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Abstract

In recent years, cloud-based Machine Learning
services have received much attention for promising
fast and cost-effective deployment. At the same
time, manufacturing companies are beginning to
evaluate and implement these new technologies in their
production processes. This paper adopts the design
science research approach to demonstrate the use of
cloud-based Machine Learning services to implement a
visual inspection system in the manufacturing industry.
As a result, our developed IT artifact can correctly
classify all of the given parts in a dataset consisting
of 363 images, outperforming the current manual
inspection. Thereby, it addresses the various challenges
faced by the industry when introducing cloud-based
Machine Learning technologies, evaluating return on
investment (ROI), and how this can facilitate further
digital transformation in production.

1. Introduction

Artificial intelligence (AI) and specifically Machine
Learning (ML) approaches are on their way to becoming
the key technology for numerous business applications.
One area where ML methods are particularly successful
is the field of computer vision [1]. Since the
advent of deep learning several years ago, those
methods have dominated all important computer vision
benchmarks [2]. On top of that, they have also
become much more efficient in regards to system
resources [3]. Among the best-known examples in
everyday life are self-driving cars and the face unlock
feature on smartphones. Beyond that, computer vision
has the potential to have a high impact on industry
and manufacturing. Potential applications in industrial
production lines include identifying and localizing
parts, detecting material defects on conveyor belts,
and real-time analysis of materials [4]. Although
visual monitoring systems using conventional image
processing techniques have already been used for
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several decades, conventional techniques usually come
with several restrictions which could not be automated
yet, especially when it comes to human flexibility,
background knowledge and intuition.

In the course of global market trends, individualization
of products, the need for more efficiency, shorter
time-to-market cycles [5], and growing customer
specifications, demands exceed conventional systems’
capacities and capabilities. There is a growing need for
more flexibility in these industrial processes.
Simultaneously, advances in computer vision promise
to ease some of the restrictions of conventional visual
inspection systems. Vendor cloud platforms promise
a distributed adoption and use of ML and Al using
Machine Learning as a Service (MLaaS). MLaaS
simplifies the development and use of cloud-based
off-the-shelf Al technologies and the adoption of
pre-trained neural networks [6, 7]. It eventually supports
the entire development process, from the raw data set
to the operational machine model, even with smaller
training data sets. On top of that, cloud technologies
continue to promise payoffs in reduced costs, increased
efficiencies and provide business model transformation
opportunities [8].

Despite advances in computing, there is still much
speculation about the use of ML for real applications,
and the published benchmarks are often not realized [9].
In this respect, the literature criticizes that the
current ML research has lost touch with the “real
world”. It rarely includes an assessment of whether
quantitative performance improvements are relevant in
practice. More research is needed to evaluate the
solutions developed under real conditions [10] and the
corresponding economic implications [9].

This paper addresses this gap by developing and
evaluating an ML-based visual inspection solution
in the manufacturing industry using cloud-based ML
technologies. Specifically, we address the following
research questions (RQ): How can MLaaS facilitate
the development of ML-based visual inspection in
a production process? What are further potentials
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and challenges when introducing ML-based visual
inspection into a production environment?

The remainder of the paper is structured as follows:
The second section provides an overview of visual
inspection techniques for quality control in a production
environment. The research approach based on pertinent
Design Science literature is introduced in Section 3. It is
followed by the description of the designed artifact and
design search process. Section 5 discusses the results
and contributions to research and practice followed by
concluding remarks and a description of future research
directions in Section 6.

2. Theoretical Background

Product quality inspection in manufacturing is
about comparing the properties of a product with its
specifications [11]. If we specifically refer to visual
inspection, we imply visually perceptible criteria,
which is also called an optical inspection. Visual
inspection is used in many areas such as industrial
manufacturing processes [12], food production [13],
transport infrastructure maintenance [14], or the
production of nuclear weapon parts [15]. As part
of quality control, the aim is to ensure that faultless
products with reliably consistent quality reach the
customer. Products that are incorrectly sorted out,
although they are acceptable, increase the scrap rate.
Conversely, if a defective product is not recognized as
such, it impacts customer complaints. Directly related
to this are, among other things, customer satisfaction
and loyalty [16], a strong corporate brand [17], and
ultimately the competitiveness of the company. Due
to its great importance, quality control is one of the
four major management functions alongside planning,
organizing, and leading [18].

2.1. Manual and Automated Optical
Inspection Systems

Compared to other inspection methods, visual
inspection is characterized by the fact that it is not
only contact-less but also completely non-destructive,
allowing 100% of manufactured products to be
tested [19]. In the simplest case of manual optical
inspection (MOJ), it is often possible to operate without
special equipment and thus without a high initial
investment. Nevertheless, a higher resolution compared
to most other non-destructive testing methods can
be achieved. Apart from a few technical gadgets
(microscopes, better lighting and more ergonomic
workplaces), MOI’s core has hardly changed over
time. Most efforts in recent years have been aimed at

making MOI more reliable: With the advent of quality
management procedures such as Six Sigma, the quality
of human inspection was put under the microscope for
the first time. It showed the error rate can range from
2-10% for simple inspection tasks to up to 30% for
more complex tasks [20, 18]. This outcome is also
difficult to reduce by multiple inspections, a fact known
as the "Two-Inspector Problem” [21]. The error rate
depends not only on the difficulty of the inspection
task: Work results are influenced by numerous other
factors. In addition to psycho-physical factors, such
as the age and gender of the inspectors, the design of
the workplace and social and organisational factors also
have an influence [18].

At the end of the 1990s, a quantum leap in quality
control took place with the advent of digital sensors
and the associated automation of visual inspection.
Automated optical inspection (AOI) systems operate
using conventional image processing techniques, such
as a reference comparison [22]. In order to be able to
install systems for AOI, several necessary restrictions
have to be met [23]. The inspection task to be
solved must be described in detail and precisely in
a technical manner, using the “language of image
processing” [24], i.e., signal processing, edge detection,
morphological image processing, and segmentation.
Complex tasks are solved by combining these building
blocks. For example, to count the number of pores in
an object, the image is pre-processed so that the pores
can be clearly distinguished from their background.
Afterwards, the edges of the approximately circular
pores are detected, fitted by circles, and counted in
the last step. Furthermore, AOI systems require that
all possible variants of test parts and defects must be
known. In addition, the environmental conditions must
be designed so that defects and objects can be detected
at all. These environmental conditions must be kept as
stable as possible [23].

If these prerequisites are given, automated visual
inspection has some distinct advantages. It is efficient
to a high degree and, once installed, has low operational
costs. The inspection process is highly objective
and detailed logs can be generated, from which the
production process can be improved [25]. However,
some aspects of visual inspection can not be automated,
especially in terms of human flexibility, background
knowledge, and intuition. Therefore, most literature
suggests using so-called hybrid approaches, where the
bulk of the task is automated, while humans perform
mostly supervision tasks and decide in ambiguous
cases [24].

Page 1021



2.2. ML-Based Visual Inspection

Machine Learning eases some restrictions for

the use of an AOI system using conventional image
processing techniques. First, the inspection task no
longer needs to be described in a detailed and precise
technical manner. Instead, ML automatically detects
meaningful patterns in data [26]. For instance, surface
defects are not formally described, but only provided
as labeled example images for ML algorithms. By that,
the implicit knowledge of the inspectors is contained
in the training data. Second, not all variations of
components and errors need to be known in advance.
ML systems are, to a certain extent, able to react to
previously unknown or partly challenging to describe
or parameterizable error types. ML systems can also
exhibit greater robustness to changing environmental
conditions, e.g., by simulating such fluctuations in
training data during data augmentation [27, 28].
In general, ML algorithms can perform various
tasks during visual inspection. These include image
classification, which classifies a test image into several
categories, and object detection, which locates objects
of interest in an image [29]. For this purpose, early
ML algorithms used a two-stage approach: Feature
descriptors were used to extract useful features from
images. These were then used as input to a classification
algorithm. However, the quality of the output hinges
on the quality of those hand-crafted features [30]. With
the rise of deep learning in the last decade, manual
feature extraction is no longer necessary, as it is also
learned [31]. Among those deep learning models,
Convolutional Neural Networks (CNNs) are now used
almost exclusively for image classification tasks. They
work best when provided with data in the form of
multiple arrays, such as images or linear signals [32].

2.3. Machine Learning as a Service

In addition to the progress in the field of computer
vision, new tools and libraries, standard algorithms, and
pre-trained neural networks facilitate the development
process from raw data to an operational ML model [6]
- even with smaller training data sets, e.g., by
using transfer learning techniques [33].  Finally,
these techniques and technologies have already been
provided via several cloud platforms as Machine
Learning as a Service. Cloud technologies enable
rapid on-demand deployment of single use cases up to
large-scale deployment throughout the company. Its
advantages include on-demand computing power with
quick implementation, fewer IT staff, low maintenance,

and lower cost [34]. Despite these promising conditions,
cloud computing is subject to some limitations in
an industrial context. These comprise, among other
things, the requirements for real-time processing
and interactions, the comparatively limited computing
power of industrial sensors and controllers, and last
but not least, security and privacy considerations [35].
These restrictions must be addressed to foster the use of
cloud technology in the industrial environment.

3. Research Design and Case Description

The Design Science Research Methodology
(DSRM) applied in this case study has been described
by Peffers et al. [36]. They identified six activities
performed in an iterative loop as the creation process
of a Design Science artifact. Such an artifact can, for
example, be a piece of software or an ML pipeline, as is
the case in this research work. Additionally, the authors
adhered to the guidelines for Design Science Research
by Hevner et al. [37].

The case study was conducted within a German
technology group. Although the individual divisions
of the group pursue business in different markets, a
central organisational unit enables cooperation across
all areas concerned with digital transformation. One of
the business units is active in the mass production of
electronic sensors and actuators. For one of its products,
surface inspection of production flaws and dirt particles
is performed manually at a production throughput in the
order of magnitude of several hundred thousand parts
per month. In the context of this case study, this process
should be automated by ML-based visual inspection.
Further, the current manual inspection only could
perform binary classification, i.e., sorting the produced
actuators into two categories (OK and not OK). Thus,
the case study’s primary goal was to provide an
algorithm that could outperform the human inspectors
in that dimension. Beforehand, the performance of each
human inspector was evaluated individually using the
F1 metric, which resulted in the failure rates for simple
inspection tasks (2-10%) [18, 20].

However, improvements in other dimensions were
needed to justify the investment and the risk associated
with adopting this new approach. So, a secondary goal
was to provide new insights into the production process,
which could improve the manufacturing process and
detect deviations from the defined standard conditions
before those deviations could manifest themselves
in errors. Thus, investigation was not only focused
on algorithms for binary classification, but also for
multilabel classification (determining the kind of error)
and detection (localizing the error).
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Since this case study shall demonstrate how ML can
be incorporated into an already established production
environment within a company, particular focus lies in
communicating the artifact to support decision-making
for the stakeholder. Therefore, the demonstration
and evaluation of the artifact include an analysis
of the financial feasibility and visualizations of the
performance and capabilities of the ML system.

Lastly, proprietary data was used for this case study.
Therefore, no original images can be shown. Figure 1
depicts an anonymized version of the device.

4. Results

The following section describes the designed artifact
and the design process. Since a large focus of the
DSRM lies on communication and demonstration, the
artifact will be explained extensively to the stakeholders
of the production process, as shown in Section 4.2.
In Section 4.3, the algorithms’ performance will be
evaluated and compared to the manual visual inspection,
in the domains of prediction accuracy and financial
feasibility.

4.1. Design and Development

The structure of the design and development phase
follows the flowchart shown in Figure 2. In the
following, the individual steps are outlined in greater
detail.

Image Capturing The device under inspection is a
small thermal sensor, which is shown in Figure 1 as
a simplified version. It consists of multiple different
precious metals, screen-printed on a ceramic substrate,
and covered by a protective glass layer. Different errors
can be introduced during the production process, e.g.,
dust particles underneath the glass layer, scratches on
the surface, or cavities in the printed metal parts. Due
to the variety of those errors, they can not be made
visible within a single image. In order to capture the full
breadth of errors, four images under different lighting
conditions (incident light with different amounts of
dark-field illumination as well as transmitted and coaxial
light) are captured for each of the 363 specimens of the
sample dataset. A simplified depiction of the resulting
images is shown in the top row of Figure 1. Since
position and orientation of the camera are kept constant
during the capturing of the image series, the resulting
images can be stacked on top of each other.

Labeling A production engineer labels each of the
four illuminations for every image in the dataset, based

Illumination 4

Illumination 1 ~ Illumination 2 Illumination 3
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Figure 1. Visualization of converting four
illuminations to one RGB image.

on the error catalogue that is also used for the current
manual visual inspection. They mark each error with a
rectangle and further annotate the category of the error.
This allows to additionally deduct the labels for the
simpler binary and multilabel cases, where the location
detail is irrelevant.

As alabeling software, IBM’s Maximo Visual Inspection
(formerly PowerAl Vision) [38] is used. The images
of the different illuminations are labeled independently
from one another. This way, only errors that are actually
visible in a certain illumination are marked as such. This
procedure will become important when combining these
information in the red, green, and blue channels of an
RGB image.

Preprocessing For preprocessing, we use OpenCV’s
Template Matching to crop the labeled microscopic
images to only show the device [39]. Next, we perform
image augmentation in accordance with the device’s
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actual properties: Since it shows mirror symmetry, the
size of the dataset can be doubled by creating vertically
flipped copies. Since the substrate may come from
different suppliers and may have a slightly deviating
color, thickness and density, we can create additional
images for training by changing the colors for the
substrates.

Conversion to RGB One of the strengths of MLaaS
is its ability to work with pre-trained models. However,
there is no out-of-the-box solution to handle the
information contained in the four different images we
have of each specimen in this use case. To overcome
this limitation, we selected the three illuminations
containing the most information about errors. We copied
each illumination to the red, green, and blue channels of
anew color image in the next step. Further, we discarded
the illumination with the least information content. This
newly created color image is then used as input to the
pre-trained models.

In order to determine the information content of an
illumination, three metrics are computed for each image
and then aggregated over all images of one illumination:

¢ Total number of labels

e Unique labels: As mentioned above, one
actuator’s four illuminations are labeled
independently from one another. Often, errors
can be detected in more than one illumination,
resulting in bounding boxes at similar positions
in these images. A label is considered unique if
its bounding box does not overlap with another
bounding box on another illumination.

* Essential labels: If an actuator only has errors
detectable in a single illumination, the removal
of this illumination would make an otherwise
rejected part undetectable.

Taking these three metrics into account, we are able
to keep most of the information while removing one
illumination. This process is visualized in Figure 1.

Upload and Training We use two MLaaS providers
in this case study: IBM’s Maximo Visual Inspection and
Google’s Cloud AutoML Vision [40]. Both work in a
similar manner: The images for training are uploaded,
in addition with a specification file describing the labels.
Afterwards, we can train a ML model in the cloud.
After the training is completed, we can perform online
predictions using the vendor-supplied APIs or download
the model for use on an edge device.

For all training processes, a split into training (70%),

Image
Capturing

|

Labeling

|

Preprocessing

Conversion
to RGB

l

MLaaS: Upload
and Training

Development of
custom models

Binary Multilabel

. . . . Detection
Classification Classification

Demonstration

l

Evaluation

Figure 2. Flowchart showing the development
process of the artifact.

validation (15%) and test set (15%) is performed. In
all cases, the test set is never uploaded into the used
tools to preserve its independence. IBM’s tool allows for
some adjustments to be made: For the first task (binary
classification), we choose GoogLeNet [41], pre-trained
on the ImageNet dataset, as the model architecture.
Multiple other pre-trained models are available within
the tool [42], none however were fit for the specialised
use case at hand. Next, we perform a grid search over
learning rate and weight decay to find the best model
based on the F1 metric. At the time of the case study,
the service did not offer a feature to solve the second
task (multilabel classification). However, we could
exploit a property of the device to reduce the task of
multilabel classification to a binary classification task
for each label: The different errors labels correspond
to the material classes on the device, e.g., "Substrate
Error”, ”Gold Error”, and ”Glass Error”’. With one
small exception, these areas do not overlap. We can
then create one binary classification task for each class
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of material, by cropping out the rest of the device and
training only on the area of the selected material. Again,
a pre-trained GoogLeNet is chosen, grid search over
learning rate and weight decay is performed and the
best model for each error class is determined. For the
third task (detection), the faster R-CNN algorithm [1] is
available through the platform.

Google’s service allows only to set a budget of node
hours for training. We train the models with the same
images as on IBM’s platform. Here, the only parameter
to choose from is the amount of node hours the training
should be performed with. This value is set to 100
hours. This way it is high enough, so that convergence
is reached in every training. Again, the multilabel
classification is reduced to a binary classification task
using the same blacked-out data. Even though this
service is able to perform multilabel classification, this
approach lead to better results and comparison between
platforms.

The training duration ranges from a few minutes for the
classification tasks to one hour for the detection models
on both platforms. The training process is performed
completely transparent for the user, who will have no
further influence on the process until the completion
of training. Furthermore, cross-validation can not be
performed. At the time of experimentation, the used
tools did not have the option for cross-validation, instead
it would have had to be performed manually.

Development of Custom Models To further evaluate
the performance and use of MLaaS we decided to
develop a custom model.

MLaa$, especially in the field of computer vision, uses
powerful, but very generic algorithms to solve a wide
variety of use cases. To potentially improve upon the
performance of those MLaaS providers, we develop
a custom model that is free of the restriction of the
cloud platforms. This approach took advantage of two
properties from our special application:

First, our custom model will use the information of
all four illuminations. This is an improvement over
the MLaaS platforms, where only three illuminations
could be used in the three channels of an RGB image.
Second, each image is taken under the same orientation
and lighting so that each time there is a fixed structure
that does not change drastically from image to image.
The only differences are potential production flaws.
Both of these facts can be exploited by implementing
a variation of an established facial recognition
algorithm [43]. The images within each illumination
are normalized by subtracting the mean of the
images and then scaling the data to unit variance.
Each normalized image is then flattened into a

vector and arranged into a feature matrix. Of this
feature matrix, the eigenvalues and eigenvectors are
calculated using principal component analysis (PCA).
This decomposition has some interesting properties:
First, the mean of the images which was subtracted in
the normalization step shows a device without flaws.
Second, the eigenvectors belonging to the biggest
eigenvalues represent the most significant flaws present
in the test data.

This eigendecomposition can now be used to classify
the devices. We could show that the eigenvectors
belonging to the 800 biggest eigenvalues contain 99%
of the variance of the original data. We can now
project the images into this lower-dimensional space,
spanned by the corresponding eigenvalues, and use these
coordinates as new feature vectors. Classification is
performed using a Support Vector Classifier (SVC). This
approach is capable of performing binary and multilabel
classification. =~ However, detecting the location of
production flaws is not possible.

4.2. Demonstration

Both MLaaS providers allow for online as well
as offline predictions.  For this case study, the
evaluation was performed using online prediction, since
no additional setup was required. However, when
used in production, the models need to be downloaded
onto edge devices: Preprocessing, creating the RGB
image, upload and inference take around 270 ms
in our calculations. This additional latency would
already impact the throughput of the production line.
Additionally, online predictions would make the whole
production process reliant on an internet connection.
For the further demonstration of the design artifact
and showing how ML can be used in our case study,
we designed two ML-based visual inspection systems
aligned to our business environment. In the first system
design, we only replaced the MOI by the ML component
and appropriate hardware. However in this design,
product handling is still done by the production staff,
as it had been done when parts where taken to MOI and
back. In the second design, the handling of the product
parts is automated by a pick-and-place machine. This
system design therefore requires more modifications to
the production process by introducing a new machine
into the process. These two new system designs were
presented to the business.

As a further communication instrument, we presented
some exemplary visualizations. These visualizations
show how additional quantifiable information obtained
through the ML model can be used in the production
process. The first visualization shows a Pareto chart,
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which depicts the frequency of different error types as
a bar chart. The diagram allows the viewer to quickly
compare the current Al predictions with historical
predictions to detect changes. Secondly, we designed
a heat map of the product. The heat map uses color
concentration to indicate a concentration of defects in
certain areas of the product within a certain time. This
tool can also be used to monitor the running production
and to react to deviations.

Lastly, a graphical user interface (GUI) demo was
implemented, which served to communicate the ML
model’s functionality. = The GUI allows users to
use the Al to analyze their sample images of
products. The output then displays the analysis (error
classification) and a detection as a bounding box over
the corresponding area of the image.

4.3. Evaluation

The created artifact, i.e., the trained Machine

Learning model, needs to be evaluated in terms of
several criteria:
First, the performance of the different models in
the testing environment is determined. For this, a
suitable metric needs to be found. Accuracy, which
is the percentage of correctly classified parts, can
hide bad prediction performance on underrepresented
classes. When the production process is running as
intended, the fraction of faulty parts is going to be
small, making accuracy an ill-suited metric. From a
business standpoint, high precision (a small number of
undetected faults) and high recall (a small number of
erroneously discarded non-faulty parts) were decided
to be equally important. Thus, the F1 score, which is
the harmonic mean of precision and recall, is chosen
to compare the different models. Table 1 shows
the best performances under this metric for the two
MLaaS providers and the custom model. In multilabel
classification and detection, the average F1 score over
the types of errors is reported. In all cases, the test set
that was not used during training is used to determine
these metrics.

Several clear trends can be seen:

In the two classification tasks, the custom model has
the worst performance of the three approaches, even
though it is able to exploit the most information from
the data. This shows the supremacy of the pre-trained
models used by the MLaaS providers, especially on
such a small dataset.

Of the two MLaaS platforms, Maximo Visual Inspection
performs better in all three categories. In the case of
binary classification, it can correctly predict all samples

from previously unseen images, even with different
data splits. However, since training and evaluation are
based only on a small labeled dataset, it remains to
be seen how this model will behave in a production
environment. The higher performance of the Maximo
Visual Inspection platform can be attributed to two
factors: First of all, it allows the user to adjust some
settings and parameters. This is in contrast to Google’s
platform, which just allows the user to only define a
training budget and leaves the rest to the automated ML
system running in the background. Additionally, further
insights and metrics from the training process are
provided, making a continuous improvement possible.

Table 1. Comparison of F1 scores of the two MLaaS
providers and the custom model. Note that the
latter is not able to perform detection tasks.

AutoML  Maximo Custom
Vision  Vis. Insp. Model
Binary Class. 0.90 1.00 0.86
Multilabel Class. 0.85 0.90 0.71
Detection 0.75 0.78 -

Another goal of the Case Study is to analyzes
the economic implications of switching to the new
ML-based visual inspection system. First, the
costs of the current manual inspection are evaluated.
For most factors, numbers are available from the
business unit or through interviews, e.g., labor costs,
office space, and equipment. Furthermore, manual
inspection performance is taken into account for the
cost calculation, which is derived from a measurement
system analysis. This leads to the cost of “false
negatives” classifications in quality inspection. False
negatives are products that are incorrectly classified
as defective. Second, the costs of the two different
proposed automatic visual inspection system designs
(manual handling and fully automated) are estimated.
The costs divide up into three categories: Development
costs, the initial investment into hardware, and running
costs. Development costs include data labeling costs,
labor costs, and cloud infrastructure costs. Next, initial
investments include the costs for product handling,
image sensors, and ML hardware. Lastly, the operating
costs for the Al solution were calculated. This includes
the costs for the False Negatives and costs for the
operation and management.

Finally, the variable and fixed costs of different solutions
can be compared. The case study showed that the
costs amortize already within the second month. This
analysis also helps to compare scenarios that may
involve changes in the existing production process.
Although the Al solution has a high initial investment,
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it has the lowest variable costs and is, therefore, the
preferred option in the long run. This also satisfies
the condition given by the business unit that a visual
inspection system should be profitable within two years.
A postimplementation review is nonetheless necessary
and open for further research.

The above considerations are purposefully kept very
simple. It is expected that higher costs and unforeseen
difficulties arise during the actual implementation.
However, in the long term, the automatic inspection
based on Al is expected to have a positive return
on investment, taking all previous considerations into
account.

Finally, the developed artifact is evaluated in its business
environment [37]. For this purpose, the solution
is presented to the decision-makers in the company.
The observations on the presentation show that the
demonstration of the solution is well received. The
functionality and decisions of the Al can be replicated
and visualized through the GUIL In addition, the
dashboards for statistical monitoring of the solution are
considered to be a valuable tool. It was decided to use
the ML solution in production.

5. Discussion

Commencing with the theoretical implications, our
study contributes to the current “Develop” research
stream of digital innovation [44] by showing how
Information systems (IS) artifacts are developed and
what adoption antecedents are. We showed that MLaaS
can be used to implement a ML-based visual inspection
system in the manufacturing industry. Further, we
demonstrated which steps need to be considered during
ML development (e.g., Labeling, Conversion to RGB,
Upload and Training) in order to use MLaaS. The
outcome of the system design relies on attention to all
steps and new work routines, starting from capturing
the training data up to addressing the challenge of
introducing a ML black-box solution into a production
process, embracing the central idea of socio-technical
theory [45].

Furthermore, our study contributes to the discussion
that the “best practice” design of a vendor-supplied IS
may be a myth [46]. On our way to find an optimal
ML model for the different prediction tasks (binary
classification, multilabel classification, and detection)
the two vendor platforms performed quite differently in
terms of configuration process (provided configuration
and optimization options) and performance (overall
F1-Score). Different vendors provided the best results
for different parts of the solution. Therefore, this case
study cannot be considered as an overall comparison

between the providers, and it was not our intention to
highlight a better cloud platform. However, the different
performances can have a substantial financial impact,
especially when it comes to high volume manufacturing.
The advantages of cloud computing, among others, are
rapid on-demand deployment, quick implementation,
and fewer IT staff [34]. These advantages also became
evident when using Al cloud technologies. MLaaS
helps non-IT companies in the subject matter to build
expertise in certain Al areas, like computer vision. A
comparison with our custom-developed AI approach
shows that the performance of the providers’ black
box solutions cannot easily be beaten by in-house
developments. Therefore, these solutions provide a
high potential for speeding up the development of ML
products.  Simultaneously, it also becomes apparent
that MLaaS services do not (yet) make data science
expert knowledge obsolete since challenges with the
data, training or evaluation of the models remain. One
example is the preprocessing of the available data into
the three color channels of an RGB image explained in
Section 4.1.

MLaaS helps especially with hyperparameter tuning or
the search for an optimal architecture. Choosing the
right tool for the right task, however, is still up to the data
scientist. In addition, proprietary MLaaS aggravates the
black box dilemma that is already known in the context
of cloud computing services [34], since the developed
solutions are often black boxes again. This dilemma
can lead to several problems, e.g., lower acceptance
and user’s trust of model predictions [47] as well as
challenges in clarifying the accountability for such a
system [48]. In turn, MLaaS makes the development
of such AI solutions more accessible and promote their
widespread use within a company, contributing to the
democratization of Al tools in the company [7].

Our final IT Artefact consisted of the ML model and
a software (including a user interface) that allows
the production staff to upload sample images of the
products to review the Al’s decisions, as explained in
Section 4.2. Its use indicates that the models are able
to generalize even to previously unseen error patterns.
In addition to the demonstration of several graphical
ways to visualize the resulting data on dashboards,
this led to a high acceptance from the responsible
business unit. These dashboards, based on the Al
output information, provide an outlook on how such
a solution can create useful additional information
for new process improvements (e.g., improved error
detection) to facilitate further innovation. At the same
time, the additional representations and feedback from
the business unit lead to a better insight into the
mechanisms and operation of the model, which also
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contributed to the question of the responsibility and
ethical implications of such a system [48].

Moving beyond theoretical implications, our study also
has several practical implications. At first, all three
technical challenges (binary classification, multilabel
classification, and detection) could be solved with
higher than expected performance. By combining the
information contained in four differently illuminated
images into one RGB image, high-performing models
for each of these tasks were trained using standard
architectures within cloud Al services. Furthermore,
they outperformed a custom algorithm based on
PCA, which was specifically developed to handle the
information contained in all illuminations. In addition
to technical feasibility, financial viability was shown as
part of a case study. Estimates about the costs of the
automated inspection were compared to the costs of the
current manual inspection, showing a positive return on
investment and, based on the concrete implementation,
possible cost savings of several hundred thousand Euros
per year.

6. Conclusion

In many manufacturing companies, the process

of manual optical inspection requires considerable
human and financial resources. Also, it involves
various challenges that influence inspection quality.
Here, ML-based visual inspection has emerged as a
powerful technology to automatically monitor product
quality and thus reduce the number of defective
products. Simultaneously, cloud services and the use of
off-the-shelf Al technologies simplify the development
and the adoption of pre-trained neural networks. In
this paper, we demonstrated different approaches to
the development of an ML-based visual inspection
system in the manufacturing industry utilizing MLaaS
platforms. Especially IBM’s Maximo Visual Inspection
could achieve excellent results in binary classification,
multilabel classification and detection tasks, performing
even better than a custom model based on PCA.
We demonstrated the value of this artifact to the
involved business unit, fostering understanding in Al
and showing how they can use the data from these
models to improve their production processes.
Further research can combine the findings from this
and several similar use cases into a framework for
automating visual inspection problems using Machine
Learning.
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