesis, and synaptic plasticity; 

Sepp1 deletion leads to severe neurological 

conditions and infertility 

(157,238,240) 

Selenoprotein R 

(SelR, MsrB1, 

Selx1) 

Cytosol reduces methionine-R-sulfoxide residues in proteins 

to methionine; Se and Zinc containing protein; 

protection against oxidative stress and/or in redox 

regulation of cellular processes. 

(241) 

Selenoprotein S 

(SelS, SEPS1, 

Tani, VIMP, and 

SELENOS) 

ER 

membrane 

upregulated upon treatment with pro-inflammatory 

cytokines and glucose deprivation– ERAD 

component; interacts with other proteins via coiled 

coil region; provides intracellular membrane 

transport and maintenance by anchoring protein 

complexes to ER membrane; SelS is disregulated in 

diabetic patients   

(239,242) 

SPS2 Cytosol de-novo synthesis of selenophosphate necessary 

for Sec biosynthesis, all selenoproteins including 

itself, maybe also involved in Cys synthesis 

(243,244) 

Selenoprotein T 

(SelT) 

ER and Golgi Trx-like fold, redox regulation–plays a role in cell 

adhesion and calcium mobilization 

(245) 

Thioredoxin 

reductase 1 

(TR1, Txnrd1) 

Cytosol reduces the oxidized form of cytosolic thioredoxin–

has at least 6 isoforms differing in N–terminal 

sequences; genetic deletion is embryonic lethal 

(246,247) 

Thioredoxin/         

glutathione 

reductase (TGR, 

TR2, Txnrd3) 

Cytosol has a glutaredoxin domain, catalyzes a variety of 

reactions, specific for thioredoxin and glutaredoxin 

systems–expressed in spermatids, genetic deletion 

is embryonic lethal 

(248) 

Thioredoxin 

reductase 3 

(Txnrd2, TR3) 

Mitochondria reduces the oxidized form of mitochondrial 

thioredoxin and glutaredoxin 2, specifically 

expressed in the testes; regulated by Wnt signaling 

in the intestinal epithelium 

(249) 
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Selenoprotein V 

(SelV) 

Cytosol Trx-like fold–unknown function–expressed in 

spermatids 

(85) 

Selenoprotein W 

(SelW) 

Cytosol Trx-like fold - has thioredoxin-like function;  

expressed in skeletal muscle-may be important in 

muscle growth , heart (except rodents), spleen, and 

brain, highly dependent on adequate dietary Se and 

Sepp1 levels, putative antioxidant role- responds to 

stress, involved in cell immunity, specific target for 

methylmercury  

(250) 

(Adapted from Kasaikina  et al., 2012 (57))  
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CHAPTER II 

 

GENETIC RESCUE OF SEPP1 IN SELENOPROTEIN KNOCKOUT MICE 

 

Abstract 

 Genetic deletion of Sepp1 results in multiple neurological impairments, male 

infertility and sperm morphological defects (10). We hypothesized that utilizing a novel 

application of the Cre-LoxP system could restore Sepp1 gene expression in Sepp1-/-

mice using the LoxP start codon. In this study, Sepp1 mice were bred with mice 

transgenic for the cytomegalovirus-Cre (CMV-Cre) gene, excising the floxed neor 

construct in the Sepp1-/- mice. Our data show that this approach produced viable 

progeny of the systemic Sepp1r/r CMV+ (rescue) mice that express the CMV-Cre driven 

Sepp1 gene in all tissues. The progeny had restored neuromotor function, the spatial 

learning and memory deficits were negated, and sperm morphology and mobility 

appeared normal and comparable to wildtype mice. This unique genetic rescue 

technique can be employed to investigate the localized function of Sepp1 in specific 

cells, independent from its global function, and provides a proof-of-concept for a 

technique to restore expression of a target gene to specific cells in a knockout mouse 

model.  

 

Introduction 

Sepp1 is a critically important selenoprotein due to its well-known function in 

transporting selenium and facilitating biosynthesis of other selenoproteins. Sepp1-/- mice 

develop severe neurological impairment as mentioned, some of which can be improved 

by dietary Se supplementation. However, synaptic plasticity impairments remain despite 

dietary Se supplementation (216,251). A study by Schweizer et al. showed that targeted 

inactivation of the Sepp1 gene led to hepatocyte-specific inactivation of selenoprotein 

biosynthesis, thereby reducing plasma and kidney selenium levels similarly to Sepp-/- 

mice, but did not result in neurological impairment (252). Furthermore, brain and testis 

are Se privileged tissues under Se deficient conditions (253). Taken together with other 
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current understanding of Sepp1 functions, mounting evidence suggests a physiological 

role of locally expressed Sepp1 in the brain and potentially other tissues.  

Sepp1-/- mice fed a selenium inadequate diet of less than 0.1 mg/kg exhibited an 

abundance of deficiencies compared to their wild type counterparts. These included 

reduced weight, smaller body size, and significantly reduced fertility. These mice also 

developed severe spasticity and abnormal movements, and performed poorly on motor 

coordination tests such as the rotarod and pole climb, whereas the wildtype 

counterparts appeared unaffected on this diet (101,161).  

The Sepp1-/- mice were designed with a reverse-orientation neor cassette flanked by 

LoxP sites, inserted into the second exon, 9 bases downstream of the start codon (Fig. 

4). This was introduced by electroporation into 129S9/SvEvH-derived embryonic stem 

(ES) cells (101), and these ES cells were subsequently injected into C57BL/6 

blastocysts. The resulting chimeric males were bred with C57BL/6J females. The stop 

codons present in both LoxP sites prevent translation of SEPP1. The neor containing 

construct effectively disrupts Sepp1 expression.  

Based on sequence analysis of the Sepp1 targeting construct, we predict that 

introduction of a Cre recombinase transgene to the Sepp1-/- mice would excise the 

floxed neor containing construct, however, preserving a start codon in the LoxP site in 

frame with the open reading frame in the SEPP1 gene. Translation from the new start 

codon would result in changes of only a few amino acids at the N-terminus of Sepp1, 

which contains a signal peptide for secretion. The gene is still functional with these 

minor changes (Fig.3B-C) as the signal peptide is cleaved from the mature protein, 

restoring the wild-type sequence. Successful implementation of this method will allow 

for applying this to restrict gene expression to specific cells.   
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Materials and Methods 

Animals 

Animals were provided food and water ad libitum per University of Hawaii veterinary 

protocol. All animals in this study were maintained on diets containing adequate Se 

(~0.25 ppm). Animals were kept on a 12-h light cycle and group housed during breeding 

and rearing.  Prior to and during behavioral testing, animals were individually housed in 

polycarbonate cages. Each cage was provided food, water, and a layer of bed-o-cob 

(corn cob) bedding (Newco Distributers). All animal protocols were approved by the 

University of Hawaii Institutional Animal Care and Use Committee. 

 

Generation of Sepp1-/- and Sepp1r/r CMV-Cre 

Sepp1-/-mice were obtained from the laboratory of Dr. Raymond Burk at Vanderbilt 

University. Mutant mice were backcrossed to C57BL/6J for at least 10 generations 

before arriving in our lab and were bred with our C57BL/6J colony to ensure congenic 

strains (254). As male Sepp1 mice are infertile (101), Sepp1+/−mice were used for 

breeding resulting in littermate Sepp1−/−,Sepp1+/+, and Sepp1+/-pups. Sepp1 whole body 

genetic rescue mice (Sepp1r/r CMV+) were generated by breeding Sepp1-/+ mice to 

B6.C-Tg(CMV-cre)1Cgn/J (Jackson Labs). The commonly used cytomegalovirus (CMV) 

promoter provides strong and constitutive expression in many cell types. Sepp1r/r CMV+ 

rescue mice were generated by breeding Sepp1+/- mice to CMV-Cre expressing mice, 

B6.C-Tg(CMV-cre)1Cgn/J. Sepp1 -/- mice, originally generated by the Burk lab, were 

designed with a reverse-orientation neor cassette flanked by LoxP sites, inserted into 

the second exon, 9 bases downstream of the start codon (Fig. 4). The neor containing 

construct effectively disrupts Sepp1 expression by interrupting the reading frame of the 

Sepp1 sequence thus preventing the Sepp1 gene to be functional. The genetic deletion 

of Sepp1 results in a hosts of impairments including male infertility (10). Confirmation of 

the expected recombination of Sepp1 was carried out by polymerase chain reaction 

(PCR) of extracted genomic DNA from mouse tails using specific primers to amplify a 

151-bp product in the targeted region present in the wild type gene (forward-

ACCTCAGCAATGTGGAGAAGCC, reverse-TGCCCTCTGAGTTTAGCATTG), and 472-

bp and 224-bp products specific for the knockout allele and floxed gene, respectively 
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(forward-ACCTCAGCAATGTGGAGAAGCC, reverse-

GATGATCTGGACGAAGAGCATCA). Products were analyzed on 1.5% DNA agarose 

gels, and SYBR® Safe DNA Gel Stain (InVitrogen) was detected by UV imaging to 

confirm genotype. 

 

Animal Behavior  

 Age matched adult female and male Sepp1+/+, Sepp1r/r CMV+, or Sepp1-/- mice 12 to 

24 weeks of age (age matched for each assay) were evaluated for neuromotor and 

neurobehavior effects using typical behavior paradigms as follows.  

 

Vertical Pole Test 

 Mouse locomotor function involving the cerebellum, motor cortex, and basal ganglia 

(255) was evaluated using a pole test. Mice were placed on the top of a pole with heads 

oriented upward and parallel to the pole. Mice were given 60 s to perform this task. After 

2 days of 4 training trials per day, the time taken to invert and face downward and the 

total time to descend were recorded in 4 trials on the third day, in which the best turn 

and descent time was used for analysis between genotypes.  

 

Stride test 

 A stride test, modified from Fernagut et al. (256), was used to measure deficiencies 

in gait and motor ability. Paw prints were obtained by applying ink to the hind limb paws 

of the mice before placing them on graph paper in a narrow runway. Bright lighting was 

used to encourage the mice to walk toward a dark enclosure at the opposite end of the 

runway. Length of stride for each paw and width of strides were measured from the 

resulting footprints.  

 

Morris water maze  

 Hippocampal-dependent spatial learning and memory was assessed using a Morris 

Water Maze (MWM) assay (216). Mice were placed in a large circular pool of opaque 

water heated to 24°C. Nontoxic, water based paint was added to achieve opacity. Visual 

cues were placed on walls to provide mice with spatial orientation and reference points. 
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The time required to escape from water onto a hidden platform was measured. The total 

time required for mice to swim to a visual platform (60 s maximum) was determined 

prior to the training days. Each mouse was given 60 s to find the visible platform or after 

this period, the mouse would be removed from water and placed on the platform for 15 

s. During the 8 days of training of 4 trials per day, the platform was submerged and the 

total time (60 s maximum) for mice to find the hidden platform was recorded. On the 

ninth day, the platform was removed for the probe trial. The total time spent in each 

quadrant and the number of platform crossings were monitored over a 60 s period. 

Sepp1-/- mice MWM data were obtained in a different experiment in which all 

experimental procedures and parameters were the same, and kindly provided by Dr. 

Matthew Pitts. Sepp1-/- mouse data were included only as an example for comparison of 

the behavioral deficits previously reported in Sepp1-/- mice (113,216). 

 

Western Blot  

 GPx4 protein expression in testes and epididymides of age matched Sepp1 WT, 

Sepp1-/-, and Sepp1 rescue mice were measured by western blot. Tissues were lysed 

with CelLytic MT (Sigma Aldrich Co) according to the manufacturer’s instructions. 

Protein lysates were resolved by SDS-PAGE separated on a 10–20% gradient Tris-HCl 

Criterion Precast gel (Bio-Rad Laboratories) and transferred to polyvinylidene difluoride 

(PVDF). For detection of GPx4 expression in testes, membranes were incubated in 

rabbit GPx4 polyclonal antibody (AbFrontier) diluted 1:2000, and for epididymides, 

GPx4 polyclonal antibodydiluted 1:5000 (Epitomics) in 1:4 Odyssey blocking solution in 

PBS (LI-COR Biosciences) for 90 min at RT. Following washes in PBS (5 X 5 min), 

primary antibodies were detected with LI-COR near-infrared fluorescent secondary 

antibodies in 1:4 blocking solution in PBS for 45 min followed by washes as described 

above. Subsequently blots were developed using β-actin (Sigma Aldrich Co.) as a 

loading control. Protein was detected using the Odyssey® Infrared Imaging System (LI-

COR Biosciences). Scanning and analysis were performed with LI-COR Odyssey 

software. 
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Statistical analysis. 

Statistical analysis was performed with GraphPad Prism software. Sample size 

were determined through power analysis (257,258). Interaction between genotypes and 

sex was ascertained by Student’s t-test and two-way analysis of variance (ANOVA) with 

Bonferroni’s posthoc test for multiple comparisons. To determine genotype differences 

between experimental groups in the water maze training and quadrant entries in the 

probe trial, repeated-measures ANOVA with Bonferroni’s posthoc test were used. 

Statistical significance was defined as having p<0.05 for all statistical tests. 
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Results 

 

Genetic rescue of Selenoprotein P expression using Cre-recombinase.  

 Sepp1+/- littermates were used for generating the rescue mice due to the infertility of 

Sepp1-/- males. Breeding Sepp1+/- mice with the CMV-Cre resulted in recombinase 

expression in all cells, and the resulting recombination excised the neor construct in the 

Sepp1-/- mice.  Sepp1 genetic recombination in the Sepp1r/r CMV+ was confirmed with 

PCR genotyping, by identifying an amplified 224-bp product specific for the recombined 

gene in comparison to the 151-bp product in the targeted region present in the wild type 

and a 472-bp product for the knockout allele (Fig. 4A). A start codon in the remaining 

single LoxP site was left in frame with the Sepp1 gene, thus resulting in translation of a 

form of Sepp1 with a minor mutation in the Sepp1r/r CMV+ mice (Fig. 4B-C). The male 

Sepp1r/r CMV+ progeny sired pups, indicating that the Sepp1 gene was restored and 

functional. 

 

Neuromotor behavior and gait impairments are recovered in Sepp1r/r CMV+ mice. 

Sepp1-/- mice have severe motor impairments encompassing irregular gait patterns 

described to include dragging of the limbs and uneven strides as well as motor 

coordination deficits (159,161). We used the pole and stride tests to assess genetic 

restoration in the Sepp1r/r CMV+ mice. Motor coordination and general locomotor 

function of Sepp1r/r CMV+ mice were indistinguishable from those of the wild type 

group. The rescue mice in comparison to the wild type group exhibited no significant 

differences in the total time to descend the pole, whereas the Sepp1-/- mice had 

significantly decreased coordination and locomotion as shown by the greater total 

amount of time Sepp1-/- mice took to descend to the bottom of the pole (Fig. 5). One-

way ANOVA showed an effect of genotype on the time taken to descend (**P=0.0086 

for Sepp1r/r CMV+, Bonferroni’s post hoc test **P<0.01) and turn time (**P=0.0024, with 

Bonferroni’s posthoc test **P<0.01 for Sepp1r/r CMV+ and *P<0.05 for Sepp1+/+), n= 6 

per group. 

 We subjected the mice to a stride test to determine whether the irregular gait and 

ataxia seen in Sepp1-/- mice was recovered in the Sepp1r/r CMV+. Stride length and 
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width were measured for four sets of hind paw prints. The rescue mice had restored gait 

patterns similar to wild type mice. Both Sepp1r/r CMV+ and wild type mice had 

significantly different stride length patterns compared to the ataxic irregular stride 

lengths of the Sepp1-/- mice.  Two-way ANOVA determined there was a significant effect 

of genotype (**P= 0.0034) with Bonferroni’s Post hoc analysis (*P<0.05) with values 

expressed as mean ± SEM of n= 6 per group (Fig. 6). 

 

Restoration of spatial learning and memory. The Morris Water Maze (MWM) test 

was administered to assess whether spatial learning and memory were restored in the 

Sepp1r/r CMV+ mice. The visual platform test was given on the first day to introduce 

mice to learning to escape the water by climbing onto the platform, prior to beginning 

the training period. There were no significant differences between groups in the time (60 

sec maximum) they took to find the visible platform (2-way ANOVA). During the training 

period, rate of learning was assessed by daily changes in escape latency times, which 

are measured as the time taken to climb onto the hidden platform during each trial (60 

sec maximum). Sepp1 rescue mice learned at the same rate as the wild type group, as 

shown by lack of differences in escape times between the groups. Two-way repeated 

measures ANOVA (p>0.05) confirmed that there was no significant difference in escape 

latency during the 8 training days between Sepp1r/r CMV+ and Sepp1+/+ mice (Fig. 7A). 

Escape latency times of both wild type and rescue mice were markedly less than those 

of Sepp1-/- mice.  

 During the probe trial, the time spent in each quadrant was recorded to assess if 

mice recalled where the platform was during the training period. There was no 

significant differences between genotype (Fig. 7B). The number of platform crossings 

was monitored during a 60 second swim. Swim speed and total distance traveled were 

recorded to control for factors other than learning and memory differences that could 

affect the results, such as motor coordination. We found no significant differences 

between wild type and rescue genotypes for time in each quadrant, number of platform 

crossings, swim speed or distance (two-way ANOVA, p>0.05) (Fig. 7C).  
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Discussion 

This study sought to genetically restore Sepp1 gene expression in Sepp1 knockout 

mice as a proof of concept. We describe a strategy that takes advantage of the Cre-

LoxP system, using the start codon in the LoxP site, to restore gene expression in the 

Sepp1 -/- mouse model. Previously the Schweizer lab generated a hepatically targeted 

Sepp1 transgene to rescue Sepp1-/- mice (158). The Schweizer lab generated a Sepp1 

transgenic mice restricting SEPP1 to the liver by cloning the human SEPP1 cDNA, 

including the complete open reading frame and the two SECIS elements in the 3′-UTR, 

into exon 2 of the vector TTR exV3 and microinjecting the resulting minigene into 

mouse zygotes (259).  However, our approach is novel in that we use the start codon in 

the existing LoxP site to genetically restore Sepp1 function, and can therefore rescue 

Sepp1 in any tissues with appropriate Cre expression and without additional transgenic 

manipulations.  

Here we briefly review the Cre-LoxP system as it is pivotal to this study. The Sepp1-/- 

mice were constructed by utilization of the Cre-LoxP system by the Burk lab. Thus, this 

section provides essential background regarding this gene manipulating technology 

relevant to this study. In brief, the Cre-LoxP system, discovered in 1981, utilizes Cre 

recombinase protein that originates from the P1 bacteriophage (260). LoxP sites are 

part of the Cre-LoxP site-specific recombination system. LoxP sites consist of two 13 bp 

inverted repeats separated by an 8 bp asymmetric spacer region(261).  

The fundamentals of the system are based on one Cre molecule that binds to the 

first and last 13 bp regions of a lox site forming a dimer or two Cre molecules binding at 

one LoxP site. This dimer then binds to a dimer on another lox site to form a tetramer 

(260). Lox sites are directional and the two sites joined by the tetramer are parallel in 

orientation. Recombination occurs in the asymmetric spacer region in which 

directionality of the recombination site is dependent on this 8bp region. The double 

stranded DNA is cut at both LoxP sites by the Cre protein. The strands are then rejoined 

with DNA ligase in a quick and efficient process. Two arrangements of the LoxP sites 

can be designed. The result of recombination depends on the orientation of the LoxP 

sites (261). For two lox sites on the same chromosome arm when two LoxP sites are in 

opposite orientation to each other, it will cause an inversion of the intervening DNA, 
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while a direct repeat of LoxP sites will cause a deletion event (260–262). Alternatively, if 

the two LoxP sites are oriented in the same direction as each other, this dictates an 

excision of the flanked DNA, leaving only one remaining LoxP site (262). If LoxP sites 

are on different chromosomes it is possible for translocation events to be catalyzed by 

Cre induced recombination (262). Two plasmids can be joined using the variant lox sites 

(261). 

The site-specific excision of a particular piece of DNA can be used to eliminate or 

inactivate the endogenous gene or a transgene, or to activate a transgene (263). The 

Cre-LoxP system is typically used to generate conditional knockout animals. In some 

cases, researchers may choose to generate a conditional knockout due to embryonic 

lethality of a complete whole body knockout of a gene of interest. In other cases, 

researchers may use this method to study the function of a gene when it is absent or 

knocked out in a specific organ or cell population.  

In this study, we demonstrate the novel application of the Cre-LoxP system to 

restore the SEPP1 gene in Sepp1-/- mice using the LoxP start codon. Further details 

regarding genetic restoration of the Sepp1 gene, using this unique application of the 

Cre-Lox P system, will be discussed in this study. 

 Our unique strategy of using the existing Cre-LoxP sites completely restores the 

SEPP1 gene. Sepp1r/r CMV+ mice have restored neuromotor function as observed in 

the vertical pole and stride tests. Furthermore, Seppr/r CMV+ mice had normal spatial 

learning and memory and did not exhibit any of the deficits seen in Sepp1-/- mice when 

administered the Morris Water Maze test. Seppr/r CMV+ mice had restored gait 

compared to Sepp-/- mice that have irregular stride length due to the dragging of the 

hind limbs as previously observed.  

 Sepp1-/- mice have been shown to have abnormal sperm morphology. Structural 

differences in sperm have been implicated as being central to the infertility of Sepp1-/- 

mice (10). Sepp1r/r CMV+ male mice were able to sire offspring, demonstrating that 

genetic rescue restored fertility, one of the most critical deficits seen in Sepp1-/-. In a 

previous unpublished study by our group, we compared sperm morphology from cauda 

epididymides of Sepp1r/r CMV+ mice as well as those of Sepp1+/+ and Sepp1-/- mice. 

Microscopy imaging observations confirmed that the rescue mice, Sepp1r/r CMV+, had 
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completely normal sperm morphology similar to Sepp1+/+ absent of any kinks in the 

flagellum or narrowing at the posterior midpiece (Fig. 8).  Sepp1 rescue mice had 

normal sperm motility patterns and sperm numbers as compared to the controls. 

Ultimately, the ability of Sepp1 rescue mice to sire pups indicates that infertility seen in 

male Sepp1-/- mice was negated, with neuromotor and learning and memory deficits 

recovered by this unique genetic rescue method.  

 We developed this unique strategy as a means to study the specific function of 

Sepp1 in the future. Several studies have investigated whether Sepp1 is the only source 

of plasma Sepp1 and Se distribution within the body, or whether Sepp1 may also have 

specific local functions in other organs (252). One study examined a liver-specific 

inactivation of Trsp, the gene for selenocysteine tRNA, which removes Sepp1 from 

plasma, causing a remarkable decrease in serum selenium levels and reducing kidney 

selenium to 36% of wild-type levels (252). However, the liver-specific Trsp knockout 

mice did not exhibit any neurological impairments and brain selenium levels remained 

unaffected, unlike Sepp1-/- mice. This indicates that hepatically derived Sepp1 is 

responsible for the transport function in plasma, while in brain, Sepp1 has a second, 

essential role that needs further investigation (252). This illuminating study provided 

evidence that the brain can maintain its Se and selenoenzyme levels in the absence of 

hepatic Sepp1 production, and therefore is largely independent of plasma Se levels as 

long as local Sepp1 expression in brain is preserved (252). 

  Another study generated a liver-specific rescue of human SEPP1 under control of a 

hepatocyte-specific transthyretin promoter in Sepp1-/- mice (259). This study sought to 

define the role of liver-derived circulating Sepp1 in contrast with locally expressed 

Sepp1. Secreted human Sepp1 was detectable in serum from SEPP1-transgenic mice 

(259). Selenium content and selenoenzyme activities in serum, kidney, testis and brain 

of Sepp(-/-;SEPP1) (SEPP1-transgenic Sepp(-/-)) mice were increased compared with 

Sepp-/- controls (259). Mice fed a selenium-adequate diet (0.16-0.2 mg/kg of body 

weight) showed that liver-specific expression of SEPP1 rescued the neurological 

defects of Sepp-/- mice and rendered Sepp-/- males fertile (259). This suggest that liver 

derived Sepp1 critically transports Sepp1 to male reproductive organs, most likely 

inutero, during an essential period for reproductive development. Additionally, despite 
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Sepp1 being synthesized locally in small amounts in testes (264), and providing 

distribution of other essential selenoproteins, for normal sperm development, Sepp1 

expression in reproductive organs is dependent of liver derived Sepp1 transport. When 

fed on a low-selenium diet (0.06 mg/kg of body weight), Sepp(-/-;SEPP1) mice survived 

4 weeks longer than Sepp-/- mice, but ultimately developed the neurodegenerative 

phenotype (259). These results confirm that plasma Sepp1 derived from hepatocytes is 

the main transport form of selenium supporting the kidney, testis and brain, which is 

particularly even more critical under a Se deficient diet (259). However, local Sepp 

expression appears to be required to maintain selenium content in selenium-privileged 

tissues such as brain and testis during dietary selenium restriction (259) . 

 Taken together, these studies provide evidence of an alternative role for Sepp1 

distinct from its transport function. The potential of locally expressed Sepp1, not via 

plasma transport, having a specific function warrents further investigation in which this 

animal rescue model we established in this chapter provides the perfect tool. 

In this segment of our study, we demonstrate that in generating this Sepp1 rescue 

model by this method, one can restore gene expression globally to all tissues by 

breeding Cre mice expressed in cells of your interest to a specifically designed knockout 

mouse, such that recombination would restore the genetic sequence in frame with its 

start codon. This unique application may allow researchers to study any gene of interest 

in highly specific cell populations. Researchers interested in such an approach to 

elucidate a specific function of a gene can specifically design the knockout mouse to 

have LoxP sites in which the LoxP start codon will remain in frame with the gene of 

interest following Cre recombination.  
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Figure 4. Generation of Sepp1r/r CMV+ rescue mice. (A) Polymerase chain reaction 

(PCR) genomic DNA was screened to confirm the genotypes of all animals. (B) 

Schematic of pre-and post-recombination of Sepp1-/- with Sepp1 CMV-Cre mice in 

which the Neor containing construct flanked by lox P was excised following breeding 

with CMV-Cre mice. Black, green and red arrows indicate primer locations. (C) 

Sequence comparison between Sepp1 wild type and recombined Sepp1r/r CMV+ 

showing the lox P site start codon remained in frame with the Sepp1 open reading 

frame to restore Sepp1 translation. 

 

C. 

A. B. 
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Figure 5. Sepp1r/r CMV+ mice have normal motor coordination. (A) Total time taken 

for Sepp1r/rCMV+ rescue mice to descend the pole on the pole test was similar to WT 

and significantly faster than Sepp1-/- mice as reflected in one way ANOVA (P=0.0086) 

results. (B) Time taken for mice to coordinate and turn on the pole before descending 

was significantly less for the Sepp1 rescue mice than Sepp1-/- mice, and similar to 

normal WT, one way ANOVA (P=0.0024) with Bonferroni’s Post hoc analysis performed 

for both (*P<0.05, **P<0.01). Values are expressed as mean ± SEM.  

 

A. B. 
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Figure 6. Abnormal gait exhibited by Sepp1-/- mice is restored in Sepp1 Rescue 

mice. (A) Representative paw print showing gait patterns of Sepp1+/+, Sepp1-/-, and 

Sepp1 rescue mice. (B) Analysis of stride lengths and widths. Two-way ANOVA of 

stride length (P=0.0034) with Bonferroni post hoc analysis showing the differences 

between genotype are significant (P<0.05) . Values are expressed as mean ± SEM of 

n= 6 per group. Length and width of hindpaw prints were measured from the center of 

each paw for each set of prints as indicated by the red lines. 

 

A. B. 
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Figure 7. Sepp1r/r CMV+ mice have restored spatial learning and memory. Mean 

latency to escape via the platform between wild-type, Sepp1r/r CMV+mice, and Sepp1-/-. 

Differences are statistically significant between Sepp1-/- compared to Sepp1+/+ (*) and 

Sepp1r/r CMV+mice (#), respectively. (B-C) Percentage of time and number of virtual 

platform crossings during the probe trial determined if the mice recalled where the 

platform was. All results were analyzed by two-way repeated measures ANOVA 

followed by Bonferroni’s post hoc analysis. Values are expressed as mean ± SEM. (ǂ) 

Sepp1-/- mice data were from a MWM experiment performed on a different day under 

the same parameters and are present only to show inherent deficiencies of this 

genotype for relative comparison to normal behavior.  

B. 

A.

C.
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Figure 8. Sepp1r/r CMV+ (Rescue) mice have normal sperm morphology and 

motility. Representative images of (A) Sepp1+/+ normal cauda epididymal sperm, (B) 

Sepp1-/- extended flagellum, sharp bend and narrowing (red arrow) at the posterior 

midpiece in cauda epididymal sperm. (C) Sepp1r/r CMV+ normal flagella and motility. 

  

Sepp1+/+ Sepp1-/- Sepp1r/r CMV+   

A. B. C. 
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Chapter III 

 

SEPP1 CONDITIONAL BRAIN RESCUE IN SEPP1-/- MICE 

RESTORES SYNAPTIC PLASTICITY 

 

Abstract 

Selenoprotein P (Sepp1) transports selenium throughout the body, particularly to the 

brain and testes. Selenoprotein P knockout (Sepp1-/-) mice have severe neurological 

impairments that include motor function deficits, impaired hippocampal synaptic function 

and memory. Se supplementation alleviates some of these neurological deficits. 

However, synaptic plasticity is impaired in Se supplemented Sepp1-/- mice, as shown by 

deficits in long-term potentiation (LTP), a cellular model for learning and memory. We 

hypothesize that Sepp1 has a localized function in the brain besides transporting 

selenium. To determine the direct role for Sepp1 in the brain, expression of Sepp1 was 

restored only in forebrain neurons using a novel variation of the Cre-LoxP system. We 

assessed motor function and synaptic plasticity in 12-24 week old Sepp1+/+ CaMKII-Cre 

(wild-type), Sepp1-/-, and Sepp1-/-CaMKII-Cre (Sepp1 Brain Rescue). Sepp1 Brain 

Rescue mice exhibited slightly impaired motor function compared to Sepp+/+ mice, as 

shown by performance on the Rotarod and pole tests. The deficits in LTP previously 

reported in Sepp1-/- mice were restored, revealing a specific local function of Sepp1 in 

synaptic plasticity that is independent of its role in transporting Se from hepatocytes. 

 

Introduction 

 Selenoprotein P (Sepp1) is important for synaptic plasticity and memory. In the 

brain, Sepp1 is primarily found associated with neurons and ependymal cells (91,265). 

Recent studies showed that the Sepp1-/- genotype or Se deficiency each lowered Se by 

similar amounts in cortex, midbrain, brainstem and cerebellum. However, in the 

hippocampus, Se was lowered by deletion of SEPP1 but not by Se deficiency, 

suggesting that Sepp1 is more important for maintaining Se in hippocampus than in 

other brain regions (156).  
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 Mice with a deletion of the SEPP1 gene have severe neuromotor function deficits, 

abnormal gait, and deficits in hippocampal synaptic transmission, a region involved in 

memory formation(216). This results in disruption of spatial learning and a severe deficit 

in the long-term potentiation (LTP) memory model (216). These mice also exhibit 

spasticity and hyperreflexia that coincide with the deficient synaptic plasticity and 

widespread neurodegeneration. These mice also develop behavioral abnormalities such 

as impaired mobility and seizures, and die soon after weaning (103,151). These 

conditions can be exacerbated by dietary Se restriction and some abnormalities can be 

rescued by Se supplementation (113,162,266–268) (269). Furthermore, this 

neurological phenotype has been reported to be exacerbated in males compared to 

female mice lacking the SEPP1 gene (113).  

 Regardless of Se supplementation, Sepp1-/- mice still exhibit severe axonal 

degeneration (266,267) as well as impairments in synaptic plasticity and learning and 

memory (161). We hypothesized that Sepp1 has a direct and localized role in the brain 

besides its well-known function as a transporter of selenium. We applied the same 

method as described in Chapter II to conditionally rescue SEPP1, but here in only 

forebrain neurons, utilizing a brain-specific Cre-recombinase mouse for breeding. This 

mouse model allows us to study the function of localized Sepp1 expression in the brain 

and investigate whether Sepp1 expression, restricted to only forebrain neurons, could 

regulate synaptic plasticity independent of the role of Sepp1 in selenium transport.  
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Materials and Methods 

Animals 

Animals were maintained as described in Chapter II. All animals in this study were 

provided water supplemented with 10 µM Se ad libitum in addition to the standard lab 

diets containing adequate Se (~0.25 ppm). Mouse cohorts for this study were sex and 

age matched between 12-24 weeks old. All animal protocols were approved by the 

University of Hawaii Institutional Animal Care and Use Committee.  

 

Generation of Sepp1-/-, Sepp1-/-CaMKII-Cre (Sepp1 BrainRescue), and 

Sepp1+/+CaMKII-Cre mice 

Sepp1-/- mice were obtained from the laboratory of Dr. Raymond Burk at Vanderbilt 

University. Mutant mice were backcrossed to C57BL/6J for at least 10 generations 

before arriving in our lab and were bred with our C57BL/6J colony to ensure congenic 

strains (143). Since male Sepp1 mice are infertile (143), Sepp1+/− mice were used for 

breeding to obtain littermate Sepp1−/− and Sepp1+/+ pups.  

Sepp1 Brain Rescue mice were generated by first breeding mice with a Cre 

recombinase driven by the CaMKIIα promotor (B6.Cg-Tg(Camk2a-cre)T29-1Stl/J, 

(Jackson Laboratories) to Sepp1+/- mice. Sepp1+/-CaMKII-Cre heterozygous mice were 

then bred to each other to produce Sepp1-/-CaMKII-Cre (Sepp1 Brain Rescue) mice. 

This Cre mouse line has previously been extensively characterized, and reported to 

exhibit Cre expression almost exclusively in forebrain structures beginning 

approximately P16 (270,271). All breeders were provided water supplemented with 

10µM Se (in the form of sodium selenite). Pups were given 10µM Se supplemented 

water following weaning at 3 weeks of age. All experiments utilized Sepp1+/+/CaMKII-

Cre (referred to as Sepp1 WT) female and male wild type and Sepp1-/- littermate mouse 

controls. Non-littermate female and male Sepp-/- mice added to the cohort were 

acquired by standard Sepp1 mice breeding described in Chapter II. Confirmation of the 

expected recombination of Sepp1 was carried out by polymerase chain reaction (PCR) 

of extracted genomic DNA from mouse tails using specific primers to amplify a 151-bp 

product in the targeted region present in the wild type allele (forward-

ACCTCAGCAATGTGGAGAAGCC, reverse-TGCCCTCTGAGTTTAGCATTG), and 472-
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bp and 224-bp products specific for the knockout allele and floxed gene, respectively 

(forward-ACCTCAGCAATGTGGAGAAGCC, reverse-

GATGATCTGGACGAAGAGCATCA). Products were analyzed on 1.5% agarose gels, 

and SYBR® Safe DNA Gel Stain (InVitrogen) was detected by UV imaging to confirm 

genotype. 

 

Animal Behavior 

Age matched adult female and male Sepp1 WT, Sepp1 Brain Rescue, and Sepp1-/- 

mice 12 to 24 weeks of age were evaluated for neuromotor and neurobehavior effects 

using standard behavior paradigms that included Rotarod, in addition to the vertical pole 

test, and stride test previously described in Chapter II.  

 

Rotarod 

The Rotarod test evaluates motor coordination and is known to detect cerebellar 

dysfunction. Initial speed for the rod began at 4 rpm and increased to 40 rpm over a 5 

min period. Latency to fall was recorded as the time at which the mouse fell off the rod. 

The mice were given four trials per day with an inter-trial interval of 1 hour for two 

consecutive days. The average latency for each day was calculated for each mouse 

and analyzed. 

 

Immunofluorescence assay 

An anti-Sepp1 custom antibody was used to evaluate Sepp1 protein expression. 

Sepp1+/+, Sepp1-/-, and Sepp1 Brain Rescue mice between 12-24 weeks old were 

anesthetized with 2,2,2-tribromoethanol. Brains were harvested and flash frozen in 

liquid nitrogen. Parasagittal sections 10 µm in thickness were cut using a cryostat (Leica 

CM 1950) and mounted on slides. Mounted sections were incubated in 4% PFA for 5 

min at room temperature, washed with PBS-T and PBS, and blocked with 5% NGS, 

followed by overnight incubation with custom rabbit anti-Sepp1 (1:50 dilution) 

(Proteintech). Slides were gently rinsed three times with PBS. Alexafluor 488-

conjugated anti rabbit (InVitrogen) secondary antibody was applied to samples and 

incubated for 1 hr at RT in a light protective container. Samples were then treated with 
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Autofluorescence Eliminator Reagent (Millipore). Coverslips were mounted over 

samples using Vectashield Mounting Media with DAPI (Vector Laboratories). Sections 

were imaged using an Olympus IX81 DSU confocal microscope. Images were taken at 

the same exposure and were adjusted uniformly for brightness and contrast in ImageJ 

(NIH).  

 

Western Blot analysis 

 Mouse brains were harvested from animals euthanized by CO2 according to IACUC 

guidelines. Sera was isolated from blood collected via tail vein or during brain tissue 

harvest for electrophysiology experiments with a syringe after decapitation. Sera was 

separated from blood collected in microcentrifuge tubes by centrifugation at 3000 x g for 

30 min at RT. Tissues were flash-frozen using liquid nitrogen, crushed, and lysed with 

CelLytic MT (Sigma Aldrich Co) according to the manufacturer’s instructions. Protein 

concentration was measured using a Nanodrop 1000 (Thermo Scientific). Samples 

were adjusted to equal concentration and mixed with Laemmli Sample Buffer (Bio-Rad 

Laboratories) containing 5% beta-mercaptoethanol. Samples were denatured at 95°C 

for 10 minutes. Protein lysates were resolved by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) on a 10–20% gradient Tris-HCl Criterion Precast gel 

(Bio-Rad Laboratories) and transferred to Immobilon-FL polyvinylidene difluoride 

(PVDF) membranes (LiCor Biosciences). Membranes were blocked with Odyssey 

Blocking Buffer (LiCor Biosciences) for 1 hr at RT, then incubated with primary antibody 

diluted in 1:4 Blocking Buffer:PBS-T (PBS with 0.025% Tween-20) for 1 hr at room 

temperature (RT).  

 Sepp1 protein expression in serum of Sepp1 Brain Rescue and littermate control 

mice was measured with rabbit anti-Sepp1 antibody diluted 1:1000 (Proteintech). Sera 

was diluted by adding 1µl into Laemmli Sample Buffer (Bio-Rad Laboratories). Goat 

anti-GPx1 (R&D Systems) (1:1000) and rabbit anti-ApoER2 (1:1000) polyclonal 

antibodies were used to assess protein expression in brain tissue of age matched 

Sepp1 WT, Sepp1-/-, and Sepp1 Brain Rescue mice. Following washes in PBS, primary 

antibodies were detected with LiCor near-infrared fluorescent secondary antibodies in 

1:4 blocking solution in PBS for 45 min followed by washes as described above. Mouse 
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polyclonal anti-tubulin, diluted 1:5000 (Sigma Aldrich Co.), was probed and used as a 

loading control. For sera protein loading control detection on the PVDF membrane, 

SimplyBlue Safestain (InVitrogen) was used according to manufacturer instructions. 

Protein was detected using the Odyssey® Infrared Imaging System (LiCor Biosciences). 

Scanning and analysis were performed with LiCor Odyssey Image Studio 2.1 software. 

 

Hippocampus Slice Preparation and Field Potential Recordings 

 Sepp1 Brain Rescue mice and control littermates used for electrophysiology were 

given water supplemented with 10 µM Se ad libitum. Acute hippocampal slice 

preparation and electrophysiology were performed on mice 12 to 24 weeks of age using 

standard methods (272,273). Animals were deeply anesthetized with 330 mg/kg 

tribromoethanol. Brains were rapidly harvested and quickly placed in ice cold artificial 

cerebrospinal fluid (ACSF: containing in mM: 130.0 NaCl, 3.5 KCl, 24.0 NaHCO3, 1.25 

NaH2PO4, 1.5 MgSO4, 2.0 CaCl2) oxygenated with carbogen (95% O2, 5% CO2). 

Transverse brain slices, 350 μm in thickness, were cut using a vibratome (Leica VT 

1000 S). Hippocampi were isolated from the slices and transferred to a nylon mesh 

holding chamber and allowed to equilibrate at room temperature for 30 min then at 32oC 

in oxygenated ACSF for another 30 minutes. All slices were permitted a minimum 1 hr 

recovery time before transfer to a recording chamber. During fEPSP recordings, slices 

were superfused with oxygenated ACSF at 32°C at 1-3 ml/min.  

 Extracellular field recordings were obtained from the stratum radiatum of the CA1 

area. Field EPSPs (fEPSPs) were evoked by stimulation to the Schaffer collaterals and 

recorded with a glass microelectrode filled with 3M NaCl (resistance 1–5 MΩ). Prior to 

LTP induction, the input/output (IO) relationship of the slope of the CA1 fEPSP in 

response to 0-15 V stimuli (1 V increments) to the Schaffer collateral fibers was 

recorded. IO is a measure of synaptic strength. Input-output curves were obtained by 

varying stimuli from 0 to 15 V with 1 V increments. Paired-pulse facilitation was 

achieved with pairs of stimuli at 3V with interstimulus intervals of 10, 50, 90, 130, 170, 

210 and 250 msec, with 30 sec between each pair of stimuli.  

 Long-term potentiation (LTP) was induced with high-frequency stimulation (HFS) 

following at least 20 min of stable baseline recording. HFS consisted of two trains of 100 
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Hz frequency stimulation and 1 sec duration with each train separated by a 20 sec 

interval. 3V stimulation was used to produce fEPSPs that were approximately 10-30% 

of maximum responses. Potentiation was measured as the normalized increase of the 

mean pEPSP following HFS normalized to the mean pEPSP for the duration of the 

baseline recording.  

 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism software. Sample size 

were determined through power analysis (257,258). Interaction between genotypes and 

sex was ascertained by Student’s t-test and two-way analysis of variance (ANOVA) with 

Bonferroni’s posthoc test for multiple comparisons. To determine genotype differences 

between experimental groups in the water maze training and quadrant entries in the 

probe trial, repeated-measures of ANOVA with Bonferroni’s posthoc test were used. 

Data represent the mean ± SEM. Statistical significance was defined as p<0.05 for all 

statistical tests (Chapter II). 

  



56 
 

Results 

Restoration of Sepp1 protein hippocampal expression and absence in Sepp1 

Brain Rescue mouse sera are indicative of proper recombination of Sepp1 in 

forebrain neurons. Applying the novel technique developed and described in Chapter 

II but restricted to forebrain using the CaMKII promoter, Sepp1 Brain Rescue mice were 

generated to investigate the localized function of Sepp1 independent of Se transport 

from Sepp1 synthesized in hepatic cells. Verification of forebrain specific restoration of 

SEPP1 was assessed by standard genotyping as well as protein analysis. Sepp1 

comprises approximately 60% of plasma selenium. Therefore protein analysis was 

performed on sera separated from blood on SDS-PAGE, followed by western blotting 

for Sepp1 protein. Sepp1 Brain Rescue sera was negative for Sepp1 protein due to 

absence SEPP1 gene expression, thus secretion of liver derived Sepp1 into the plasma 

(Fig.9).  

 Imaging analysis focused primarily on the hippocampus, the brain region for 

consolidating memory and learning, in which the synaptic physiology experiments in this 

study were conducted. Immunofluorescence labeling demonstrated that Sepp1 Brain 

Rescue mice brains expressed Sepp1 mainly in forebrain neurons with expression 

colocalized with DAPI labeling for nuclei (Fig. 10).  

We assessed whether this conditional rescue of forebrain localized Sepp1 disturbed 

selenoprotein homeostasis. GPx1 is a ubiquitously expressed member of the Gpx-

family suggested to have a role for redox-balance in modulating neuronal 

protection(274). Protein expression of GPx1 was assessed in hippocampal tissue of 

Sepp1 Brain Rescue, Sepp1 WT, and Sepp1-/- mice by Western Blot. The differences 

between genotypes were not statistically significant. However, GPx1 expression was 

decreased in Sepp1 Brain Rescue mice compared to that of Sepp1+/+, while Sepp1 -/- 

mice was slightly greater relative to Sepp1 WT mice. These differences were not 

statistically significant (one-way ANOVA with Bonferroni Post-hoc test analysis) (Fig. 

11). 

ApoER2, a known receptor of Sepp1 in the brain, is normally downregulated upon 

ligand binding (275). We analyzed ApoER2 expression to assess whether the 

conditional genetic rescue of Sepp1 in the forebrain led to potential overexpression of 



57 
 

Sepp1. Western blot results show that Sepp1 Brain Rescue hippocampi had similar 

ApoER2 expression to that of Sepp1 WT, whereas ApoER2 was upregulated in Sepp1-/- 

due to absence of Sepp1 receptor binding but differences were not statistically 

significant (one-way ANOVA). (Fig. 11).   

 

Neuromotor function and gait impairments are not completely recovered in Sepp1 

Brain Rescue. Sepp1-/- mice have severe motor impairments encompassing irregular 

gait patterns described to include dragging of the limbs and uneven strides as well as 

motor coordination deficits (159,161). Sepp1-/- mice on Se deficient diet exhibit 

widespread neurodegeneration including dystrophic and degenerated axons in the pons 

and spinal cord (266). Gender specific neurobehavioral deficits have been reported in 

Sepp1-deficient mice raised on a standard lab diet (113). Raman et al. demonstrated 

that spontaneous locomotor activity, was greatly decreased in the male Sepp1 Se 

deficient mice while being slightly decreased in the female knockout animals, when 

compared to wild-type mice (113).  

We utilized the vertical pole, rotorod, and stride tests to assess if SEPP1 gene 

expression restricted to only forebrain neurons was sufficient to recover some of the 

neuromotor behavioral deficits reported in Sepp-/- mice. The vertical pole test 

demonstrated that the ability of Sepp1 Brain Rescue mice to coordinate the turn before 

descending the pole was similar to Sepp1 WT. Time taken for Sepp1 Brain Rescue 

mice to coordinate and turn on the pole before descending was similar to normal Sepp1 

WT mice in both females. However, when comparing between sex, Sepp Brain Rescue 

males performed slightly worse than Sepp1 Brain Rescue females (one-way ANOVA, 

p>0.05). Sepp1 male -/- mice performed significantly worse than Sepp1 WT controls 

(one-way ANOVA with Bonferroni’s Post hoc analysis *p<0.05), (Fig. 13B). Total time 

taken for Sepp1 Brain Rescue mice to descend the pole was similar to Sepp1 WT in 

both females and males although Sepp1 Brain Rescue show slightly slower total 

descent time than Sepp1 WT controls, but faster than Sepp1-/- mice. Sepp1-/- males 

performed significantly worse than Sepp1 WT male controls (*p<0.05), but only slightly 

worse than Sepp1-/- female counterparts. When we analyzed by genotype regardless of 

sex, it showed that Sepp1-/- mice took longer to descend the pole compared to Sepp1 
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WT controls (one-way ANOVA with Bonferroni’s Post hoc analysis,*p<0.05) (Fig. 13D). 

No with other statistically significant differences observed between other genotypes or 

for turn time.  We subjected the mice to a stride test to determine whether the ataxia 

seen in Sepp1-/- mice was recovered in the Sepp1 Brain Rescue mice. No differences 

were seen between the groups determined by two-way ANOVA with Bonferroni’s Post 

hoc analysis (p>0.05) (Fig. 13). 

The Rotarod assay was used to evaluate balance, grip strength, and motor 

coordination. Our data show that Sepp1 Brain Rescue mice exhibit marginally impaired 

balance and motor coordination. Rotarod performance on Day 1 showed Sepp1 Brain 

Rescue latency to fall was significantly less than that of Sepp1 WT (1-way ANOVA, p< 

0.05). Sepp1 Brain Rescue mice demonstrated improved motor coordination and 

balance on Day 2 as compared to Day 1. Sepp1 Brain Rescue mice improved and 

remained on the rod longer relative to the Sepp1-/- mice, but still did not perform as well 

as Sepp1 WT mice. Sepp1-/- mice performance on Day 2 was significantly less than that 

of Sepp1 WT (one-way ANOVA with Tukey’s multiple comparison post hoc test, p<0.05) 

(Fig. 12). All groups showed improved latency on Day 2 (one-way ANOVA Tukey’s 

multiple comparison post hoc test p<0.0001). Male compared to female mice in all 

groups appeared to perform more poorly, exhibiting a trend towards lower latency to 

remain on the rod. However, no statistically significant differences were observed when 

data were analyzed to compare performance between sex, within and among 

genotypes (2-way ANOVA, data not shown). 

 We subjected the mice to a stride test to determine whether the ataxia seen in 

Sepp1-/- mice was recovered in the Sepp1 Brain Rescue. Stride length and width were 

measured for four sets of hind paw prints. The Sepp1 Brain Rescue had similar gait 

patterns similar to wild type mice. Both Sepp1 Brain Rescue and wild type mice had 

similar stride length patterns to each other. Sepp1-/- mice also exhibited normal stride 

length thus there were no significant difference in stride length between genotypes Two-

way ANOVA with Bonferroni’s Post hoc analysis (P>0.05) (Fig. 14). Selenium 

supplementation in this cohort may have alleviated abnormal gait exhibited by Sepp1-/- 

mice. There were no differences in stride width as observed before in previous 

experiments (Chapter 2). 
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Synaptic plasticity is restored in Sepp1 Brain Rescue 

To determine whether synaptic plasticity deficits observed in Sepp1-/- mice are due 

to absence of Se transport from the liver or attributed to the local action of Sepp1 in the 

brain, we studied basal synaptic transmission and synaptic plasticity in hippocampi of 

our conditional forebrain rescue mouse model. We examined the synaptic physiology in 

area CA1 of the hippocampus, a brain region crucial for normal spatial learning and 

memory formation. To establish the basal synaptic strength of each genotype we 

assessed the input-output (IO) of synaptic responses in the Schaffer collateral-CA1 

synaptic. The presynaptic fibers were stimulated with increasing stimulus intensities and 

recording the evoked CA1 field excitatory postsynaptic potentials (fEPSPs) in stratum 

radiatum at Schaffer collateral synapses. As stimulus intensity increased, Sepp Brain 

Rescue mice exhibited a non-significant overall increase in synaptic efficacy compared 

to Sepp1 WT and Sepp-/- (p>0.05 two-way ANOVA) (Fig. 15A).  

Paired-pulse facilitation (PPF) is a form of short-term plasticity. When two pulses at 

a short interpulse interval are given to the afferent pathway, the postsynaptic response 

to the second stimulus is increased when compared with the first response (162). PPF 

can provide information regarding the loci of the LTP expression, whether changes in 

the response is mediated presynaptically and most likely not postsynaptically. When 

LTP expression occurs at a presynaptic loci, then it may alter PPF potentiation. A 

smaller initial PPF is associated with an increase in PPF while a larger initial PPF was 

associated with a decrease in PPF with LTP (222). Alterations in PPF response within 

the same time course as LTP also suggest it is input specific and not due to nonspecific 

effects of high-frequency stimulation, changes in inhibition, active postsynaptic currents 

or their nonlinear summation, and PPF changed with the same time course as LTP 

(222). Sepp1 Brain Rescue mice exhibited PPF responses similar to that of Sepp1 WT 

mice. We observed no difference in paired pulse facilitation (PPF) in all groups 

measuring interpulse interval stimulus response over time (p>0.05 two-way ANOVA) 

(Fig. 15B).     

LTP is a mechanism necessary to store a long-term memory, in which high 

frequency stimulation of neural pathway induces signal transmission that results in long-
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lasting increased synaptic efficacy between neurons (214).  LTP is characterized first by 

a transient and highly robust post-tetanic increase in the slope of the fEPSP that is 

followed by a sustained and less robust increase (216). We induced LTP in hippocampi 

of all mice genotypes by applying high-frequency stimulation (HFS) of two 100 Hz 

trains, 20 sec apart to assess a type of long-term plasticity exhibited in the Schaffer 

collateral-CA1 pathway important in memory formation. Sepp1 Brain Rescue male mice 

exhibited restored normal LTP similar to that of Sepp1 WT mice. Whereas, as 

previously published, Sepp1-/- mice exhibit abolished LTP (162) (Fig. 16). Previous data 

demonstrated potential sex differences in synaptic plasticity of Sepp1-/- mice in regards 

to LTD (Bellinger et al., unpublished). When we conducted sex comparisons within and 

between genotypes we observed no differences (data not shown).  

 

Discussion  

Sepp1 is known predominantly to be synthesized in the liver for selenium synthesis 

and distribution (Fig.1). Sepp1 has also been shown to be synthesized in small amounts 

in neurons and oligodendroglial cells of the brain (276). Sepp1 plays a vital role in the 

homeostasis of Se in the brain (103). All regions of the brain are dependent on Sepp1 

for selenium (277). Deletion of Sepp1 under Se deficient conditions results in 

neurological impairment with ataxia and seizures, which are well documented in many 

published studies (101,161). Deletion of Sepp1 in mice have also been shown to result 

in hippocampal-dependent long-term potentiation deficits, the cellular basis for learning 

and memory. Previous studies have demonstrated that alterations in synaptic 

transmission and LTP in Sepp1 are irreversible despite Se supplemented diets (162).  

We show that Sepp1 has a localized function in the brain regulating synaptic 

plasticity, independent of its known role of Se transport. We demonstrate local Sepp1 

brain function to generate a conditional forebrain rescue expressing Sepp1 solely in 

forebrain neurons in otherwise Sepp1-/- mice. Previous studies report that Sepp-/- mice 

have synaptic plasticity impairments in which LTP is abolished. We show that the Sepp1 

Brain Rescue mice have restored synaptic plasticity as evidenced by restored LTP. To 

confirm restoration of SEPP1 to forebrain neurons, we analyzed protein from sera, 

immunohistochemistry of Sepp1 Brain Rescue hippocampi, and expression of other 
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selenoproteins in the brain. We confirmed that Sepp1 Brain Rescue mice sera protein 

expression is absent in the body, as seen in Sepp1-/-, compared to Sepp1+/+ mice, 

through Western blot protein analysis (Fig. 9). This shows SEPP1 is not expressed in 

other parts and not being transported and synthesized from liver as it is absent from the 

sera. Further imaging analysis focusing on the hippocampus show that Sepp1 Brain 

Rescue mice brains expressed Sepp1 mainly in forebrain neurons with expression 

colocalized with DAPI labeling for nuclei (Fig. 10). Based on CA1 area landmarks, 

immunostaining outside of the cell bodies around the DAPI staining is largely dendritic. 

These results indicates that Sepp1 Brain Rescue mice have restored Sepp1 protein 

expression in forebrain neurons of hippocampal CA1 area, similar to Sepp1 WT mice, 

whereas Sepp1 signal is absent in Sepp1-/- (Fig.10). 

We assessed whether this conditional rescue of forebrain localized Sepp1 disturbed 

selenoprotein homeostasis. GPx1 is a ubiquitously expressed member of the Gpx-

family suggested to have a role for redox-balance in modulating neuronal protection 

(274). GPx1 protein expression was decreased in Sepp1 Brain Rescue mice compared 

to that of Sepp1+/+, while in Sepp1-/- mice it was slightly greater relative to Sepp1 WT 

mice, suggesting a potential decrease in oxidative stress in the Sepp1 Brain Rescue 

mice. These differences were not statistically significant (one-way ANOVA with 

Bonferroni Post-hoc test analysis). 

Sepp1-/- mice have severe motor impairments encompassing irregular gait patterns 

described to include dragging of the limbs and uneven strides as well as motor 

coordination deficits (159,161). Sepp1-/- mice on Se deficient diet exhibit widespread 

neurodegeneration including dystrophic and degenerated axons in the pons and spinal 

cord (266). Gender specific neurobehavioral deficits have been reported in Sepp1-

deficient mice raised on a standard lab diet (113). Raman et al. demonstrated that 

spontaneous locomotor activity, was greatly decreased in the male Sepp1-deficient 

mice while being slightly decreased in the female knockout animals, when compared to 

wild-type mice (113).  

 We utilized the vertical pole, rotorod, and stride tests to assess if SEPP1 gene 

expression restricted to forebrain neurons was sufficient to recover some of the 

neuromotor behavioral deficits reported in Sepp-/- mice. In the vertical pole test, which 
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involves the basal ganglia and cerebellum, upon coordination of the turn, when 

comparing between sex, Sepp Brain Rescue males performed slightly worse than 

Sepp1 Brain Rescue females (one-way ANOVA, p>0.05) (Fig. 13A). This is not 

surprising since previous reports have shown that Sepp1-/- males exhibit more severe 

phenotypes even with Se supplementation (113). As a characteristic of abnormal gait, 

Sepp1-/- mice tend to drag their hind limbs thus hindering the ability of mice to descend 

the pole. Raman et al., reported that Sepp-/- male mice performed significantly worse 

than Sepp-/- females during the inversion on the pole test even after Se supplementation 

(113). In total time taken to descend, Sepp1-/- males performed significantly worse than 

Sepp1 WT male controls (*p<0.05) (Fig. 13B), but only slightly worse than Sepp1-/- 

female counterparts, similar to the results in the Ramen et al. study regarding Sepp-/- 

mice.   

 We subjected the mice to a stride test to determine whether the abnormal gait or 

ataxia typically observed in Sepp1-/- mice was recovered in the Sepp1 Brain Rescue 

(Fig. 14). Even though in previous experiments (Chapter 2), Sepp1-/- mice exhibited 

ataxic, irregular stride lengths, Sepp1-/- mice in these experiments have improved 

performance, potentially due the Se supplementation that was provided for this group 

beginning at 3 weeks of age postnatal (113). Stride width, usually observed in ataxia, 

were not impaired in Sepp1-/- mice on lower Se diet, as previously reported (Chapter II). 

The absence of any stride width impairments in Sepp1-/-  mice in the stride test 

regardless of an adequet or high Se supplemened diet, suggest that deletion of Sepp1 

may not critically effect cerebellum function, which ataxic gait is associated, relative to 

other brain regions such as the hippocampus,a region important for learning and 

memory, where absence of Sepp1 results in more pronounced effects. Therefore 

lending further support to our Sepp1 Brain Rescue model in arguing for a specific role of 

Sepp1 in the forebrain.   

The Rotarod assay was used to evaluate balance, grip strength, and motor 

coordination. Our data show that Sepp1 Brain Rescue mice exhibit marginally impaired 

balance and motor coordination (Fig. 12). No statistically significant sex-specific 

differences were observed. Overall, the results of the neurobehavior assessments show 

that forebrain-restricted Sepp1 rescued some of the neuromotor deficits such as 
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irregular gait, descending the pole, motor coordination learning. However Sepp1 Brain 

Rescue, despite mostly not statistically significant, showed that not all motor function 

was completely recovered as the forebrain does not completely control all motor 

function. These result provides further evidence that Sepp1 is not expressed in other 

parts of the brain, such as the cerebellum (part of the hind brain), which helps control 

balance, posture, coordination of voluntary movements, motor learning, and cognitive 

behavior. 

We examined the synaptic physiology in area CA1 of the hippocampus, a brain 

region crucial for normal spatial learning and memory formation. Measuring basal 

synaptic transmission helps determine the normal synaptic strength of the specific 

genotype and brain health prior to any artificial stimulation. The basal synaptic strength 

in Sepp Brain Rescue mice exhibited normal synaptic efficacy similar to Sepp1 WT and 

Sepp-/-. PPF helps determine if alterations in LTP are presynaptic or postsynaptic 

actions. When LTP expression occurs at a presynaptic loci, then it may alter PPF 

potentiation (222). Sepp1 Brain Rescue mice in exhibited PPF responses similar to that 

of Sepp1 WT mice. We observed no difference in paired pulse facilitation (PPF) in all 

groups, arguing against any presynaptic changes. LTP, a form of synaptic plasticity, in 

the CA1 region of the hippocampus has been the primary model by which to study the 

cellular and molecular basis of memory (213).  LTP Sepp1 Brain Rescue male mice 

exhibited restored normal LTP similar to that of Sepp1 WT mice. Whereas, despite 

selenium supplementation greater than what is considered adequate levels, Sepp1-/- 

mice exhibit abolished LTP, which has been shown to correlate with learning and 

memory deficits as determined by behavioral tests (216). Our data demonstrate that the 

conditional rescue of Sepp1 expression restricted to forebrain neurons in Sepp1-/- mice 

is sufficient to recover severe LTP deficits. This supports our hypothesis that neuronal 

expression of Sepp1 in hippocampal cells is necessary for LTP, independent of its 

transport function.  

Sepp1-/- mice have decreased brain Se comparable to that of wild-type animals 

raised on a 0 Se diet (102,103,161). Sepp1-/- mice have a similar decrease of Se in the 

cortex, midbrain, brain stem, and cerebellum, while Se in the hippocampus is decreased 

by Sepp1 gene deletion but not by 0 Se diet (160,278). Sepp1-/- mice on minimal 
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adequate Se supplementation of 0.1mg/kg have been previously reported to have 

synaptic plasticity deficits correlated with spatial learning impairments (216). Sepp1-/- 

mice on less than 0.1mg/kg exhibit high mortality rates (161). In a seminal study, Peters 

et al. demonstrated that Sepp1-/- mice have an increase in synaptic transmission but 

lack changes in the fiber volley amplitude, suggesting that Sepp1 deficiency contributes 

to defects in postsynaptic function (162). However, it was later determined that after 

several more generations of mice the increased synaptic transmission were no longer 

observed in Sepp1-/- mice.  We did not find any alteration in mice in either synaptic 

transmission or fiber volley amplitude in Sepp1-/-. However, we did observe a slight 

increase in synaptic strength in the Sepp1 Brain Rescue but it was not statistically 

significant. Although not significant, the enhanced basal synaptic transmission may 

suggests that synapses in Sepp1 Brain Rescue mice might have a slightly improved 

ability to undergo synaptic plasticity (162).  

Sepp1-/- mice also show a decrease in paired pulse facilitation PPF at 20, 40 and 

120 ms inter-pulse intervals, which is distinctive of presynaptic dysfunction (162). This 

phenomenon can be attributed to residual calcium in the presynaptic terminal that 

facilitates neurotransmitter release upon the second stimulation resulting in the 

subsequent increase in the post synaptic response [26] (162,221). Results from Peters 

et al. suggest that deletion of Sepp1 alters both presynaptic (altered neurotransmitter 

release) and postsynaptic properties (enhancement of fEPSP slopes) (162). 

In addition, Sepp1+/+ mice on a selenium-deficient diet of 0 mg/kg were shown to 

have altered synaptic strength and decreased LTP similar to that of Sepp1-/- mice on 1 

mg/kg Se diet (162).  Importantly Peters et al. also reported Sepp1-/- mice, despite Se 

supplementation (1mg/kg Se diet) , exhibited severe long-term potentiation (LTP) deficit, 

the cellular underpinnings of learning and memory, and is a predominantly post-synaptic 

dependent activity (162).  

Targeted inactivation of Sepp1 by way of deletion of the gene encoding 

tRNA[Ser]Sec biosynthesis of all hepatocytic selenoproteins, resulted in reduced serum 

and kidney Se levels comparable to that of Sepp1 KO mice, yet neurological 

dysfunction was not observed (158,279,280). This suggests that neurological function 

may not be dependent on liver derived Sepp1 synthesis, and therefore implicating a 
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potential local role of Sepp1 in the brain. The same group who performed the study on 

mice with Sepp1 targeted inactivation, followed up with a model using a liver-specific 

genetic expression of Sepp1 in Sepp1 KO mice on Se adequate diets (252). This study 

showed that the liver-specific Sepp1 rescue mice restored the neuromotor deficits 

observed in Sepp1 KO mice on the Rotarod test, confirming that Sepp1 is the primary 

transport form of Se supporting the kidney, testes, and brain (158). However, it did not 

show if this liver-specific Sepp1 expression mouse model resulted in recovery of the 

other neurological deficits such as synaptic plasticity, learning and memory. They 

conclude that local Sepp1 expression is required to maintain selenium content in 

selenium-privileged tissues such as brain and testis during dietary selenium restriction 

despite their findings confirming the necessity of liver-derived Se transport (158).  

To understand when Sepp1 was expressed during the development of the Sepp1 

Brain Rescue mice, we briefly discuss details of the Cre recombinase utilized to 

generate the rescue of the SEPP1 gene. The CaMKIIα promoter in these Cre 

expressing mice has been demonstrated to have targeted specificity to the 

hippocampus and necocortical tissues that have central roles in learning and memory 

(270). Originally intended for use for conditional knock-outs, the CaMKIIα-Cre promoter 

lacks activity during prenatal and perinatal periods, reducing the potential of 

developmental defects due to a gene knockout (270). In our current study, this is 

advantageous as the Sepp1 Brain Rescue mice essentially have similar development 

during the prenatal and perinatal periods as Sepp1 KO mice.   

CA1 pyramidal cells undergo neurogenesis between E10 and E18 (270,281) and 

enter the postmitotic state by P0 and are well differentiated by P7, with fully established 

synaptic connections (282–284). Recombination did not significantly alter the 

organization of the various brain nuclei or in the arrangement of cell layers within major 

brain nuclei and no overt behavioral or morphological abnormalities in several Cre 

transgenic lines (270). CaMKII mRNA was also shown to be in both the hippocampus 

and cortex by Northern blot, with expression similar to that in hippocampus (270). 

However, immunohistology showed dense staining in the CA1 region pyramidal cells of 

the hippocampus and somewhat lighter staining in the CA3 region than in the rest of the 

hippocampus and cortex (270). One explanation provided by the authors was that the 
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CaMKIIα promoter is particularly active in CA1 pyramidal cells, therefore recombination 

is more efficient and is reached more frequently in these cells as opposed to other 

forebrain cells (270). Another possibility was that CA1 pyramidal cells provide 

environmental factors that are favorable for the synthesis, stability, transport, or activity 

of the Cre recombinase (270). We confirm in our study through immunohistochemistry 

analysis, that relative Sepp1 expression is restored in the CA1 region of Sepp Brain 

Rescue mice hippocampus similar to that of Sepp+/+ and is absent in Sepp-/- (Fig. 10). 

Transcription of mRNA of CaMKII driven by the CaMKIIα promoter has been shown 

to be silent until several days after birth (270,285). Cre recombination was reported to 

begin at P19 which coincides with the middle or end of the third postnatal week in the 

CA1 pyramidal cells, indicating that this type of recombination is not inhibited by the 

highly differentiated, post-mitotic state of the CA1 neurons (270). As the mice aged, 

recombination spread to more cells but was restricted to the CA1 pyramidal cell layer 

(270). By P29, the adult recombination pattern was established and remained restricted 

to the CA1 area (270).  

  Studies have shown that Sepp1 is more important for maintaining selenium in the 

hippocampus than in other brain region and prioritizes the brain in the selenium 

hierarchy (277) thus supporting our hypothesis that localized Sepp1 in the brain has an 

independent neurological function. Studies of mice with Sepp1-/- mice shows 

that brain and testis selenium levels are largely dependent on Sepp1 (101). Brain and 

testis maintained their selenium better than did liver, kidney, and muscle when dietary 

selenium was limiting but testis selenium fell sharply in the group fed the deficient diet 

(277). Also, Sepp1 selenium uptake between brain and testis has been shown to be 

different. Deletion of Sepp1 and selenium deficiency in Sepp1+/+ each lowered selenium 

a similar amount in cortex, midbrain, brainstem, and cerebellum. Selenium in the 

hippocampus was lowered by deletion of Sepp1 but not by selenium deficiency (277).  

Valentine et al., showed that the LTP deficit in Sepp1-/- mice is independent of the 

amount of HFS presynaptic input, but does not rule out the possibility of occluded LTP 

(216). The study demonstrated that there was no stimulation threshold preventing LTP 

induction and therefore HFS did not induce potentiation greater than the standard two 

train 100 Hz protocol. The results were concluded after administering Sepp1-/- slices 



67 
 

were given multiple HFS protocols (2 trains of 100 Hz stimulation, separated by 20 sec 

repeated 4 times with each set given 5 minutes apart).  

Importantly, selenium depletion through dietary restriction results in the absence of 

selenocysteine and subsequent early translation termination at the site of 

selenocysteine incorporation of all the selenoproteins, including Sepp1. Therefore, 

Sepp1+/+ (0 Se diet) have reduced selenium in the CNS coupled with a decrease of 

Sepp1(162). Similar to the Sepp1–/–, LTP also is altered in hippocampal slices obtained 

from Sepp1+/+ mice on 0 Se. Similar to the Sepp1-/- slices, Sepp1+/+ (0 Se diet) slices do 

not exhibit LTP in response to HFS compared to the Sepp1+/+ mice fed 1 mg Se/kg 

(216). Brain function is severely compromised in mice expressing C-terminal deleted 

Sepp1 mice fed a selenium-deficient diet but not as severely as in Sepp1–/– mice fed a 

selenium-deficient diet (143). Moreover, there are modest qualitative differences in 

neurological dysfunction observed between the two genotypes (162).  

The results of these studies point to roles for both domains of Sepp1 in the brain, 

although the C-terminal domain is clearly the major one maintaining the brain selenium 

content (143). The brain appears to depend on at least two Sepp1 functions: one is for 

Sepp1 in plasma to transport selenium to the brain from the liver and other tissues and 

the other is for Sepp1 synthesized within the brain to preserve brain selenium content 

(143). Contrary to previous studies our data show that plasma Sepp1 transported 

selenium to the brain is not required for normal hippocampal-dependent synaptic 

function. 

Taken together, these data demonstrate that the conditional rescue of Sepp1 

expression restricted to only forebrain neurons in Sepp1-/- mice is sufficient to reverse 

severe LTP deficits. These studies also present the excellent utility of this cell specific 

conditional genetic rescue model for studying the local and independent functions of 

other genes. These results support our hypothesis that Sepp1 has a significant role in 

local brain function, modulating synaptic plasticity, independent of hepatocyte-derived 

Se biosynthesis and transport. This study has successfully demonstrated that localized 

expression of Sepp1 in hippocampal neurons is necessary and sufficient for restoration 

of normal LTP, independent of Sepp1 transported from hepatocytes.  
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Figure 9. Sepp1 protein is absent in Sepp1 Brain Rescue sera. Sepp1 WT, KO, and 

Brain Rescue mouse sera shows that Sepp1 protein is not expressed in sera of Sepp1 

Brain Rescue mice. Albumin, approximately 65kD, was used as loading control and 

visualized by Simply Blue SafeStain. 
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Figure 10. Sepp1 Brain Rescue forebrain neurons have restored Sepp1 protein 

expression. Immunofluorescence using Sepp1 primary antibody and Alex-fluor 488 

secondary antibody (green) show that Sepp1 Brain Rescue have restored Sepp1 

protein expression in hippocampal CA1 area similar to that observed in Sepp1 WT 

sections, while Sepp1 KO is confirmed to lack Sepp1 signal. DAPI was used to label 

nuclei in blue. SC = Schaffer collaterals, SR = stratum radiatum 
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Figure 11. Neither Sepp1 deletion nor conditional forebrain-specific Sepp1 

genetic rescue significantly alter GPx1 or ApoER2 expression in the 

hippocampus. A) Differences in GPx1 protein expression levels were not statistically 

significant by one-way ANOVA with Bonferroni Post-hoc test analysis (p>0.05). B) 

Sepp1 Brain Rescue ApoER2 protein expression is similar to that of Sepp1 WT mice, 

downregulating ApoER2 upon binding. Sepp1 KO mice show greater ApoER2 protein 

expression due to absence of Sepp1 receptor binding, but not statistically significant by 

one-way ANOVA with Bonferroni Post-hoc test analysis (p>0.05) (n=3-5 mice for each 

group for all protein analysis).  
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Figure 12. Sepp1 Brain Rescue mice exhibit marginally impaired balance and 

motor coordination. A) Rotarod performance on Day 1 showed Sepp1 Brain Rescue 

latency to fall was significantly greater than that of Sepp1 WT (one-way ANOVA with 

Tukey’s multiple comparison post hoc test analysis, p< 0.05). The ability of Sepp1 KO 

mice to remain on the rod was less than that of Sepp1 WT on both days (p>0.05). B) 

Sepp1 Brain Rescue mice demonstrated improved motor coordination and balance on 

Day 2 as compared to Day 1. Sepp1 Brain Rescue mice latency to fall did improve 

relative to the Sepp1 KO mice however still not as well as Sepp1 WT mice. Sepp1 KO 

performance on Day 2 did not improve as the other two groups did and was significantly 

poorer than that of Sepp1 WT (one-way ANOVA with Tukey’s multiple comparison post 

hoc test analysis, p<0.05). All groups showed improved latency on day 2 (2-way 

ANOVA, p<0.0001). 

 

 

B. A. 
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Figure 13. Sepp1 Brain Rescue exhibit moderate improvement of motor 

coordination on the Pole Test. (A) Time taken for Sepp1 Brain Rescue mice to 

coordinate and turn on the pole before descending was similar to normal Sepp1 WT 

mice in both females. Sepp Brain Rescue males performed slightly (not significant) 

worse than Sepp1 Brain Rescue females. Sepp1 male KO mice performed significantly 

worse than Sepp1 WT controls, two-way ANOVA with Bonferroni’s Post hoc analysis 

performed for both (*p<0.05). Values are expressed as mean ± SEM. (B) Total time 

taken for Sepp1 Brain Rescue mice to descend the pole was similar to Sepp1 wild type 

(WT) in both females and males although Sepp1 Brain Rescue show slightly slower 

total descent time than Sepp1 WT controls but faster than Sepp1 KO mice. Sepp1 KO 

males performed worse than Sepp1 WT male controls, but only slightly worse than 

Sepp1 KO female counterparts (p>0.05), Sepp1 Brain Rescue (p>0.05) as reflected in 

two-way ANOVA results. (C) Grouped data of turn time, (p>0.05) by one-way ANOVA  

(D) Grouped data of total descent time, (*p<0.05) one-way ANOVA with Bonferroni’s 

Post hoc analysis. 

Turn Total A. B. 

C. D. 



73 
 

  



74 
 

 

Figure 14. Sepp1 Brain Rescue mice have normal gait. (A) Sepp1 Brain Rescue 

(Sepp1-/-CaMKII) mice exhibited normal and uniform stride length compared to Sepp1 

WT mice gait in the stride test. 2-way ANOVA of stride length with Bonferroni post hoc 

analysis showed no significant differences in stride length or width between genotypes 

(P>0.05).  
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Figure 15. Sepp1 Brain Rescue mice exhibit normal synaptic strength and paired 

pulse facilitation. A) Input-output relationship of the slope of CA1 field excitatory 

postsynaptic potentials (fEPSP) in response to increasing stimulation of Schaffer 

collateral fibers appear increased with higher stimulus strength in Sepp1 Brain Rescue 

relative to Sepp1 WT and KO, but these changes in synaptic strength observed are not 

statistically significant via 2-way ANOVA. B) Sepp1 Brain Rescue mice have normal 

PPF, acquired by increasing inter-pulse intervals, compared to wild type counterparts 

(p>0.05 two-way ANOVA).  
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Figure. 16. Sepp1 Brain Rescue mice exhibit restored long-term potentiation 

(LTP). When Sepp1 expression is rescued only within forebrain neurons, LTP is 

restored, whereas Sepp1 KO mice are deficient in LTP, compared to wild-type mice 

(p<0.05, two-way ANOVA with Bonferroni posthoc tests). LTP was induced by high-

frequency stimulation (HFS) (two 100 Hz trains, 20 sec apart). 
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Chapter IV 

 

THE ROLE OF SEPP1 IN MODULATING THE DISABLED-1 PATHWAY 

 

Abstract 

Genetic deletion of Sepp1 in rodents leads to impaired neurological function, 

including abrogated synaptic plasticity (216), yet there are few published studies 

examining the mechanism and pathways in which Sepp1 is involved. Furthermore, while 

Sepp1 binds ApoER2, no studies have reported the role of Sepp1 in the signaling 

pathways associated with ApoER2. Mice with ApoER2 deletion on selenium deficient 

diets showed similar neurological deficits to those of the Sepp1 KO mice (103). The 

results imply that interruption of selenium supply evidenced by decreased selenium 

uptake to the brain leading to neurological deficits was due to impairment of the Sepp1-

ApoER2 pathway (157,286). We hypothesize that Sepp1 affects the Disabled-1 

pathway (Dab1) as Dab1 is a downstream effector that is activated by phosphorylation 

upon ligand binding to ApoER2. Both Sepp1 and Dab1 are required for normal synaptic 

plasticity (271). 

 

Introduction 

Disabled-1 (Dab1) is critical for synaptic function and learning. Dab1 is a 

downstream cytoplasmic adaptor protein of the Reelin-ApoER2 signaling pathway. 

Sepp1 shares the ApoER2 receptor with Reelin, a large extracellular matrix glycoprotein 

expressed by GABA-ergic interneurons (273). However, ApoER2 has a greater affinity 

for Sepp1 than Reelin (287). Reelin binds to the very-low-density lipoprotein receptor 

(VLDLR) and ApoER2 on the surface of post-mitotic neurons that migrate to their proper 

position in the developing brain (2, 5), leading to phosphorylation of Dab1 via binding at 

an NPxY consensus motif in the PTB domain on the cytoplasmic tails of the receptors  

and is a key regulator of Reelin signaling (288–291). Either Apoer2 or Vldlr alone is 

sufficient to induce Dab1 tyrosine phosphorylation in vitro (291,292). However, both 

both receptors are necessary for normal neuronal migration and in vivo Reelin-

dependent enhancement of synaptic transmission in the hippocampus (273,292,293). 
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ApoE receptors have been indirectly implicated in memory and neurodegenerative 

disorders because their ligand, ApoE, is genetically associated with Alzheimer disease 

(273). Thus, the impairment of ApoE receptor-dependent neuromodulation may 

contribute to cognitive impairment and synaptic loss in Alzheimer disease (273). 

Both ApoER2 and VLDLR belong to the LDL receptor gene family, which are a class 

of structurally closely related, yet unusually versatile, multifunctional endocytic cell 

surface receptors that regulate a wide range of cellular signaling pathways 

(292,294). These two receptors, together with their ligand Reelin, are key elements in 

neuronal migration and positioning during brain development (295,296). In this stage, 

reelin expressed by Cajal-Retzius cells (296–298) facilitates the correct development of 

different regions of the CNS, including the hippocampus, cerebellum, and cerebral 

cortex (296) . In the adult stage, the functions of ApoER2 and its ligand reelin include 

the regulation of synaptic plasticity (288,292,296), dendritic branching (296,299), actin 

remodeling, and neuronal survival (296,300). When oligomeric Reelin binds to ApoER2 

and VLDLR, this initiates clustering of ApoER2 and VLDLR at the plasma membrane, 

inducing the phosphorylation of Dab1, which is a cytoplasmic adaptor protein (301). 

Oligomerization of Dab1 leads to phosphorylation of Dab1 (302). Opto-Dab1 may also 

be useful to study Reelin-Dab1 signaling in synaptic plasticity (302). 

When phosphorylated on tyrosine, Dab-1 (mouse) forms complexes  with proteins  

through a  phosphotyrosine binding (PTB) domain (296,303). Dab1 is tyrosine 

phosphorylated by SFKs, and the kinases themselves can be further activated by 

phosphorylated Dab1 (304). Fyn-deficient mice showed increased Dab1 protein 

expression which suggests a response to impaired Reelin signaling similarly observed 

in mice lacking Reelin or its receptors (304). In Fyn-deficient neurons, upregulation of 

Dab1 expression is consistent with a response mechanism by which the cell attempts to 

compensate for reduced kinase availability (304).  

Activation of Dab1 subsequently leads to activation of Src family tyrosine kinases 

(SFKs) and other kinases that phosphorylate the adaptor protein at its tyrosine residues 

(288). Defects in these signaling cascades as in apoER-2-deficient mice cause 

abnormal layering of neurons in the cortex, hippocampus, and cerebellum (9). Recent 

studies have shown that Dab1 is a critical regulator of synaptic function and 
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hippocampal-dependent associative and spatial learning in an adult forebrain-specific 

and excitatory neuron-specific conditional knock-out mouse line (271).  

Reelin also modulates synaptic plasticity and learning in the adult mouse brain 

(205,273). Reelin has been shown to enhance long-term potentiation (LTP), but this 

function is abolished if either VLDLR or ApoER2 is absent (205). In this study, Reelin 

was found to be a potent enhancer of glutamate-stimulated Ca2+ influx through NMDA 

receptors (205). This Reelin-mediated modulation of NMDA receptor functions requires 

SFK and Dab1(205,301). Activation of PI3K A is critical in the Reelin signaling network 

(305,306), which leads to the phosphorylation of PKB/Akt (291,306) and activation of 

cofilin via LIMK1 (306). Reelin induces a complex network of events, the most 

prominent of which is the activation of PI3K. As a consequence, activated Akt regulates 

phosphorylation of tau, MAP1B mediated microtubule remodeling, as well as cell 

proliferation and survival (306).  

Sepp1-/- mice have impaired synaptic plasticity as shown by deficits in LTP. Since 

Sepp1 knockout mice lack the SEPP1 gene, and thus cannot express Sepp1, Sepp1 

binding to its receptor ApoER2 will not occur. As described when a ligand such as 

Reelin binds to ApoER2, it initiates a cascade of actions, subsequently inducing 

phosphorylation of Dab1. Therefore, we hypothesize that if Sepp1 acts similarly to 

Reelin upon binding to ApoER2, Sepp1 should induce phosphorylation of Dab1 upon 

binding. Thus we further hypothesize that phosphorylation of Dab1 will occur in the 

presence of Sepp1-induced LTP, while absence of Sepp1-induced LTP will result in 

either abolished or decreased Dab1 phosphorylation.  

Peters et al. in the Weeber Lab at the University of South Florida, has shown that 

addition of 2 nM purified Sepp1 protein to Sepp1 KO hippocampal slices for only 20 

minutes prior to HFS recovers LTP (307). However, in Sepp1+/+ hippocampal slices, 2 

nM purified Sepp1 protein blocked LTP, whereas 0.5 nM Sepp1 enhanced LTP (307). 

Interestingly, addition of Sepp1 purified protein to wild type slices decreases synaptic 

transmission and blocks Reelin binding (307). We hypothesize that Sepp1 modulates 

the Dab1 pathway working concertedly to regulate synaptic plasticity.  
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Materials and Methods 

Sepp1 purified protein in concentrations of 0.25 nM and 2 nM were applied to 

hippocampal slices of Sepp1+/+ and Sepp1 KO mice for 30 minutes to 1 hour. Negative 

control hippocampal slices were exposed to only ACSF. Positive control slices were 

exposed to pervanadate, a protein tyrosine phosphatase inhibitor that induces Dab1 

phosphorylation. Briefly, whole brains harvested from Sepp1+/+ and Sepp1 KO mice on 

standard lab diets were anesthetized with 2-2-2-tribromoethanol. Hippocampal slices 

will be prepared as previously described in Chapter 3. We measured phosphorylation of 

Dab1 in all hippocampal slices by protein analysis using an antibody to detect 

phosphorylated Dab1. 

 

Results 

Sepp1 can differentially modulate phosphorylation of Dab1 in a concentration-

dependent manner (Fig. 17). Our data indicate a correlation between Sepp1 induced 

Dab1 phosphorylation and LTP. The protein analysis shows phosphorylation of Dab1 

upon addition of 2 nM and 0.5 nM Sepp1 purified protein to hippocampal slices ex vivo 

for 40 Sepp1+/+ slices exposed to 0.5 nM Sepp1 protein induced Dab1 phosphorylation 

and correlates to the enhanced LTP data by Peters et al (in preparation). However, 

application of 2nM Sepp1 protein, which has been shown to inhibit LTP, may result in 

much lower Dab1 phosphorylation. Sepp1+/+ and Sepp1 KO hippocampal slices were 

exposed to 1 mM pervanadate  which was the positive control as it is a general protein 

tyrosine phosphatase inhibitor (308). Greater phosphorylation of Dab1 was observed in 

Sepp1 WT slices than in Sepp1 KO slices with pervanadate treatment as expected due 

to absence of Sepp1. Pervanadate, a positive control, is a typically utilized broad protein 

tyrosine phosphatase (PTP) inhibitor to induce Dab1 phosphorylation (309,310). These 

data support our hypothesis and provides evidence that Sepp1 may modulate Dab1 

phosphorylation, potentially similar to that of the Reelin-ApoER2 pathway.  

 

Discussion 

Apoer2 and Dab1 are present in the postsynaptic density where Apoer2 resides in a 

complex with NMDA receptors. Reelin, in conjunction with regulated alternative splicing 
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of ApoE receptors, regulates synaptic function, learning, and memory in the adult brain. 

(292). Reelin-mediated enhancement of LTP depends upon the presence of the 59 

amino acids that are encoded by the alternatively spliced exon 19 (ex19). This exon is 

also necessary for the stimulation of tyrosine phosphorylation of NMDA receptor (NR2) 

subunits in hippocampal slices in response to Reelin. ApoE receptors have been 

indirectly implicated in memory and neurodegenerative disorders because their ligand, 

apoE, is genetically associated with Alzheimer disease (273). Thus, the impairment of 

apoE receptor-dependent neuromodulation may contribute to cognitive impairment and 

synaptic loss in Alzheimer disease (273).   

In a study examining the role of Reelin in synaptic plasticity, Reelin was found to 

regulate synaptic plasticity in the adult brain and both of its receptors, VLDL receptor 

and apoER2, are necessary for Reelin-dependent enhancement of synaptic 

transmission in the hippocampus (273). Deletion of either VLDL receptor or ApoER2 

resulted in the mice exhibiting contextual fear conditioning deficits (273). Defects in long 

term potentiation (LTP) were observed to be moderate in VLDL receptor-deficient mice 

and more pronounced in ApoER2 knockout mice (273). This study also showed that 

Reelin purified protein perfusion of mouse hippocampal slices significantly enhanced 

LTP in area CA1 and had no effect on baseline synaptic transmission (273). This 

Reelin-dependent enhancement in LTP was absent in VLDL receptor and apoER2 

knockout mice. Hippocampal slices taken from conditional Reelin KO mice, 7 months of 

age, displayed elevated LTP. However, previous studies indicated that Reelin-/- mice 

had a reduction in LTP from outset, whereas direct injection of Reelin into the brain 

enhanced LTP (273). The results of the study suggested that elevated LTP in the 

conditional Reelin-/- mice represented a compensatory mechanism unique to the loss of 

Reelin in adulthood (273). Although Sepp1 is one of the most well investigated 

members of the selenoprotein family, its mechanism of action in maintaining synaptic 

plasticity remains unclear. From these previous studies, taken together with current 

knowledge of Sepp1 as a modulator of synaptic plasticity sharing the same receptor as 

Reelin, we surmise that the mechanisms in which Sepp1 modulates LTP may be similar 

to that of Reelin. We propose that Sepp1 through binding to ApoER2 induces 

phosphorylation of Dab1 and similar downstream signaling pathway as Reelin. 
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The Weeber Lab, our collaborator, show that treatment of Sepp1-/- mouse 

hippocampal slices with specific doses of Sepp1 purified protein for only 20 min prior to 

HFS could recover the LTP deficit normally seen in Sepp1-/- mice (307). Therefore, we 

applied Sepp1 purified protein in similar concentrations used in the Weeber Lab studies 

(0.5 nM, 2 nM) to hippocampal slices of Sepp1+/+ and Sepp1 KO mice for 40 minutes. 

Our data show correlation between Sepp1 induced Dab1 phosphorylation and LTP. The 

differences in phosphorylation of Dab1 was observed in control treatment with ACSF in 

Sepp1+/+ slices and Sepp1 KO slices were expected (Fig. 17D). The pervanadate 

treatment was used to induce Dab1 phosphorylation. Sepp1 slices in ACSF without 

Sepp1 purified treatment was our control to observe pervanadate treatment on each 

genotype without addition of the treatment, the Sepp1 purified protein (Fig. 17C). The 

elevated levels of phosphorylated Dab1 in Sepp1+/+ was expected due to the nature of 

endogenous phosphorylation of Dab1 either by Sepp1 and/or by endogenous Reelin. 

Whereas, our control for the Sepp1-/- were expected to have much less phosphorylation 

of Dab1 since Sepp1-/- is not present. Exposure of Sepp1-/- slices to 2 nM Sepp1 

purified protein induced Dab1 phosphorylation, which correlates with data from Peters 

et al., that LTP was recovered at this concentration (Fig. 17A). Potentially 2nM 

concentration may be a saturation point in which it is sufficient or this concentration may 

result in activating compensatory mechanisms. Conversely, 2nM in Sepp1+/+ slices may 

have been over-saturating as the presence of Sepp1 increases endogenously 

phosphorylated Dab1 thus additional Sepp1 at this concentration may have ablated the 

response which would relate to a loss of LTP (Fig. 17A,D). Sepp1+/+ slices exposed to 

0.5 nM Sepp1 protein induced Dab1 phosphorylation (Fig 17B,D) and correlates to the 

enhanced LTP shown by Peters et al (307). Sepp1+/+ and Sepp1 KO hippocampal slices 

were exposed to 1 mM pervanadate which was the positive control as it is a general 

protein tyrosine phosphatase inhibitor (Fig. 17C,D) (308). These new findings support 

our hypothesis that Sepp1 modulates phosphorylation of Dab1 correlating with LTP data 

generated from our collaborators (307).  

The concentrations of Sepp1 purified protein applied ex vivo to hippocampi of 

Sepp1+/+ and KO on standard chow were based on unpublished data from Peters et al. 

(162,307). The Weeber Lab demonstrated that application of Sepp1 purified protein can 
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either inhibit or enhance hippocampal LTP in Sepp1 mice (307). Dab1 and Sepp1 are 

both required for synaptic plasticity (216,311).  We hypothesize that Sepp1 

phosphorylated Dab1 response will correlate with LTP patterns (307) 

Pervanadate was used for a positive control to induce tyrosine phosphorylation. 

Inhibition of the protein tyrosine phosphatases (PTPs) has been shown to mimic certain 

aspects of signal transduction that are normally triggered by tyrosine kinase activation 

(312). Inactivation of PTPs by pervanadate not only increases tyrosine phosphorylation 

of proteins that are regulated by tyrosine phosphorylation (312). Fischer demonstrating 

that inactivation of protein tyrosine phosphatases by pervanadate produced robust 

tyrosine phosphorylation of cellular proteins (308,312,313). Pervanadate also have 

insulin-mimetic properties and inhibits by irreversibly oxidizing the catalytic cysteine of 

PTP1B (283). Dab1 has N-terminal PTB domain, which mediates its binding to an 

NPXY motif in the insulin receptor tail when it is tyrosine-phosphorylated in response to 

insulin (278,282). Pervanadate have been widely studied for their insulin-mimetic effects 

and are commonly used as general inhibitors of PTPs (283). 

We determined how much Sepp1 purified protein is required for phosphorylation of 

Dab1. We predicted that Sepp1+/+ slices exposed to 0.5 nM Sepp1 protein would have 

greater Dab1 phosphorylation than wild type mouse hippocampi exposed to only ACSF. 

Sepp1-/- mice would have decreased relative phosphorylation of Dab1 as compared to 

Sepp1+/+ mice whether exposed to 1mM pervanadate (positive control) or only ACSF 

(negative control) (Fig. 17C). Pervanadate induces phosphorylation of Dab1. 2nM 

Sepp1 protein, which has been shown to inhibit LTP (307), may result in no or very little 

Dab1 phosphorylation.  

We hypothesize that Sepp1 is required for phosphorylation of Dab1 and correlates 

with synaptic plasticity functions. This data support our hypothesis and demonstrate a 

preliminary novel finding that Sepp1 has a role in phosphorylation of Dab1 and may 

share not only a common receptor, ApoER2, with Reelin but also a similar signaling 

pathway. These data, although still preliminary, will provide insight to the currently 

unknown mechanism of Sepp1 actions in neurological function. These findings are 

critical in elucidating the mechanism of Sepp1, providing the framework towards 



84 
 

understanding how Sepp1 signal transduction can be regulated to maintain normal brain 

function.  

 

        

  

Figure 17. Sepp1 may induce phosphorylation of Disabled-1 (Dab1).  

A) Phosphorylation of Dab1 induced by addition of 2 nM and 0.5 nM Sepp1 purified 

protein to hippocampal slices. B) Sepp1 KO slices exposed to 2 nM Sepp1 purified 

protein greatly induces pDab1 (reported to recover LTP- (307)). Sepp1+/+ slices exposed 

to 0.5 nM Sepp1 protein induces Dab1 phosphorylation (enhanced LTP). C) Sepp1+/+ 

slices exposed to pervanadate (positive control) and ACSF (negative control). D) 

Western blot showing protein expression of phosphorylated Dab1 in hippocampal slices 

treated with Sepp1 purified protein. 
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CHAPTER V 

 

DELETION OF SELENOPROTEIN M LEADS TO GENDER-SPECIFIC 

SYNAPTIC PLASTICITY DEFICITS 

 

Abstract 

 Selenoprotein M (SelM) is a small 15kD protein localized in the endoplasmic 

reticulum (ER) and contains the common redox motif of cysteine-X-X-selenocysteine 

type. SelM is highly expressed in brain and has been shown to have a potential role as 

an antioxidant, have neuroprotective properties, regulate cytosolic calcium, and most 

recently found to potentially be a biomarker for certain types of cancer (2,314). SelM 

has been linked to neurodegenerative disease models. SelM expression was 

suppressed by expression of a presenilin-2 mutation in a previous study of an 

Alzheimer's disease (AD) mouse model (3). In light of the expression profile of SelM, its 

neuroprotective properties, and association with AD pathology, we hypothesize that 

SelM has important roles in synaptic plasticity, learning and memory. We report that 

SelM KO male mice are deficient in hippocampal-dependent LTP, a cellular model for 

learning and memory, whereas SelM KO female mice exhibit normal LTP responses. 

Our novel findings demonstrate that genetic deletion of SelM has a gender specific 

effect on synaptic plasticity, an important aspect in maintaining normal hippocampal 

function, facilitating learning and synaptic plasticity.  

 

Introduction 

 SelM is highly expressed in several regions of the mouse brain, including a relatively 

strong presence in the CA2 and CA3, and a relatively lower amount in the CA1 region of 

the hippocampus (2,100). SelM is also present in the paraventricular and arcuate nuclei 

of the hypothalamus, ventral tegmental area (VTA), red nucleus (RN), and Purkinje 

layer (PL) of the cerebellum, brain stem, the hippocampus, and cerebral cortex (100). 

The study also reported no morphological changes in the hippocampus or other regions 

of the brain through thionin staining of SelM-/- mice (100). As previously mentioned, 

SelM is been shown to be involved in ER calcium regulation in neurons. Although 
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several new studies have emerged in the last few years, the function of SelM in the 

brain still remains elusive. This study investigates whether SelM is required for 

hippocampal-dependent synaptic plasticity. We hypothesized that deletion of 

selenoprotein M (SelM) would alter hippocampal synaptic plasticity. To investigate this 

hypothesis, we employed electrophysiology techniques to assess long-term potentiation 

(LTP), a model for cellular learning and memory, in SelM KO and wild type control 

mouse hippocampal slices. This study will provide crucial insights on the role of SelM in 

maintaining normal synaptic function that will provide the framework for further studies 

exploring the role of SelM in neurodegenerative pathology. 

   

Materials and Methods 

Animals 

Animals were provided food and water as needed according to the guidelines of the 

University of Hawai‘i Institutional Animal Care and Use Committee (IACUC). All animals 

in this study were maintained on standard laboratory diets containing ~0.25 ppm Se. 

This is considered Se-adequate but may be deemed to be slightly supplemented based 

on the rodent recommended daily allowance (RDA) of 0.15 mg/kg Se (113,315,316).  

Animals were kept on a 12-h light cycle and group housed during breeding and rearing.  

Prior to and during behavioral testing, animals were individually housed in 

polycarbonate cages. Each cage was provisioned with food, water, and a layer of bed-

o-cob (corn cob) bedding (Newco Distributors). All animal protocols were approved by 

the University of Hawaii Institutional Animal Care and Use Committee.  

 

Generation of SelM-/- mice 

Heterozygous SelM+/- mice were generated by the Knock-Out Mouse Repository 

(KOMP, University of California, Davis). Heterozygous SelM+/- mice were provided with 

drinking water supplemented with 10 μM sodium selenite since viability was low in the 

first litters of heterozygotes in the absence of Se supplementation. Breeders and dams 

were continued on Se-supplemented drinking water. SelM-/- pups were subsequently 

weaned from Se supplemented water to regular water. Experiments were performed on 
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age and sex matched adult C57BL/6 wild-type or SelM-/- mice 12 to 24 weeks of age on 

regular drinking water not supplemented with Se. 

 

Immunohistochemistry 

Animals were deeply anesthetized with 2-2-2-tribromoethanol, administered by 

intraperitoneal injection at a dose of 250 mg/kg (approximately 0.5 ml to a 25gm mouse) 

and perfused with phosphate buffered saline (PBS) containing 4% paraformaldehyde 

(PFA). Brains were excised and post-fixed in PBS with 4% PFA for 24 hours and 

immersed in graded solutions of sucrose (10%, 20%, 30%) until brains were saturated. 

Brains were then embedded in OCT and sectioned parasagittally into 40 μm sections 

with a Leica CM 1950 cryostat microtome and collected sequentially. Brain sections 

were stored in a cryoprotective solution (50% PBS, 25% glycerol, and 25% polyethylene 

glycol) at 40°C. For diaminobenzidine tetrahydrochloride (DAB) immunohistochemistry, 

sections were then incubated in citric acid (0.01M, pH 6) (Trilogy) and heated to 95°C 

for 15 min for antigen unmasking. After allowing 15 minutes for samples to cool at RT, 

sections were then washed in PBS and treated with 3% H2O2 in MeOH for 10 min to 

inactivate endogenous peroxidases. Tissues were then washed with PBS and incubated 

for one hour at room temperature with blocking solution 5% normal goat serum (NGS) in 

PBS-T (PBS containing 0.3% Triton X-100). Samples were then incubated for 15 

minutes in Avidin Blocking Solution then wash briefly once with PBS-T and twice with 

PBS. Samples were further incubated with Biotin blocking solution for 15 min then 

washed once with PBS-T and twice with PBS. Subsequently sections were incubated 

overnight at 40°C with rabbit anti-Selenoprotein M polyclonal antibody (Sigma Aldrich 

Co.) in 2.5% NGS in PBS-T. The following day, all sections were first washed with PBS-

T. Brain sections were then incubated for one hour at room temperature with 

biotinylated anti-rabbit IgG secondary antibody per manufacturer directions. Sections 

were washed again with PBS-T, incubated for 30 minutes in ABC Solution (Vector 

Laboratories) (1:500 streptavidin-horse radish peroxidase. Section were washed with 

once with PBS-T for 5 min, then twice with PBS for 5 min each wash and developed 

with diaminobenzidine tetrahydrochloride using a VectorStain ABC kit (Vector 

Laboratories) per manufacturer’s instructions. Immunoreactivity was visualized by 
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peroxidase detection with diaminobenzidine tetrahydrochloride acting as a chromogen. 

After several rinses in PBS, sections were mounted on slides, dehydrated with graded 

solutions of ethanol followed by xylene, and coverslipped.  

 

Microscopy.  

 Mounted sections were viewed and images collected with a Zeiss Axioskop 2 Plus 

with a digital camera. 

 

Hippocampus Slice Preparation and Field Potential Recordings 

 Acute hippocampal slice preparation and electrophysiology were performed in mice 

12 to 24 weeks of age using standard methods previously described (5). Mice were 

deeply anesthetized with filtered 2-2-2-tribromoethanol (TBE) administered by 

intraperitoneal injection at a dose of 250 mg/kg (approximately 0.5 ml per 25gm mouse 

body weight). Brains were rapidly removed and quickly placed in ice cold artificial 

cerebrospinal fluid (ACSF: containing in mM: 130.0 NaCl, 3.5 KCl, 24.0 NaHCO3, 1.25 

NaH2PO4, 1.5 MgSO4, 2.0 CaCl2) oxygenated with carbogen (95% O2 5% CO2). 

Transverse brain slices (350 μm) were cut using a microslicer (Leica VT1000S) while 

submerged in ACSF oxygenated with carbogen. Hippocampi were isolated from the 

slices while in pre-oxygenated ACSF, transferred to a holding chamber with a nylon 

mesh support and allowed to equilibrate at 32oC in oxygenated ACSF. All slices were 

permitted a minimum 1 hr recovery time before transfer to a recording chamber, where 

the slices were continuously superfused with oxygenated ACSF at a rate of 1-3 ml/min. 

Extracellular field recordings were obtained from the stratum radiatum of the CA1 area. 

Field EPSPs (fEPSPs) were evoked by stimulation to the Schaffer collaterals and 

recorded with a concentric bipolar stimulating electrode. Input-output curves were 

obtained by varying stimuli from 1 to 15 V in 1 V increments. Paired-pulse facilitation 

was achieved with pairs of stimuli at 3V with interstimulus intervals of 10, 50, 90, 130, 

170, 210 and 250 msec, with 30 sec between each pair of stimuli. Long-term 

potentiation (LTP) was induced with high-frequency stimulation (HFS) following at least 

20 min of stable baseline recording. HFS consisted of two trains of 100 Hz frequency 

stimulation for 1 sec duration with a 20 sec interval each train. Stimulation (3V) was 
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used to produce fEPSPs that were approximately 10-30% of maximum responses. 

Potentiation was measured as the increase of the mean pEPSP following HFS 

normalized to the mean pEPSP for the duration of the baseline recording.  

 

Data acquisition 

Extracellular field recordings were acquired using an Axoclamp 900A 

microelectrode amplifier (Molecular Devices). The signal was filtered at 1 kHz, digitized 

at 10 kHz, and stored on a personal computer equipped with Axograph Scientific 

Software (Axograph X). The amplitude of the EPSP was measured as a peak value. 

The fiber volley amplitude was measured as a difference between the initial positive and 

the following negative peak. 

 

Statistical analysis 

See Chapter II and III. 

 

Results 

 

The expression pattern of SelM in the mouse brain. First, to verify expression of 

SelM in the hippocampus, immunohistochemistry was performed on parasagittal brain 

sections of wildtype and SelM-/- mice using an anti-SelM antibody. A previous study 

reported, based on the Allen Brain Atlas, that SelM mRNA levels are highest in the 

hippocampus, olfactory bulb, and cerebellum (100,317).  More recently, another study 

conversely reported that SelM protein levels were moderate in the hypothalamus, but 

relatively low in the hippocampus compared to other regions (100). Specific to the 

hippocampus, the study noted that SelM expression was highest in the CA2 and CA3, 

and least in the CA1, the region central to our synaptic plasticity study (100). The SelM 

antibody used in our group is known to require high concentrations for detection. We 

used an antigen unmasking protocol to reduce the non-specific binding due to protein-

protein crosslinking, but some relative background remains, potentially from the fixation 

process which causes protein-protein crosslinking. Nonetheless, we show that SelM is 



90 
 

indeed relatively expressed in the CA1 region of the hippocampus, the region of interest 

in these studies compared to the SelM KO (Fig.18).  

 

Deletion of SelM in male mice alters synaptic transmission and long-term 

potentiation. We examined LTP in hippocampal slices isolated from brains harvested 

from SelM+/+ and SelM-/- mice to determine if deletion of SelM leads to alterations in 

synaptic plasticity. The initial input-output of synaptic connections in the Schaffer 

collateral-CA1 presynaptic fibers were measured using increasing stimulus intensities 

and recording the evoked CA1 field excitatory postsynaptic potentials (fEPSPs) in the 

stratum radiatum at the Schaffer collateral fibers. SelM-/- male mice exhibited an overall 

increase in synaptic efficacy significantly shown by an augmented input-output 

relationship of the fEPSP (P<0.05, linear regression, two-way ANOVA) (Figure 19A). 

SelM-/- females exhibited normal basal synaptic efficacy compared to wild-type 

counterparts. We then analyzed the relationship between the evoked fEPSP slope and 

the corresponding fiber volley amplitude, which is a measure of presynaptic 

depolarization. We determined that slices from SelM-/- male mice exhibited a greater 

increase in fEPSP slope than those from SelM male, female wild-type, and also 

compared to SelM-/- female mice suggesting SelM-/- male mice have increased afferent 

synaptic function in the CA1 of the hippocampus (Fig. 19B). 

  Paired-pulse facilitation (PPF) is a well-studied form of short-term synaptic 

plasticity in which two presynaptic stimuli are administered in close succession. PPF is 

primarily a measure of presynaptic function, but could induce postsynaptic changes. 

The resulting fEPSP responses to pairs of stimuli are measured as the ratio of the slope 

of the second evoked fEPSP over the first fEPSP. The SelM-/- male slices exhibited a 

slight decrease in PPF compared to wild-type male slices but was not significant. We 

observed no significant difference in PPF in SelM-/- male or female mice, arguing 

against any presynaptic changes (Fig.19C).  

We investigated synaptic plasticity in the form of long-term potentiation (LTP), a 

cellular model for learning and memory. LTP was induced by high frequency stimulation 

(HFS) consisting of two trains of HFS (100 Hz, 1 sec) spaced 20 seconds apart. 

Interestingly, slices from SelM-/- male animals have severe deficiency in LTP compared 
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to wild-type counterparts (P=0.0006) (Fig. 20). Although the increases in fEPSPs were 

similar between groups immediately following HFS, and induction was not significantly 

different, potentiation in SelM-/- male animals were significantly lower than slices from 

wild-type animals starting from 6 minutes after HFS until end of recording (P<0.001 to 

0.05). Interestingly however, SelM-/- females animals did not have any change in LTP 

compared to their wildtype counterparts as seen in the SelM-/- males animals. We 

determined that the deficit in LTP of SelM-/- male mice are significantly diminished 

compared to SelM-/- female mice (p<0.001 to 0.05, two-way ANOVA with Bonferroni's 

posthoc tests) (Fig. 20). Taken together, our data shows that genetic deletion of SelM 

has a gender specific effect on LTP, negatively impacting synaptic plasticity in SelM-/- 

male mice. 

 

Discussion 

The function and mechanisms of SelM in the brain regarding learning and 

memory formation has not been as well studied as Sepp1. The current breadth of 

knowledge asserts that SelM plays an important role in antioxidant defense, is in 

involved in ER calcium signaling, and may have a protective role in AD pathology. In 

this study, we provide evidence that SelM does have a role in the molecular basis of 

memory formation. We also show that SelM deletion effects the deficits in synaptic 

plasticity in gender specific manner. The altered synaptic plasticity observed in SelM KO 

male mice provides novel insights into the importance of SelM function in the brain.  

These studies offer mechanistic insight to the neuroprotective role of SelM in the brain. 

Initially we hypothesized any alterations in synaptic plasticity would affect both  

SelM-/- male and females as there were no significant gender differences reported in 

early characterizations of SelM+/+ or SelM-/- mice. Interestingly, however, data from our 

electrophysiology results reveal a gender difference in which only SelM-/- male but not 

SelM-/- female are deficient in LTP due to genetic deletion of SelM. Additionally, male 

SelM-/- mice had increased synaptic efficacy, which is unlikely to be caused by an 

increase in neurotransmitter release, as indicated by the lack of change in PPF in male 

SelM-/- mice. Many studies show that PPF is used as an indicator of a possible change 

in presynaptic release probability, due to astrocyte calcium signaling (2, 3). Based on 
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previous reports that SelM is involved in calcium regulation (23), there may be an 

association of these mechanisms.   

In a study further contributing to characterizing the neurobiological role of SelM, 

Pitts et al., determined that SelM-/- mice did not have any significant neurobehavioral 

impairments (318). This study employed a series of neurobehavioral assays to further 

characterize the effect genetic deletion of SelM compared to SelM+/+ mice, including 

open field test and elevated plus maze (mice receive one trial up to 5 minutes) which 

assess anxiety, general locomotion, motor coordination; Rotorod test (motor learning 

and coordination); Barnes Maze which is similar to the well-known Morris Water Maze 

(MWM), except it assesses spatial learning and memory on dry land and not in water; 

and fear conditioning (100). Memory deficits could be progressive over time as the 

animals age, a phenomenon that occurs in humans. Therefore it also possible that the 

animals that developed the altered metabolic (5-6 months) were just beginning to exhibit 

degenerative pathology whereas the mice subjected to the Barnes maze were slightly 

younger animals (4-5 months). As both neurodegeneration and metabolic disorders 

develop progressively, it would also be prudent to examine whether age correlates with 

development of disease pathology in SelM mice. We also posit that the synaptic 

plasticity deficit in SelM-/- male mice may not be associated with the specific types of 

neurobehavioral function assessed by the paradigms employed in previous studies.  

Although LTP is a cellular model for learning and memory and is often positively 

correlated with results from neurobehavioral paradigms, the phenomenon of LTP is not 

universal in all learning experiences (319). The NMDAR subunit NR2A was shown to be 

required for rapidly acquired spatial working memory (SWM) but not incremental spatial 

reference memory (SRM) (320). Mice with deletion of NMDAR subunit NR2A were able 

to perform similarly well in the MWM, which test for SRM. The radial maze (also a SRM 

test) results confirmed the same finding as did the MWM test, that the NR2A−/− mice 

also performed as well as wildtypes. The elevated T-maze (a type of elevated plus 

maze paradigm) was used as a spatial non-matching-to-place test. This hippocampus-

dependent, discrete-trial, rewarded alternation task assay is typically administered to 

assess SWM. This version, quite different than the elevated plus maze protocol to test 

for general anxiety which exposes the mice once for 5 minutes (100,321), is described 
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in detail by Bannerman et al (320). Briefly, it requires mice requires the mice to do two 

runs, a sample run where the mouse is placed in the start arm of the T-maze and 

allowed to enter a goal arm (the other arm is blocked) followed by removal of the mouse 

for a specified delay period. After the delay, the mouse is returned for the choice run (no 

arms are blocked) (320).  Wild-type mice showed exceptional alternation, but NR2A−/− 

mice displayed a decreased level of SWM performance. (320). The authors who 

conducted a battery of other behavioral assays, did state the MWM results were 

different from previous reports, as it is believed that spatial learning task such as finding 

the hidden platform in the MWM is essential in NMDAR-dependent LTP. Their results 

establish a distinction that NR2A is required for spatial working memory not spatial 

reference memory indicating that specific types of memory require specific receptor 

subgroups. 

NMDARs, heteromultimeric ion channels and a glutamate receptor (GluR), serve 

critical functions in the brain and act as primary mediators of Ca2+ influx during synaptic 

activity and thus during LTP (see Synaptic Plasticity, p.98) (322). The NMDA receptor 

channel is formed by the GluR epsilon (NR2) and GluR zeta (NR1) subunit families 

(323). The GluR epsilon are comprised of epsilon 1 (NR2A) and epsilon 2 (NR2B) (323). 

In a different study, NR2A-/- (NR2A also known as GluRε1) mouse model showed that 

mice exhibited a reduction in hippocampal LTP and were normal in fear conditioning 

and contextual fear conditioning testing (324). However, upon stronger tetanic 

stimulation, NR2A-/- LTP deficit was restored and the saturation level of LTP was 

unaltered (324). The results of the Kiyama et al. study suggest an increase of threshold 

for LTP induction in the NR2A mutant mice was necessary to restore the deficits (324).  

These mice had normal responses to standard fear and contextual conditioning 

protocols, however when time interval between shocks and placement into chamber 

shortened, abnormal fear conditioning responses were observed, suggesting that NR2A 

is essential for threshold determinant for LTP and contextual fear conditioning. Another 

study reported that spatial memory consolidation as observed in the Morris Water Maze 

(MWM) task, specifically requires hippocampal dependent LTD (325). The study 

showed that mice that were given a in order to block LTP, and then subjected to the 

Morris Water Maze (MWM) task, had no significant negative effect on any aspect of 
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these mice performance in the MWM performing similar to mice not administered the 

LTP-blocker GluN2A (also known as NR2A) antagonist (325). Whereas mice given the 

LTD-blocking GluN2B (also known as NR2B) antagonist exhibited impaired spatial 

memory consolidation in the MWM task (325). This corroborates previous study that 

NR2A is specific for special working memory which may be best assessed by other 

assays and not the MWM. We show that SelM deletion does alter synaptic plasticity as 

LTP is deficient. Although SelM-/- mice does not exhibit spatial reference memory 

deficits determined by the MWM described in the studies cited here, SelM-/- mice exhibit 

similar absence of LTP but normal behavior in the MWM as do the NR2A-/- mice and 

also the mice given the GluN2A antagonist to block LTP.  

Furthermore, studies with AD mice models have shown that an increased 

ryanodine receptor-evoked calcium signals within dendritic spine heads, dendritic 

processes, and the soma of pyramidal neuron. Synaptically-evoked postsynaptic 

calcium responses and calcium signals generated from NMDA receptor activation were 

larger in the AD strains. Ryanodine receptors are cellular mediator of calcium-induced 

calcium release (CICR) (326). LTP can be blocked by depletion of ER calcium stores, 

indicating that calcium release from intracellular stores is also critical for LTP induction 

(327,328). Currently our data show that SelM has deficiency in LTP, as well as previous 

reports that SelM has role in protecting neurons from oxidative damage through 

regulation of ER calcium stores, SelM knockdown increased baseline levels of cytosolic 

calcium, and is localized to the ER like other calcium regulators (2). Taken together, 

SelM, as a calcium regulator, which may contribute to synaptic plasticity function, may 

have a potential role in modulating NMDARs, specifically, NR2A, which is important as 

a threshold determinant for LTP therefore spatial working memory.   

The mechanism by which SelM regulates synaptic plasticity and metabolic 

function most likely involve a variety of converging signaling pathways, which is 

complicated by differing regulations due to sexual dimorphism. SelM-/- mice were 

described to be obese and have gender specific metabolic dysfunctions. Selenium and 

many selenoproteins are involved in production of hormones, growth factors, and 

regulation of normal metabolic function (8). High expression of selenoproteins as well as 

selenoprotein deficiency may cause glucose homeostasis dysregulation (329). 
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Activation of thyroid hormone, which is involved in neuroendocrine homeostasis, is 

dependent on the DIO class of selenoproteins. Individuals with genetic defects in 

SECIS-binding protein 2 (SBP2) exhibit a syndrome of selenoprotein-related defects 

including abnormal thyroid hormone metabolism (330). Overexpressing cellular GPx 

induces development of insulin resistance and obesity (331). SelS, another ER protein 

similar to SelM in size and localization is glucose-regulated, and was originally 

discovered in a rodent model for diabetes (8,332). Sepp1 was significantly increased in 

circulating serum Sepp1 levels in patients with prediabetes and type 2 diabetes mellitus 

compared to those with normal glucose tolerance (333). Therefore it is not surprising 

that SelM-/- mice have defects in metabolic regulation.  

SelM-/- animals were reported to be obese but had normal glucose tolerance, but 

low corticosterone levels in the morning (100). Only SelM-/- males had increased fasting 

insulin, while SelM-/- females had elevated corticosterone (in the evening) and p-Akt 

(insulin signaling in the liver) levels in females (100). When challenged with a Se 

deficient diet (0.01 ppm Se), SelM-/- mice was observed to decrease locomotion, 

females increased in body weight compared to their wildtype counterparts while SelM-/- 

males remained the same, with the greatest differences seen at 20 weeks (100) Levels 

of inguinal white adipose tissue had already increased twice as much as wildtype prior 

to Se diet challenge and remained elevated after diet challenge (100).  

Many selenoproteins also have a gender specific effect such as Sepp1 in which 

Sepp1 and its known receptor ApoER2 are abundantly expressed in male testes but 

absent in female reproductive organs (47). Sepp1 is also closely related to glucose 

metabolism. In the NHANES III study which assessed serum selenium and diabetes in 

U.S. adults, only males with very  high  Se  status were reported to have an increased  

risk  of diabetes (334,335). In rodents, higher Sepp1 and deiodinase mRNA levels are 

observed in liver (336,337). Raman et al., reported that Sepp-/- male mice are more 

dependent on Sepp1 and Se than females for normal brain function (113). GPX3 is 

more highly expressed in healthy females than in males (338,339), and that alcohol 

consumption increased total Se in women but not in men (338,340). GPX3 activity 

increases in parallel to estrogens during the female menstrual cycle (338,341), and 

females express higher serum GPX3 concentrations than males, which is also seen in 
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rodents (338,339). The erythrocyte GPx activity was confirmed to be expressed higher 

in women than men confirming previous studies, which is likely due to high estrogen 

levels and hormonal contraceptive use (336,342). These studies support the theory that 

estrogens are responsible for the sex-related differences in glutathione peroxidase 

activity (343,344). A study examining hepatic expression of SepS in immune response 

found expression Se supplementation increased SepS levels and decreased the 

fulminant immune response in male mice raised on a selenium deficient diet whereas 

females were similar to wildtype (345). Se metabolism interaction with gender, body 

weight, and adiposity are complex. The effect of steroid hormones, as well as hormones 

and cytokines from adipose tissue are all dependent on sex. SelS similar to SelM is 

involved in responding to ER stress (8,345). 

Metabolic disorders has been shown to contribute to synaptic plasticity 

dysfunction. The liver is the major insulin target organ responsible for control of glucose 

homeostasis in the fasting state (346,347). The hypothalamus-pituitary-adrenal axis 

responds to stress by signaling the increase of cortisol secretion. The hippocampus 

provides negative feedback to the HPA and plays a critical role in key aspects of spatial 

and declarative memory (348). Therefore, hippocampal dysregulation could contribute 

to both the memory impairment and neuroendocrine abnormalities found in neurological 

conditions (348). The findings of this current study that SelM-/- mice have synaptic 

plasticity deficits are potentially associated with the metabolic dysregulation such as the 

reported increase in insulin levels and having altered HPA activity. Furthermore, the 

gender effects in SelM-/- male mice appear to correlate with many of the other 

selenoproteins in which deletion or alteration leads to a more severe phenotype or 

health dysregulation in males, such as seen in Sepp1-/- male mice. We will further 

explain how the previously report metabolic dysregulation Sepp1-/- males have 

increased insulin levels compared to females support our data and contribute to SelM-/- 

LTP deficits in male mice  

Earlier, we discussed that SelM may modulate NMDARs, specifically, NR2A as 

mice with NR2A deletion share similar hippocampal synaptic plasticity and behavioral 

phenotype as seen in SelM-/- mice. Here, we discuss the gender specific effect in which 

SelM deletion only alters synaptic function in male mice and how the metabolic 
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dysregulation such as elevated insulin levels in only male mice effect synaptic plasticity. 

SelM-/- females exhibited increased corticosterone activity and not males compared to 

wildtypes, but also had normal hippocampal dependent synaptic plasticity.  

The metabolic system regulate insulin signaling as well as hormonal responses 

to physical and physiological stress, which can exert an effect on multiple functions in 

the body, such as synaptic plasticity and memory. However, stress does not lead to a 

universal suppression of LTP (349). Many factors, including the type of stress, the 

phase of the stress response, the area of investigation, type of LTP, and the life history 

of the organism determine in which direction LTP will be changed (349). Metabolic 

alterations can result in gender-specific synaptic plasticity deficits. In a study 

investigating the impacts of a high fat diet on obesity, metabolic and stress hormones, 

learning performance, and hippocampal synaptic plasticity, obese male, but not female, 

mice exhibited lower LTP and LTD at the Schaffer collateral-CA1 synapses of the 

hippocampal slices, as compared with their sex-specific controls. The study results 

suggest that male mice are more vulnerable than the females to the impacts of a high 

fat diet on weight gains, metabolic alterations and deficits of learning, and hippocampal 

synaptic plasticity (350).  

Here we discuss how the unique metabolic and synaptic dysfunction profiles in 

SelM-/- male mice are shared in IRS-2 deficient mice, regarding LTP deficits, insulin 

signaling alterations in a gender-specific manner. Insulin, leptin, and adiponectin are 

important peripheral signals that advise the brain of short-and long-term nutrient 

availability (351–354). Insulin and its insulin receptors are localized to glutamatergic 

synapses in the hippocampus (355). Insulin-regulated trafficking of NMDARs may play a 

role in synaptic transmission and plasticity, including long-term potentiation (355).  

IRS-2 is highly expressed in the hypothalamus, as is SelM, and regulates brain growth, 

body weight control, glucose homeostasis, and female fertility (74).  Its signaling 

cascade may be responsible for integrating central control of nutrient homeostasis and 

appetite regulation with peripheral insulin action and β cell function (351). IRS-2 is an 

adaptor protein that combines activation of insulin- and insulin-like growth factor-1- 

receptors to downstream signaling pathways (356). IRS-2 signaling appears to be more 

important than IRS-1, as IRS-1-/- mice does not alter total insulin-induced PI 3-kinase 
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activation (347,357–359). Patients with insulin resistance and metabolic syndrome have 

reduced IRS-2 expression (360–362) as also observed in animal models with insulin 

resistance in several insulin-sensitive tissues (347,363–365), suggesting that the low 

expression level of IRS-2 contributes to metabolic dysfunction. In a hepatocyte cell 

culture model, the effect was identical- insulin treatment downregulated IRS-2 mRNA 

and protein levels which was attributed to by the repression of IRS-2 gene transcription 

due to insulin, mediated by the PI 3-kinase/Akt pathway and by nuclear proteins binding 

to the IRE sequence on the IRS-2 gene (347).  IRS-2 conditional brain knockout 

including the hypothalamus lead to increased appetite, lean and fat body mass, linear 

growth, and insulin resistance that progressed to diabetes (351).  

Genetic deletion of IRS-2 has been shown to have a sexual dimorphism and is 

important in energy homeostasis (366,367). B6J-Irs2–/– male mice showed greater 

insulin resistance glucose tolerance impairment compared to wildtype, while B6J-Irs2–/– 

female mice had only slight impairments (368). This study observed that from 14 to 24 

weeks of age, 20% of male B6J-Irs2–/– mice suddenly exhibited severe increase in 

mean blood glucose and died within a short time with polydipsia/polyuria and loss of 

body weight (368). IRS-2+/− mice had significantly increased fasting insulin levels 

compared with those for WT (361). IRS-/- male mice were overtly diabetic by 12 weeks 

of age, whereas female IRS-2-/− animals develop mild obesity and progress less rapidly 

to diabetes (347).  

In IRS2-/- mice hippocampus slices, LTP induced by high-frequency conditioning 

tetanus failed to activate postsynaptic NMDA receptors. IRS-/- had normal responses in 

synaptic efficacy and pair-pulse facilitation therefore alterations are most likely post-

synaptic (369). IRS2−/− mice exhibited defective activation of Fyn, AKT, and MAPK in 

the brain in response to tetanus stimulation (370). However, studies examining whole 

brain and forebrain-specific knockout mice show that behaviorally, they exhibit improved 

memory retention in the MWM test and whole brain knockout mice have enhanced 

spatial working memory and contextual- and cued-fear memory (356).  

The deletion of SelM leading to the hippocampal synaptic plasticity deficit as we 

have shown and metabolic alterations previously reported may be due to both the role 

of SelM mediating oxidative stress, leading to a cascade of effects modulating NR2A. 
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SelM deletion may synergistically effect both expression of IRS-2 and NR2A which 

converges and in turn regulates synaptic plasticity.  Metabolic dysfunction may 

contribute to the defect in synaptic plasticity as seen in other studies in which increase 

insulin signaling is one of many factors leading to alterations in LTP (371).  

SelM and IRS-2 are both highly expressed in the hypothalamus (100,351). 

Absence of SelM may contribute to oxidative stress, however, other selenoproteins that 

have antioxidant function may be compensating. Since females have been reported to 

have greater levels of GPx, a known antioxidant, therefore it is plausible to expect that 

SelM deletion may effect males more severely than females. Even though SelM-/- 

female mice had alteration in corticosterone, thus potentially effecting HPA axis, the 

complexity of hormone regulation and sex differences such as estrogen, may play a role 

in preventing female mice from the deleterious effect on synaptic plasticity seen here in 

SelM-/- mice in this study.  Altogether, these data show that the SelM-/- male mice have 

altered hippocampal synaptic plasticity. We show that SelM-/- male mice are deficient in 

hippocampal long-term potentiation (LTP), which lend mechanistic insight to the function 

of SelM in brain. 

 These findings provide novel insights on the role of SelM in maintaining proper 

hippocampal function, a region important in consolidating memory and learning. These 

studies illuminate the gender-specific role of SelM in the brain and its relevance to 

neurodegenerative diseases involving learning and memory. In conclusion these results 

have begun to help characterize and understand the phenotype observed in the SelM 

KO mice, and the deficits apparent from genetic deletion of SelM. 
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Figure 18. SelM expression in hippocampal neurons. Immunohistochemistry confirm 

SelM expression in hippocampal neurons and absence in SelM-/- mice brain sections. 

 



101 
 

  

                              

Figure 19. Deletion of SelM alters synaptic strength but not paired pulse 

facilitation (PPF) in SelM-/- male mice. (A) CA1 field excitatory postsynaptic potentials 

(fEPSP) in response to increasing stimulation of Schaffer collateral fibers appear 

increased with higher stimulus strength in SelM-/- male but not female mice relative to 

controls but are not statistically significant via Mann-Whitney test (p>0.05). (B) SelM-/- 

male mice have overall significantly increased fEPSP slopes relative to the area of the 

corresponding fiber volley compared to SelM+/+ males. SelM deletion increased the 

postsynaptic response to fixed presynaptic depolarization in SelM-/- male hippocampus. 

Nonlinear regression analysis confirms that the curves are different (p<0.0001). (C) 

Absence of SelM does not change paired pulse facilitation (PPF) between genotypes or 

sex (p>0.05, two-way ANOVA).  

  

A. B. 

C. 



102 
 

    

 

Figure 20. Deletion of SelM leads to sex-specific long-term potentiation (LTP) 

deficiency in SelM-/- male mice. SelM-/- male but not SelM-/- female mice are deficient 

in LTP compared to wild-type male and female mice. LTP was induced by high-

frequency stimulation (HFS) (two 100 Hz trains, 20 sec apart) compared to wild-type 

mice (p=0.0006, two-way ANOVA). The fEPSPs in SelM-/- male mice are significantly 

lower than slices from wild-type animals starting from 6 min after HFS until end of 

recording (p<0.001 to 0.05, two-way ANOVA with Bonferroni posthoc tests). SelM-/- 

female mice have normal LTP compared to wild-type female counterparts. Inset: 

Representative trace, scale bars are 1 mV by 10 ms. 

  



103 
 

Chapter VI 

CONCLUSION 

 

Selenium and selenoproteins have been shown to be central to human health. In the 

last few years, we have learned a great deal more about the important roles 

selenoproteins. The significance of our study focused on elaborating on the specific 

neurological function of selenoproteins in synaptic plasticity, the basis for learning and 

memory formation. Increasing our knowledge of Sepp1 and SelM in synaptic plasticity 

will help provide mechanistic insights which will contribute towards a better 

understanding in how selenoproteins can be used to improve treatments and 

therapeutics for neurodegenerative conditions such as Alzheimer’s disease. 

Selenoprotein P has the critical function of transporting selenium, required for life yet 

its specific role and mechanism in maintaining synaptic function remains unknown. Here 

we attempt to examine the molecular basis of the specific role of Sepp1 and SelM in 

learning and memory. We present new data, in which we developed a unique mouse 

model restoring Sepp1 expression to forebrain neurons and demonstrating that genetic 

restoration of Sepp1 rescues synaptic plasticity deficits seen in Sepp-/- mice 

independent of Sepp1 synthesis and transport from hepatic cells. 

In Chapter I, we introduce you to the wonderful world of selenium and 

selenoproteins. We provide an overview of the selenoprotein family and specifically 

discuss the importance Sepp1 and SelM in normal brain function, as well as in their role 

in human disease. Chapter II describes how we developed our unique genetic rescue of 

SEPP1 from Sepp-/- mice, by using the Cre System to restore the functional gene. 

Chapter III focuses generating a Sepp1 Conditional Brain Rescue and demonstrating 

that Sepp1 restricted to forebrain cells is sufficient to restore synaptic plasticity deficits 

seen in Sepp-/- mice despite absence of Sepp1 in liver to presumably transport Se to the 

brain. This shows that Sepp1 has other functions in the brain and restored synaptic 

plasticity is independent of the transport function. Chapter IV provides insights on the 

potential mechanism by Sepp1 functions. Chapter V. describes the new function of 

SelM in regulating gender-specific synaptic plasticity. Deletion of SelM results in males 

deficient in LTP, the molecular basis of memory formation. We discuss potential 
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mechanistic insights in which SelM functions to modulate gender-specific synaptic 

plasticity and how the metabolic dysfunction may play a role in synaptic dysfunction.  

The molecular pathway of Sepp1 has not been investigated. There have been no 

other studies investigating whether Sepp1 modulates Dab1 upon binding to ApoER2, as 

when Reelin binds to ApoER2. Potentially, Sepp1 may regulate PSD-95, a scaffolding 

protein in the post synaptic densities (PSD) which associates with ApoER2, and is 

crucial for receptor clustering.  

Reelin, APOE receptors, the amyloid-beta protein and cholesterol genetically or 

biochemically interact with each other, and have also recently all been found to function 

directly at the level of the synapse, where they regulate NMDA (N-methyl-d-aspartate) 

receptor activities (301). This functional convergence on a central neuronal organelle 

that is crucial for neurotransmission, cognition and memory throws a spotlight on APOE 

receptors and their potential roles in neurophysiological and pathological mechanisms 

(301) normal Reelin signaling requires the wild-type NFDNPVY sequence and likely the 

interaction of Apoer2 with Dab1 (288).  

Sepp1 binds specifically to the β-propeller domain of apoER2. The extracellular 

region of mouse apoER2 consists of four types of protein domains  which include the 

ligand binding repeats (LBR), the epidermal growth factor repeat (EGF-repeat), the 

YWTD β-propeller domain, and the O-linked sugar domain (287).  Sepp1 putatively 

binds the extracellular region of apoER2, which consists of LBRs (287). The Sepp1 

heparin binding site is located in the N-terminal domain (residues 79-86) (287,372), and 

heparin binding facilitates Sepp1 uptake in the rat L8 muscle cell line (287,373). In 

human plasma, proteases of the kallikrein family cleave Sepp1 into N-terminal and C-

terminal fragments (287,374). Interestingly, the heparin-binding site in the N-terminal 

domain of Sepp1 is not an essential domain for apoER2 binding (287). This study 

found, importantly, ApoER2 binds specific isoforms of Sepp1 in the C-terminal 

selenocysteine-rich domain and that they bind to the β-propeller domain of apoER2 

suggest that Sepp1 uptake by apoER2-mediated endocytosis is highly efficient for 

selenium gathering, and further, that the mechanism of Sepp1 uptake is distinct from 

the LBR domain-mediated uptake of other ligands (287). 
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In another interesting study investigating the role of ApoER2 in the testes, it was 

found that there are specific domains on ApoER2 that are crucial for regulating synaptic 

function in the brain but are not involved in the uptake of selenium in either the brain or 

the testes (286). Se levels were greatly reduced in both the brain and testis of Apoer2 

KO mice (102,375). The results were concluded by observations that in contrast, none 

of the ApoEr2 intracellular domain mutants had significantly lower selenium levels in 

brain or testis, compared to wild type animals (286). Endocytosis in the Apoer2[Dab-

] animals were affected by a three amino acid mutation, but it was not sufficient to 

decrease selenium levels in the brain or testis of these mice (286).  WT animals and all 

of the Apoer2 ICD mutants showed vesicular Sepp1 staining at the basal lamina. There 

were no Sepp1 positive vesicles detected in the Apoer2 KO testes as previously 

reported. 

These studies cited here provide further evidence to support our hypothesis that 

Sepp1 has a specific role in brain function including synaptic plasticity and possibly 

protecting against neurodegeneration which is independent of its function to transport 

selenoproteins and that Sepp1 may be involved in the modulation of Dab1. Further 

elucidating the mechanisms and diverse functions of these selenoproteins will make 

critical contributions to the understanding of selenoproteins and its relevance to human 

health to potentially utilize this knowledge to improve treatments for many diseases and 

pathological conditions.  

We show clear evidence that both Sepp1 and SelM are critical in regulating normal 

synaptic function. We demonstrate that SelM deletion contribute to sexual dimorphic 

defects in synaptic plasticity as shown by abolished LTP responses in SelM-/- male mice. 

The sex-specific role of SelM in maintaining synaptic plasticity may be associated with 

its effects on metabolic regulation as previous reports that SelM-/- males have increased 

fasting insulin levels (100). Further investigation is needed to understand how SelM 

regulates synaptic plasticity in relationship to insulin signaling.  

Sepp1 has specific role in regulating hippocampal dependent synaptic plasticity 

despite absence of Sepp1 in liver and is independent from transporting selenoproteins 

from hepatic cells. Sepp1 may regulate synaptic plasticity through the disabled-1 (Dab-

1) signaling pathway similar to the actions seen upon Reelin binding to ApoER2, which 
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also binds Sepp1. These findings, along with evidence that Sepp1 is associated with AD 

pathology (91), warrant further investigation to determine which signaling pathways are 

involved and how Sepp1 modulates synaptic plasticity and serve as to modulate 

neurodegeneration.  

 

Future  

To further investigate the mechanism of Sepp1 in synaptic plasticity, using the 

Sepp1 Brain Rescue mouse model, we can assess the various different types of 

memory using electrophysiology protocols such as LTD, to help determine which 

mechanism Sepp1 is involved in. We should also examine Reelin protein expression 

levels in Sepp1 wildtype, brain rescue and KO brain tissue. To determine whether both 

Sepp1 and Reelin binding to ApoER2 are required for normal hippocampal synaptic 

plasticity, Reelin activity can be inhibited while inducing LTP. Determine whether Sepp1 

Brain Rescue maintains LTP independent of endogenous Reelin by inhibiting Reelin 

activity (in Sepp1 Wt acute hippocampal slices) with CR-50 antibody, inhibiting Reelin 

multimerization. Alternatively, optogenetics could be utilized in conjunction with 

electrophysiology methods to inhibit Reelin or Dab1 signaling in Sepp1 mouse brain 

slices. A similar method was used in which optogenetics inhibited reelin signaling, thus 

improving the integration of grafted purkinje cells into adult cerebellum, while responses 

to evoked excitatory post-synaptic currents were recorded to ensure the health of the 

purkinje cells (376).  

For further confirmation of the role of Sepp1 restricted to forebrain neurons and 

whether other selenoproteins are modified in this model, GPx4 protein expression in the 

brain can be analyzed. Additionally SelM expression can also be measured, since we 

now know that SelM plays a role in regulating synaptic plasticity. In adult brain 

mitochondrial and cytosolic GPx4 isoforms have detected in neurons of cerebral cortex, 

hippocampus, and cerebellum whereas glial cells were devoid of GPx4 and greater 

evidence points to GPx4 having a protective role in neurodegeneration (130,377). 

Further neurobehavioral assays such as the MWM and an elevated T-maze could be 

conducted to support the current data.  
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To elaborate on which pathways Sepp1 may be involved in, it would be worth 

examining the Disabled-1 pathway by initially repeating the experiment in Chapter 4 

with larger parameters to increase sample size, measuring protein expression ratios of 

phosho-Dab1 to whole Dab1 in Sepp+/+, Sepp1-/-, and Sepp1 Brain Rescue. Assess 

expression of proteins downstream of Dab1- PI3K, PSD-95 and SFK activation. 

Phosphatidylinositol-3-kinase (PI3K) and protein kinase B (PKB), can also be measured 

in Sepp1 mice as these are activated upon tyrosine phosphorylation of Dab1. In fyn-

deficient neurons, upregulation of Dab1 expression and not pDab1, is consistent with a 

response mechanism by which the cell attempts to compensate for reduced kinase 

availability (304). Measuring Dab1 would provide us information about the basal levels 

prior to phosphorylation. In Sepp1-/- vehicle treatment for instance, we would expect 

that since there is significantly less pDab1, there would be an increase in Dab1.  

The sexual dysmorphism effect on LTP observed in male mice upon deletion of 

SelM should be further investigated. It has been shown that estrogen, present in greater 

levels in female mice, increases Se concentration potentially protecting cells from 

oxidative stress (378). Comparison of various selenoprotein levels involved oxidative 

stress and brain function between SelM male and female mice should be conducted. 

Another aspect to investigate is to determine whether Se supplementation or estrogen 

will recover SelM LTP deficits seen in SelM-/- male mice. 

SelM mice exhibit similar LTP deficits and behavior as both the IRS-/- and NR2A-/- 

mice, thus LTP deficits seen in SelM-/- mice may be associated with other types of 

learning that have not yet been examined. Studies have shown that in AD mice models, 

aberrant defects in NMDA-mediated calcium effects the ryanodine receptors, which are 

ER calcium regulators (379). We can investigate whether SelM deletion modulates 

NMDAr subunit expression and phosphorylation, IRS-2 and its downstream effectors 

such as PSD-95 and others. The role of SelM in ER store calcium regulation and 

protecting against oxidative stress may also contribute to synaptic plasticity 

dysregulation. In conjuction with the description of NR2A and IRS2 knockout mouse 

studies, providing further evidence that deficiency in LTP can be a result of different 

types of learning and memory, which may require different and more specific behavioral 

paradigms to determine the behavioral deficit associated with the synaptic plasticity 
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deficit. We can examine whether SelM-/- mice compared to wildtypes and also 

compared by gender among genotypes, have altered protein expression of NMDAR and 

its subunits in various brain regions such as hippocampus and hypothalamus, which 

can be further confirmed by immunohistochemistry.  

We can also examine whether SelM deletion, effects expression of IRS-2, which 

is essential for insulin signaling, as SelM-/- mice were which was previously shown to 

exhibit metabolic dysfunction in a gender specific manner very similar to those seen in 

IRS-2-/- mice. Alternatively, we can examine this relationship indirectly by assessing 

whether SelM deletion effects IRS-2 downstream targets of the PI3K pathway and GSK-

3β.  Studies investigating the specific role of brain insulin signaling in neuronal 

functions, reported that in a brain restricted IRS expressing model, NesCreIrs2KO mice 

exhibited deficits in NMDA receptor-dependent synaptic plasticity in the hippocampus of 

mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by 

the previous activity of a synapse (369).  

To further determine what type of learning and memory is effected by the 

synaptic plasticity deficits seen in SelM-/- male mice, different neurobehavior assays 

such as the elevated T-maze for a spatial non-matching-to-place test, radial maze as 

access whether the synaptic deficit reported in this study is associated with other types 

of learning, such as spatial working memory can be conducted. Furthermore, to further 

determine the mechanism in which SelM effects synaptic plasticity we can assess 

whether SelM-/- male mice will recover normal LTP by modify the LTP protocol as its 

possible their threshold for induction is higher.  Potentially, SelM-/- LTP deficits may be 

restored if a stronger depolarization caused by the stronger tetanic stimulation is 

administered, which would activate NMDA receptor channels more efficiently, providing 

insight into whether the impairment of LTP is likely to be the result of an increased 

threshold for the LTP induction. We could futher determine if the LTP impairment is 

ascribed solely to the increased threshold for the LTP induction and is not due to the 

alteration of LTP expression mechanisms, the saturation level of LTP in SelM-/- male 

mice would be expected to be the same as that in the wild-type mice. This could be 

determined by saturating LTP, by repeatedly applying high-frequency stimulation until 

no more potentiation can be observed (324).  
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The findings of this study, not known to be previously reported characterize the 

specific function of Sepp1 and SelM in hippocampal dependent synaptic plasticity, 

important for learning and memory and shed light on the potential mechanisms 

involved. Further investigation of Sepp1 and SelM are necessary to determine the 

mechanisms through which Sepp1 and SelM functions to modulate synaptic plasticity 

functions.  
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