UNIVERSITY OF HAWAI'I LIBRARY

TRANSCRIPTIONAL CHANGES IN *NICOTIANA BENTHAMIANA* INDUCED BY TOBAMOVIRAL TRANSFECTION

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

PLANT PATHOLOGY

May 2005

BY JENNIFER LEE BUSTO

DISSERTATION COMMITTEE:

Monto H. Kumagai, Chairperson John S. Hu Anne M. Alvarez John F. Scott Sandra P. Chang

ACKNOWLEDGEMENTS

There is one person above all others who deserves my deepest thanks and respect for his continued support during my research and the writing of this dissertation: my husband, Larry Busto, whose love and boundless energy kept me moving forward throughout my journey. I could not have done it without him.

I wish to express my heartfelt gratitude and appreciation to my mentor Dr. Monto H. Kumagai, and thank him for his patience in guiding me throughout my studies and for giving me this wonderful opportunity. I greatly admire his talent for "thinking differently" as well as his ability to collaborate with scientists in many disciplines, and for sharing with me his many experiences and ideas about the world of science research. I wish to thank my committee members, whom I admire and respect, for their willingness to share their precious time, recommendations and support: Dr. Anne Alvarez and Dr. Sandra Chang, whom I regard as talented and special role models for women pursuing careers in science; Dr. John Scott who introduced me to the wonders of C. elegans, and Dr. John Hu, who guided me through my early work with plant viruses, and continued to include me in the loop of discussions and seminars. I thank him especially for having such confidence in me throughout my education. I also thank the faculty and staff of PEPS, MBBE, and TPSS who have made graduate studies at UH Manoa well worth it. I would like to thank Dr. Dulal Borthakur, who first invited me into the UH graduate program. I would like to acknowledge CRC Press for granting permission to publish "Tobamoviral Vectors: Developing a Production System for Pharmaceuticals in Transfected Plants" as part of Chapter 1 in this dissertation.

There are many other people who contributed to this dissertation in many ways. I am particularly indebted to the valuable insights and knowledge of Dr. Pakieli Kaufusi, whose enthusiasm, interest, and assistance with all aspects of my work kept me motivated to complete my research. I truly value his friendship and will always treasure his generosity. I greatly appreciate Rujunko Pugh, Alain Ogura, Aren Ewing, Ashariya Manemoi, Manning Taite, Malkeet Singh, Dr. Amy Schaeffer, Dr. A. David Hieber, Dr. Harry Yamamoto, Dr. Nancy Chen, Dr. Robert Paull, Dr. Harry Ako, Dr. Gabor Mocz, Dr. Paul Armstrong, Dr. Jennifer Kimbell, and Dr. Kathy Ogata for sharing their expertise and for their conversations, assistance, and support. I thank my personal trainer, Tony Benabese, for keeping me physically fit and reducing my stress levels. And finally, I wish to especially thank my children, Samantha, Michael, and Alexandra for always encouraging me, for their patience when I chose the lab over shopping at the mall, and for inspiring me to hurry up and finish.

I dedicate my dissertation to all whom I love.

ABSTRACT

This research has been dedicated to the development of a system to study the utility of plant viral vector technology for metabolic engineering and functional genomic applications. Potato cDNA microarrays developed by The Institute for Genomic Research (TIGR) were employed to determine gene expression changes in transfected *Nicotiana benthamiana* plants. Several challenges were addressed in developing the system, such as selection of appropriate controls; subtracting out effects of virus infection on plant transcription; and determining the effectiveness of using heterologous microarrays for *solanaceous* species.

Regulation of carotenoid biosynthesis was investigated by inoculating plants with TTU51/CTP-*CrtB*-RZ carrying a phytoene synthase cDNA derived from *Erwinia herbicola*. Microarray analysis showed that the expression of genes encoding enzymes in leaf carotenogenesis was upregulated and that transcripts both upstream (isopentenyl diphosphate isomerase) and downstream (β -carotene hydroxylase) of the targeted enzyme accumulated at ten days post-inoculation (dpi). Quantitative real-time PCR (QRT-PCR) data validated an elevation of endogenous phytoene synthase and phytoene desaturase (*pds*) mRNAs. Plants transfected with a TTO1/*PDS* viral vector carrying a partial *pds* antisense construct, showed a 5-fold decrease in transcript levels of a putative 9-cisepoxycarotenoid dioxygenase (NCED) and a 78-fold decrease in *pds* mRNA compared to controls. These data demonstrate that *tobamoviral* vectors are valuable tools in the

metabolic engineering of plant pathways. Accumulation of colorless phytoene in both transfections does not appear to play a role in pathway regulation.

In a reverse genetics approach, a time course analysis was conducted for *N*. *benthamiana* transfected with 740AT#120 viral vector carrying an antisense *Arabidopsis* ADP-ribosylation factor-1 (*ARF-1*). Cytoplasmic inhibition of gene expression produced a progressively stunted phenotype. A Western analysis showed that ARF protein levels gradually decline and that all members of this multigene family are knocked down by 20 dpi. QRT-PCR shows endogenous *ARF* transcripts are 2.4x lower than control levels. A Welch ANOVA of microarray data identified sixteen genes for further characterization that have a potential role in the secretory or G-protein signaling pathways. Overall, these data suggest that combining viral vector and transcriptional profiling technologies is a useful strategy to rapidly filter gene expression data to assess gene function in plants.

TABLE OF CONTENTS

Acknowledgements.	
Abstract	v
List of Tables	xii
List of Figures	xiii
List of Abbreviations	SXV
Chapter 1. Backgrou	and and Research Objectives1
	viral vectors: Developing a Production System for euticals in Transfected Plants
1.1.1	Introduction2
1.1.2	Tobacco Mosaic Virus Vectors4
	1.1.2.1 Viral vector design construct
	1.1.2.2 Metabolic engineering
1.1.3	Conclusion9
1.1.4	Acknowledgements10
1.1.5	References11
	ng Technologies: Transcriptional Profiling of Virus-Transfected 14
1.2.1	Use of Plant Viral Vectors to Understand the Mechanisms of Gene Silencing
1.2.2	Use of plant viral vectors for genomic analysis studies15
1.2.3	Investigations in Transfected Plants17
1.2.4	Research Methodology18

1.3 Research	Objectives	22
1.3.1	Transcriptional Profiling Investigations in Transfected Nicotia benthamiana	
	1.3.1.1 Nicotiana benthamiana as a model system	22
	1.3.1.2 Use of heterologous cDNA microarrays	23
	1.3.1.3 Identification of appropriate controls	26
1.3.2	Case Study of a Metabolic Pathway: Carotenoid Biosynthesis	28
	1.3.2.1 Metabolic engineering of carotenogenesis	28
1.3.3	Case Study of a Signaling Pathway Involving a Multigene Family: ADP Ribosylation Factor-1 (ARF-1)	34
	1.3.3.1 ARF gene function and regulation	34
1.4 Reference	es	40
	on of rabbit NP1 defensin in transfected plants by an RNA viral ng an orange visible marker	50
Forward		51
2.1 Abstract.		53
2.2 Introduct	ion	54
2.3 Results		55
2.3.1	Expression of Phytoene Synthase in Plant Chloroplast (+/- CTP)	55
2.3.2	Phenotypic Analysis of Transfected Plants Expressing CrtB	58
2.3.3	Enzymatic and Pigment Analysis of Transfected TTU51 CTP CrtB Plants	59
2.3.4	Transcriptional Profiling of Plants Overexpressing Phytoene Synthase	63
2.3.5	Expression of a Mammalian Defensin in Transfected Plants	66

2.4	Discussio	n69
2.5	Experime	ntal Procedures
	2.5.1	Plasmid Constructions
	2.5.2	In vitro Transcriptions, Inoculations, and Analysis of Transfected Plants75
	2.5.3	Immunological Detection of CrtB and NP1 from Transfected N. <i>benthamiana</i>
	2.5.4	Phytoene Synthase Assay76
	2.5.5	Chlorophyll Synthetase Assay77
	2.5.6	Pigment Analysis77
	2.5.7	cDNA Microarray Analysis78
2.6	Acknowle	edgements
2.7	Reference	es80
2.8	Suppleme	entary Material87
-	-	tional Changes in Carotenoid Genes Induced by Tobamoviral
3.1	Abstract	
3.2	Introductio	on
3.3	Results	
	3.3.1	Nicotiana benthamiana Plant Transfections
	3.3.2	Bioinformatics Analysis95
	3.3.3	Microarray Design and Analysis: Changes in Transcript Levels of Carotenoids in <i>crtB</i> -and <i>pds</i> _{as} –Transfected Plants
	3.3.4	Quantitative Real-Time PCR (QRT-PCR) Assays101

3.4 Discussio	n	107
3.5 Experime	ntal Procedures	112
3.5.1	Viral Vector Constructs	112
3.5.2	Plant Inoculations and Treatments	112
3.5.3	Labeling and Hybridization for cDNA Microarrays	113
3.5.4	Quantitative Real-Time PCR (QRT-PCR) Primer Design	114
3.5.5	CDNA Synthesis and QRT-PCR Assays	115
3.6 Acknowle	edgements	116
3.7 Reference	s	117
	tional Changes in the ARF MultiGene Family Induced by ral Transfection	121
Foreword.		121
4.1 Abstract.		122
4.2 Introduct	ion	123
4.3 Results		125
4.3.1	Construction of an Arabidopsis thaliana cDNA Library in an RNA Viral Vector	125
4.3.2	Forward Genomics Screen Reveals a Gene Encoding a GTP- Binding Protein	
4.3.3	Microarray Time Course Analysis	129
4.3.4	Quantitative Real-Time PCR Assays	136
4.3.5	Western Blot Analysis	139
4.4 Discussi	on	141
4.5 Experime	ental Procedures	146

4.5.1	Plasmid Constructions
4.5.2	Plant Treatments for Transcriptional Profiling and Protein Analyses
4.5.3	Labeling and Hybridization for cDNA microarrays148
4.5.4	Microarray Scanning and Analysis149
4.5.5	Quantitative Real-Time PCR150
4.5.6	Protein Isolation and Western Blot151
4.6 Acknowl	edgements153
4.7 Reference	es
Chapter 5. Conclusion	ons
Appendix I	
Appendix II	

LIST OF TABLES

1.1	Major enzymes of the carotenoid biosynthesis pathway	29
2.1	Pigment composition of control and transfected N. benthamiana leaves	61
3.1	Comparison of <i>pds</i> sequence homology of <i>Nicotiana benthamiana</i> and <i>Lycopersicon esculentum</i> to <i>Solanum tuberosum</i>	97
3.2	Quantitative real-time PCR determination of relative abundance of endogenous <i>pds</i> mRNA	106
4.1	Identities from ARF BLAST Alignments	128
4.2	Upregulated genes in ARF _{as} -treated plants	130
4.3	Normalized ratios of ARF transcripts in ARFas-transfected plants	131
4.4	Gene list based on K-means clustering of "Like ARF (BQ508962)"	133
4.5	Welch ANOVA of downregulated cluster, set 5, 20 dpi	135

LIST OF FIGURES

1.1	Overexpression of phytoene synthase (crtB) in leaves of <i>Nicotiana benthamiana</i> produces an orange phenotype
1.2	Tobacco mosaic virus vector with CrtB gene and ribozyme
1.3	Carotenoid Biosynthesis Pathway
1.4	Conformational changes in the GDP/GTP cycle of GTP-binding proteins37
2.1	Phytoene expression vector TTU51 CTP CrtB
2.2	Transfected N. benthamiana plants
2.3	Plants transfected with TTU51 CTP CrtB58
2.4	Enzymatic assays and TLC analysis of pigments
2.5	HPLC profiles of pigment content from control and transfected <i>N. benthamiana</i>
2.6	Classification of upregulated genes in transfected <i>N. benthamiana</i> overexpressing <i>CrtB</i> , 10dpi, as compared to GFP-transfected plants
2.7	N. benthamiana infected with TTU51A CTP CrtB NP1 transcripts
2.8	Protein analysis of a transfected <i>N. benthamiana</i> plant 11 days after inoculation
3.1	Determination of phytoene desaturation (<i>pds</i>) insert sequence in TTO1 PDS- viral vector
3.2	Microarray design for analysis of transcript abundance in virus-transfected N. <i>benthamiana</i> plants
3.3	Microarray fold change for enzymes in the carotenoid biosynthesis pathway100
3.4	TaqMan Primer Design
3.5	RT-PCR reaction depicting amplification of phytoene with primer set #1103
3.6	BioRad iCycler QRT-PCR graphical analysis of pds levels

LIST OF FIGURES (CON'T)

4.1	ADP Ribosylation Factor-1 Expression Vector	.126
4.2	Phenotype of ARF-1 _{as} -transfected N. benthamiana plants	. 129
4.3	Condition tree of "Like ARF"	.132
4.4	Downregulated genes, 20 dpi	.134
4.5	1.5% Agarose Gel Electrophoresis Gel of Reverse Transcription PCR reaction products	
4.6	QRT-PCR graphical analysis of ARF transcript accumulation at 12 dpi	.138
4.7	1% Agarose Gel Electrophoresis of Reverse-Transcription PCR products	.139
4.8	Western analysis of ARF1 leaf proteins (crude extract)	.140

ABBREVIATIONS

ABA	Abscisic Acid
ABA	Arabidopsis Biological Resource Center
ARF	ADP Ribosylation Factor
cDNA	Complementary DNA
	A 7
crtB	Carotenoid B (<i>Erwinia uredovora</i> phytoene synthase)
crtI	Carotenoid I (<i>Erwinia uredovora</i> phytoene desaturase)
dpi	Days post-inoculation
ds	Double-stranded
GFP	green fluorescent protein
GGPP	Geranylgeranyl pyrophosphate
GTP	Guanosine triphophate
GTPase	Guanosine triphophate hydrolyzing enzyme
GUS	beta-glucuronidase
IPP	Isopentenyl diphosphate
IRES	Internal ribosome entry sequence
NCBI	National Center for Biotechnology Information
NSF	National Science Foundation
PCR	Polymerase Chain Reaction
PDS	Phytoene desaturase
PSY	Phytoene synthase
PTGS	Post-transcriptional gene silencing
QRT-PCR	Quantitative Real-Time PCR
RdRP	RNA dependent RNA Polymerase
RNAi	RNA interference
RT-PCR	Reverse-Transcription Polymerase Chain Reaction
SS	Single-stranded
TIGR	The Institute for Genomic Research
TMV	Tobacco mosaic virus
ToMV	Tomato mosaic virus
VIGS	Virus induced gene silencing
	· · · · · · · · · · · · · · · · · · ·

CHAPTER 1. BACKGROUND AND RESEARCH OBJECTIVES FOREWORD

The following sections highlight the major applications of plant viral vector technology, focusing on pharmaceutical production, gene silencing investigations, and gene function studies. Several RNA plant viruses have been engineered to deliver genes derived from various sources into plant host cells through a process known as transfection. As the virus replicates and moves through the plant, the gene transcript associated with the vector accumulates in the cytoplasm, without integrating into the host plant genome.

The first section is a copyrighted, peer-reviewed article that was published in the *Encyclopedia of Plant and Crop Sciences*, Ed. Robert M. Goodman, New York: Marcel Dekker, Inc., 2004. In addition to the use of tobamoviruses in gene expression studies, this paper summarizes and highlights other areas of utility, including their use in pharmaceutical production and metabolic engineering of compounds that are not naturally found in plants. Permission has been granted from Marcel Dekker Publisher (CRC Press; MWolff@crcpress.com) for this paper to appear as a chapter in my thesis dissertation. Bibliographic citations have been modified to conform to the style of the dissertation. A review of the literature regarding transcriptional profiling in transfected plant systems follows. Finally, my research objectives are outlined, providing information about the pathways under investigation, as well as the microarray and quantitative real time PCR assays used in these experiments.

1.1 TOBAMOVIRAL VECTORS: DEVELOPING A PRODUCTION SYSTEM FOR PHARMACEUTICALS IN TRANSFECTED PLANTS

Jennifer Lee Busto¹ and Monto H. Kumagai^{2,3,*}

Department of Plant and Environmental Protection Sciences¹ and Department of Molecular Biosciences and Biosystems Engineering², University of Hawaii at Manoa, Honolulu, HI 96825, USA, and Large Scale Biology Corporation³, Vacaville, CA, USA

*For correspondence (1 808 956 7354; e-mail monto@hawaii.edu).

1.1.1 Introduction

Transgenic crops have played a predominant role in the production of pharmaceuticals and other valuable biological molecules. A more efficient strategy has involved inoculating non-transgenic plants with virus-based vectors that carry foreign genes. With the development of infectious cDNA clones, single-stranded RNA plant viruses have become key players in gene function discovery, metabolic engineering, and biomanufacturing. Viral expression vectors provide epigenetic expression of foreign sequences throughout infected plants, leading to gain- or loss-of-function phenotypes due to overexpression or cytoplasmic inhibition of gene expression.

Plant viruses are powerful transfection tools in molecular farming, producing pure, properly folded and glycosylated proteins in plants faster and more economically than other expression systems. They are a highly desirable alternative to transgenic systems that require protracted periods to transform and regenerate whole plants, and that have variation in the expression levels of heterologous proteins. In transgenic systems, once a particular construct is inserted into the plant genome, it may take several crosses to establish a stable line in an elite cultivar. In contrast, plant viral vectors employed in the large-scale production of therapeutic drugs in greenhouse and field-grown crops directly yield high levels of foreign protein due to the rapid rate of viral replication. In plants transfected with a recombinant tobacco mosaic virus (TMV) *tobamovirus*, alphatrichosanthin, a potential anti-AIDS drug, accumulated to approximately 2% of total soluble protein.

Therapeutic compounds stably produced in transfected plants are numerous, and include anti-viral drugs such as human interferon-alpha 2 as well as vaccines, proteins, and secondary metabolites. Plant-derived anti-cancer vaccines have been produced for treatment of human papillomavirus-induced cancer by expressing recombinant E7 fusion oncoproteins in *N. benthamiana*. The HIV p24 nucleocapsid protein, used as an antigen in the development of HIV vaccines, has been produced in plant protoplasts using tomato bushy stunt virus (TBSV) *tombusvirus* vector. For viruses that cannot be grown in tissue culture, such as hepatitis C (HCV), tobamoviral vectors are under development to produce a plant-derived vaccine. Recombinant proteins for use in diagnostics have also been expressed in plants. Full-length recombinant allergens have been expressed in *N. benthamiana* and recombinant allergens have been expressed in *N. benthamiana* and recombinant allergens have been expressed in *N. benthamiana* and recombinant allergens have been expressed in *N. benthamiana* leaves using a TMV vector. The binding of IgE from sera from birch pollen- and latex-allergic patients suggests that the plant-produced allergens are properly folded.

1.1.2 Tobacco Mosaic Virus Vectors

Several virus groups have been under investigation for design as recombinant plant virus vectors including geminiviruses; potyviruses; potexviruses; comoviruses; tombusviruses; tobraviruses; alfamoviruses; and hordeiviruses. Members of the tobamovirus group (Fitzmaurice *et al.*, 2002; Kumagai *et al.*, 2000; Nemchinov *et al.*, 2000), are the most widely studied; the autonomously replicating RNA viral vectors based on the *tobacco mosaic virus* (TMV) genome have been particularly successful as research and commercial tools.

TMV possesses a positive-sense, single-stranded genome of 6396 nucleotides, which encodes replicase enzymes, and movement and coat proteins. Viral genes are expressed through the production of both genomic and subgenomic RNA. Essentially designed as cDNA plasmids, TMV vectors are modified to contain a foreign gene sequence. Originally vectors were constructed with the gene of interest replacing the capsid protein, until it was recognized that these viral vectors do not move efficiently. Presently, TMV vectors are hybrid versions of several different strains of tobamoviruses (Kumagai *et al.*, 1995; Kumagai *et al.*, 1993) that include all essential viral genes, a bacterial origin of replication (ori) and an antibiotic resistance marker. Dual subgenomic promoters from related tobamoviruses have enhanced stability, while an internal ribosome entry site sequence (IRES) (Toth *et al.*, 2001) has been incorporated into the design to enable expression of multiple proteins.

The transfection process involves mechanically inoculating recombinant *in vitro* RNA transcripts from viral cDNA clones onto plants. Recombinant virions are assembled in the plant and move systemically by associating with plasmodesmata and intercellular cytoplasmic channels, producing foreign protein as they travel. One to two weeks after inoculation, recombinant proteins can be isolated from transfected plants. Interstitial fluid containing the desired product can be quickly separated from other cellular proteins by vacuum infiltration and gentle centrifugation. For large agronomic applications, virions can be purified from transfected plants using high-pressure sprayers in the field.

1.1.2.1 Viral Vector Design Construct

For vaccine production, TMV vectors have been developed as coat protein fusions (Turpen *et al.*, 1995), with the viral coat providing a flexible framework for the recombinant protein. TMV CP fusions include human immunodeficiency virus type I (HIV-I) peptide, influenza virus hemagglutinin epitope, malaria parasite peptide, and hepatitis C virus peptide (Nemchinov *et al.*, 2000). A key technical advance in design has enabled TMV vectors to produce "free" proteins that are not fused to the coat protein. Instead, genes encoding bioactive compounds are fused to signal peptide sequences that cause the translated protein to be processed via the endoplasmic reticulum and Golgi complex and to be targeted for cellular secretion. It is recognized that the faithful and efficient expression of such heterologous proteins is influenced by the choice of the signal peptide.

One of the most highly efficient TMV vector constructs fuses the gene of interest to a sequence encoding a rice α -amylase signal peptide adjacent to a 5' untranslated leader (Kumagai *et al.*, 2000). Viral vectors containing the rice α -amylase signal peptide ORF have been used to express a wide variety of heterologous proteins including mammalian peptides, blood products, glycoproteins and cytokines. TMV vectors that incorporate this signal peptide have been used successfully to secrete single chain variable fragment (Fv) antibodies for the treatment of Non-Hodgkin's Lymphoma (NHL). Currently in Phase II/III clinical trials, these highly customized patient-specific vaccines act as anti-tumor agents (McCormick *et al.*, 1999).

The rice alpha-amylase 5' untranslated leader sequence may help to enhance translation of the heterologous protein. The highly expressed viral coat subgenomic RNA has a 5' cap (m7GpppN) and terminates with a tRNA-like structure instead of a poly (A) tail. The 3' untranslated region (UTR) has two domains, which contain five RNA pseudoknots. It is possible that interactions between the 34 base pair 5' leader of α -amylase and the 3' UTR may cause a synergistic regulation of translation in transfected plants. Significantly, the rice α -amylase signal peptide has been recognized and processed in other transformed organisms, including *Escherichia coli*, *Saccharomyces cerevisiae*, and *Yarrowia lipolytica*, as well as transgenic rice cell suspension. Subtle differences in the size, source, and sequence of the alpha-amylase signal peptide can greatly affect the secretion process.

Striving for higher protein yields, researchers are collaborating to develop improvements in vector design for increased production. It is recognized that inclusion of foreign genes into TMV vectors reduces efficiencies of replication and movement compared to the wild type; these studies are aimed at improving the ability of these vectors to move and to replicate through "gene shuffling" of the 30K movement gene (Rabindran and Dawson, 2001). Visible markers for heterologous gene expression in plants are also under development. Tobacco mosaic viral (TMV) vectors have been engineered to overexpress an enzyme involved in carotenoid biosynthesis in N. benthamiana and other solaneaceous plants (Kumagai et al., 1995). As the viral genome is translated, the encoded enzyme, phytoene synthase (psy), is targeted to the chloroplast causing an accumulation of phytoene, a colorless compound. However, transfected plants show a characteristic orange phenotype in the leaves and flower sepals, as early as 4 days post-inoculation (Figure 1.1). If fused to a heterologous sequence in a recombinant vector, psy may serve as a useful marker for gene expression, particularly in field applications.

Figure 1.1. Overexpression of phytoene synthase (crtB) in leaves of *Nicotiana benthamiana* produces an orange phenotype.

1.1.2.2 Metabolic Engineering

While plant viruses that are engineered to produce pharmaceutically relevant proteins have proved to be powerful gene expression tools, they are also valuable tools for use in gene discovery and in the metabolic engineering of existing pathways in plants. The biosynthesis of leaf carotenoids in transfected *N. benthamiana* was altered by forced rerouting of the pathway, resulting in the synthesis of capsanthin, a non-native chromoplast-specific xanthophyll. The ectopic expression of capsanthin-capsorubin synthase (Ccs) cDNA caused the plant to develop an orange phenotype and accumulate high levels of capsanthin, up to 36% total carotenoids. By redirecting the existing pathways of plants that produce biologically active compounds, plant virus expression systems can potentially be used to alter or produce novel enzymes, or cause the accumulation of non-native bioactive compound (Kumagai *et al.*, 1998).

1.1.3 Conclusion

Plant RNA viral vectors have become intensively utilized in several different plant species for large-scale production of high-value therapeutic proteins (Franconi *et al.*, 2002; Verch *et al.*, 1998; Zhang *et al.*, 2000) and secondary metabolites (Kumagai *et al.*, 1993). The United States Food and Drug Administration (FDA) has developed a guidance document on "plant-derived biologics" and has strengthened field-testing controls for permits on those bioengineered traits that are not intended for commodity uses, such as pharmaceuticals, veterinary biologics, or certain industrial products. The human safety of TMV-based expression systems has been documented; plant viruses are not pathogenic to humans. TMV is only transmitted to other plants through mechanical means; proper cleaning of tools and machinery with bleach contains the virus and TMVbased vectors In addition, the demands for recombinant product purity by the FDA are rigorous.

To date, at least nine separate field trials using viral-based vector systems have been conducted in three separate states for the production of biologics. Concerns regarding the spread of engineered TMV and persistence of recombinant viruses have been addressed in these studies, and a recent report indicates that recombinant viruses generally delete the foreign gene, have reduced vigor, and are less competitive and pathogenic than the indigenous TMV (Rabindran and Dawson, 2001). Plant viral vectors are also effective tools in metabolic engineering as well as gene function discovery. Design modifications will lead to improvement of desirable vector traits so that the

potential of plant virus vector gene expression systems is fully realized (Fitzmaurice *et al.*, 2002).

1.1.4 Acknowledgments

We thank Tony Novelozo (Axiom, Davis) for the plant photograph, Dr. Jon Donson (Ceres, Malibu), and Dr. Guy della-Cioppa for their expert advice and helpful encouragement. We would like to acknowledge David Clary, Damon Harvey, Annie TrucAnh Do, Peter Roberts, and Sherri Wykoff for their expert technical assistance. We thank Larry Grill and other Large Scale Biology colleagues for their support and critical reading of this manuscript. This work was supported in part by the USDA Special Grants Program for Tropical and Subtropical Agriculture, Agreement# 2002-34135-12791.

1.1.5 References

Fitzmaurice, W. P., Holzberg, S., Lindbo, J. A., Padgett, H. S., Palmer, K. E., Wolfe, G. M. and Pogue, G. P. (2002) Epigenetic modification of plants with systemic RNA viruses, *Omics* 6(2): 137-51.

Franconi, R., Di Bonito, P., Dibello, F., Accardi, L., Muller, A., Cirilli, A., Simeone,
P., Dona, M. G., Venuti, A. and Giorgi, C. (2002) Plant-derived human papillomavirus
16 E7 oncoprotein induces immune response and specific tumor protection, *Cancer Res*62(13): 3654-8.

Kumagai, M. H., Donson, J., della-Cioppa, G. and Grill, L. K. (2000) Rapid, highlevel expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector, *Gene* 245(1): 169-74.

Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K. and Grill, L.
K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, *Proc Natl Acad Sci U S A* 92(5): 1679-83.

Kumagai, M. H., Keller, Y., Bouvier, F., Clary, D. and Camara, B. (1998) Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in *Nicotiana benthamiana, Plant J* 14(3): 305-15.

Kumagai, M. H., Turpen, T. H., Weinzettl, N., della-Cioppa, G., Turpen, A. M., Donson, J., Hilf, M. E., Grantham, G. L., Dawson, W. O., Chow, T. P. and et al. (1993) Rapid, high-level expression of biologically active alpha-trichosanthin in transfected plants by an RNA viral vector, *Proc Natl Acad Sci U S A* 90(2): 427-30.

McCormick, A. A., Kumagai, M. H., Hanley, K., Turpen, T. H., Hakim, I., Grill, L.
K., Tuse, D., Levy, S. and Levy, R. (1999) Rapid production of specific vaccines for
lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants, *Proc Natl Acad Sci U S A* 96(2): 703-8.

Nemchinov, L. G., Liang, T. J., Rifaat, M. M., Mazyad, H. M., Hadidi, A. and Keith, J. M. (2000) Development of a plant-derived subunit vaccine candidate against hepatitis C virus, *Arch Virol* 145(12): 2557-73.

Rabindran, S. and Dawson, W. O. (2001) Assessment of recombinants that arise from the use of a TMV-based transient expression vector, *Virology* 284(2): 182-9.

Toth, R. L., Chapman, S., Carr, F. and Santa Cruz, S. (2001) A novel strategy for the expression of foreign genes from plant virus vectors, *FEBS Lett* 489(2-3): 215-9.

Turpen, T. H., Reinl, S. J., Charoenvit, Y., Hoffman, S. L., Fallarme, V. and Grill,
L. K. (1995) Malarial epitopes expressed on the surface of recombinant tobacco mosaic
virus, *Biotechnology (N Y)* 13(1): 53-7.

Verch, T., Yusibov, V. and Koprowski, H. (1998) Expression and assembly of a fulllength monoclonal antibody in plants using a plant virus vector, *J Immunol Methods* 220(1-2): 69-75.

Zhang, G., Leung, C., Murdin, L., Rovinski, B. and White, K. A. (2000) *In planta* expression of HIV-1 p24 protein using an RNA plant virus-based expression vector, *Mol Biotechnol* 14(2): 99-107.

1.2 COMBINING TECHNOLOGIES: TRANSCRIPTIONAL PROFILING OF VIRUS-TRANFECTED SYSTEMS

1.2.1 Use of Plant Viral Vectors to Understand the Mechanisms of Gene Silencing

In research applications, recombinant plant viral vectors have been used to suppress endogenous plant gene transcripts in order to investigate the mechanism of gene silencing. This requires the cloning of homologous gene fragments into the virus and was first demonstrated with heterologous sequences in *tobamoviral* vectors (Kumagai *et al.*, 1995). It is generally held that plant viruses are initiators and targets of gene silencing, which occurs following transcription in the cytoplasm (Voinnet *et al.*, 1999). Plants infected with such vectors respond by activating an RNA-mediated antiviral defense mechanism, leading to a degradation of endogenous mRNA transcripts. Many viruses, including potyviruses, potexviruses and cucumoviruses, possess genes that encode pathogenicity determinants that interfere with the plant's ability to launch a virus induced gene silencing (VIGS) attack (Jones *et al.*, 1999; Llave *et al.*, 2000; Marathe *et al.*, 2000; Voinnet *et al.*, 1999). There is evidence that *tobamoviruses* use their replicase protein to suppress the RNA silencing machinery (Kubota *et al.*, 2003).

VIGS studies using *tobacco mosaic virus* vectors have been highly successful in *N. benthamiana*, a plant that has become recognized as a highly useful model for the *Solanaceae*, whose members share similar genomes with respect to gene content and genome organization. The underlying mechanism of VIGS has been the subject of numerous investigations, typically involving the silencing of transgenic beta-

glucuronidase (GUS) (Llave *et al.*, 2000) or green fluorescent protein (GFP) plants (Voinnet *et al.*, 1999). There is a high degree of sequence similarity among the genes involved in RNA silencing in various eukaryotic organisms, indicating that the cellular components of the RNA silencing machinery and its regulation are highly conserved (Agrawal *et al.*, 2003; Susi *et al.*, 2004).

1.2.2 Use of Plant Viral Vectors for Genomic Analysis Studies

VIGS is the subject of numerous reviews (Burch-Smith *et al.*, 2004; Fagard and Vaucheret, 2000; Lu *et al.*, 2003; Robertson, 2004), that address the advantages of using this technology for analysis of gene function and in high-throughput functional genomics studies. With the completion of DNA sequencing projects for *Arabidopsis thaliana* and rice, reverse genetic approaches in which young plants are inoculated with recombinant plant virus vectors, have been utilized to associate genes and phenotypes in plant systems. This has provided a particularly important complement to existing functional genomics tools.

Functional genomic studies strive to elucidate basic mechanisms of gene regulation, and to link gene identity with protein function. In plant systems, these studies continue to be challenging, however, as biochemical and other assays have fallen short of associating genes and the pathways in which they participate. A "wholesystems" approach to the identification of gene function, and the expansion of the role of

bioinformatics are recently adopted strategies in the plant research community (www.nsf.gov/pubs/202/bio0202/functional.htm).

Tobamoviral vectors cause a transient suppression of gene expression, and this technology holds many advantages over the classical forward genetics approach. Transfection results in rapid and dramatic phenotypic changes in plant pigmentation, growth, and development. For example, phenotypes that are typically lethal due to insertional mutagenesis are often non-lethal in young plants transfected with viral vectors. Also, insertional mutagenesis can potentially yield no loss-of-function when there is a functional redundancy of genes.

The NSF Potato Genome Project is using a VIGS approach in *N. benthamiana* to develop a comprehensive database of gene expression patterns for the *Solanaceae*. Virus-induced gene silencing (VIGS) technology has become recognized as an important tool for understanding plant defense against pathogens, metabolic pathways, and plant development (Burch-Smith *et al.*, 2004). For example, gene function studies employing VIGS has established roles for *SGT1* in the *R*-mediated resistance to bacteria and viruses (Liu *et al.*, 2002b), and roles for *EDS1* and *NPR1/NIM1* for *N*-mediated resistance to *TMV* (Liu *et al.*, 2002a).

Metabolic pathways in *Nicotiana* species have also been studied using the VIGS approach. The plant sterol synthesis pathway has been studied using VIGS, including to elucidate the function of sterol 4-alpha-methyl oxidases (SMOs) (Darnet and Rahier,

2004). To understand the molecular basis of plant-insect interactions, the jasmonate pathway has been studied. VIGS was used to silence the expression of two jasmonate-induced genes encoding nicotine and proteinase inhibitors (Saedler and Baldwin, 2004).

1.2.3 Investigations in Transfected Plants

Microarray studies are used to examine the expression profiles of large subsets of genes in given tissue under specific physiologic and environmental conditions. In plant systems, expression analyses have been used to discover novel floral fragrance-related genes (Guterman *et al.*, 2002); genes involved in strawberry flavor (Aharoni *et al.*, 2000); and genes involved in regulation of plant defense responses (Schenk *et al.*, 2003; Schenk *et al.*, 2000). Other microarray studies have focused on diagnostic aspects of plant viral pathogens, seeking to design new techniques for identification purposes (Boonham *et al.*, 2003; Bystricka *et al.*, 2003; Lee *et al.*, 2003).

Researchers involved in the National Science Foundation (NSF) Potato Genome Project (PGP) are also using a VIGS approach in *Nicotiana benthamiana*. Expression profiling is being conducted with cDNA potato microarrays developed by TIGR to develop a comprehensive functional genomics resource for solanaceous plants. In contrast to the investigations described in the following chapters, the NSF project will use *Agrobacterium tumafaciens* Ti-plasmid binary vectors to introduce a virus-based silencing vector to the plant.

In animal systems, transcriptional studies have examined the effects of virus transfection to assess the efficacy of viral vectors to deliver antigens to elicit protective immune responses for gene therapy. In addition, information has been obtained regarding (1) the toxicity of vectors; and (2) the impact of knock-down constructs, that carry genes in the antisense orientation. For example, one study examined the changes in cellular transcription resulting from infection with HIV-based vectors. They established that HIV-vector or HIV-1 infection has little effect on cellular transcription, and that that gene therapy with HIV-based vectors should not be particularly toxic to cells (Mitchell *et al.*, 2003). As of this writing, there are no published reports on the use of microarrays to study the impact of viral transfection in plants.

1.2.4 Research Methodology

Several technologies were combined in this research investigation. First, transfection of *N. benthamiana* was accomplished with *tobamoviral* vectors that were previously constructed. In some cases, new constructs were developed for ease of manipulation (TTU51/CTP-*CrtB*-RZ) or for use as controls (TTOSA1/ARF1+). For the carotenoid biosynthesis studies, the first viral vector encodes an enzyme (*CrtB*) derived from *Erwinia herbicola* that causes overexpression of phytoene synthase. The second vector encodes a partial cDNA derived from tomato that will cause a knock-down of phytoene desaturase (*pds*⁻). At a single time point, RNA from each of these plants was isolated from transfected plants and hybridized separately to cDNA potato microarrays, using uninfected wild type or GFP-transfected plants as controls. A third viral vector, 740 AT #120 contains an *ADP-Ribosylation Factor-1* (*ARF-1*) that is derived from *Arabidopsis*. Plants transfected with this vector were used in a time-course analysis.

Several steps were involved in establishing a system to conduct transcriptional profiling of transfected plants. For the microarray studies, conditions and technical parameters had to be determined for RNA extraction, cDNA synthesis, fluorescent labeling of the cDNA, hybridization, and scanning of the slides. Signal data transformation and analysis, and data management also had to be established. The following steps were taken to initiate the microarray studies of carotenoid biosynthesis, and modifications to protocols for continued investigations are noted:

1. Development of viral vector construct to incorporate a ribozyme TMV CTP crtB RZ and development of TTOSA1 ARF1+ for use as a control in the ARF studies.

2. *In vitro* transcription (SP6 or T7) of the infectious clones and inoculation of plants with *in vitro* transcripts (infectious RNA).

3. Isolation of RNA from transfected *N. benthamiana*, cyanine-dye labeling of cDNA, and hybridization to potato microarray.

- Total RNA was isolated from *N. benthamiana* leaves overexpressing *crtB* (phytoene synthase) or from *pds* knock-down plants using Qiagen RNeasy kit plant or TRIzol® protocols.
- Microarray experiments require differential hybridization using a two-color system. Total RNA (25 µg) was required to reverse transcribe and label single stranded cDNA. Cyanine-3 and cyanine-5 dyes (Amersham) were used to fluorescently label the cDNA using Fluoroscript and Superscript III kits from Invitrogen
- A hybridization protocol recommended by TIGR was tested and modified to optimize conditions.
- 4. Identification of appropriate control plants

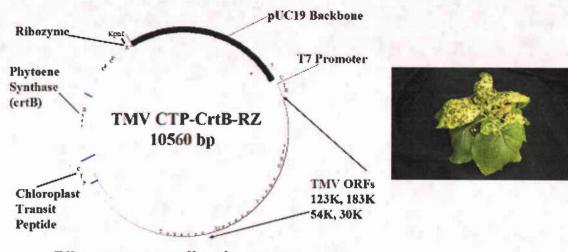
- Initial studies used cy3-labeled *crtB* and cy5-labeled wild type *Nicotiana benthamiana*. Subsequent hybridizations used cy5-labled TMV-GFP inoculated plant leaf material in an effort to subtract or minimize the effects of the virus infection
- 5. Determination of clones on the microarray to address experimental questions
- 6. Identification of software for signal intensity capture
 - TIGR Spotfinder was used initially to capture signal data. Affymetrix Jaguar® software was subsequently used in conjunction with an Affymetrix scanner. BioRad VersArrayer Chip Reader was determined to be the most user-friendly.
- 7. Establish Technical Parameters of Scanner and Software
- 8. Determine Appropriate Analysis Software
 - GeneSpring analysis software (Agilent, formerly Silicon Genetics) is an expression analysis tool. Free demonstration software was downloaded to analyze preliminary data, and later purchased. Training Workshops Levels I, II, and III were attended in Houston, Texas.
- 9. Normalization and Statistical Analysis
 - Normalization using LOWESS (locally weighted scatterplot smoothing) was used for all microarray experiments.
 - Data was filtered to determine up- or down-regulated genes, t-test p-value < 0.05 was tested. Generation of gene lists, clustering of genes, determining genes with similar expression patterns, and analysis of variance (1-way ANOVA) functions were also used.
 - Gene ontology (GO) functions were identified based on the categories of Biological Process, Cellular Component, and Molecular Function. Real-time PCR will be employed to verify observations of transcriptional profiling.
- 10. Identification of Web-based Databases
 - Munich Information Center for Protein Sequences (http://mips.gsf.de/)
 - Genome Analysis of the Plant Biological System (GABI) (http://www.gabi.de/)
 - RIKEN Arabidopsis and Genome Encyclopedia (http://rarge.gsc.riken.go.jp/db_home.pl)
 - GCG SeqWeb (http://uhunix2.its.hawaii.edu:8080/gcg-bin/seqweb.cgi)

- Salk Institute Genomic Analysis Laboratory (http://signal.salk.edu/cgibin/tdnaexpress)
- The Institute for Genomic Research (http://www.tigr.org/)
- Kyoto Encyclopedia KEGG Pathways (ftp://ftp.genome.ad.jp/pub/kegg/pathways/)
- 11. Quantitative Real Time PCR Assays
 - QRT-PCR assays involved primer design, cDNA synthesis, preparation of dilution series for standard curves and use of controls

1.3 RESEARCH OBJECTIVES

1.3.1 Transcriptional Profiling Investigations in Transfected Nicotiana benthamiana

Research Objective 1	Establish a microarray system to study transfected Nicotiana benthamiana
Hypothesis 1	Nucleotide sequence homology among solanaceous plants provides a platform to extract gene expression data for <i>Nicotiana</i> <i>benthamiana</i>


1.3.1.1 Nicotiana benthamiana as a model system

Tobamovirus vectors are widely utilized to study phenomena in *Nicotiana benthamiana*. We have established a multinational research community of academic, government, and industry laboratories that utilizes this plant to study gene expression systems, virus-induced gene silencing, post-transcriptional gene silencing (PTGS) and its suppression, plant pathogens and plant defense. This plant offers important advantages for basic research in genetics and molecular biology. A member of the *Solanaceae* family, *N. benthamiana* is a relative of tobacco that possesses a small genome with only 38 chromosomes, and a rapid life cycle, making it an ideal candidate for advancing our knowledge in the areas of genomics and bioinformatics.

Although *N. benthamiana* has served as a model organism for gene silencing studies, there is limited information relating to its genome. However, numerous sequences for this plant have recently been deposited into the NCBI public database, and as of this writing, The Institute of Genomic Research (TIGR) has generated 18,822 ESTs from a normalized, full-length-enriched cDNA library constructed from *N. benthamiana* mixed tissue (heat and cold treated leaves, pathogen challenged leaves, healthy roots and callus). All publicly available *N. benthamiana* ESTs, as well as *N. benthamiana* transcripts from GenBank have been assembled into contigs and entered into the *N. benthamiana* Gene Index (NbGI) (http://www.tigr.org/tdb/tgi/plant.shtml). In addition to these databases, cDNA sequences encoding the carotenoid biosynthesis enzymes, phytoene synthase (*psy*) and phytoene desaturase (*pds*) are found in published patents (Fitzmaurice *et al.*, 1996; Kumagai *et al.*, 2004; Kumagai *et al.*, 1999).

1.3.1.2 Use of heterologous cDNA Microarrays

In order to study global gene expression patterns in transfected *N. benthamiana*, hybridizations to glass microarrays was first tested. Affymetrix GeneChips[®] were not commercially available for this plant, and creating custom arrays was cost prohibitive. Spotting our own slides is a possibility at some point, because we have two *N. benthamiana* libraries, leaf and root, constructed by visiting scientist, Dr. Ling Hong. The feasibility of using a heterologous 10K cDNA potato microarray developed by the Institute for Genomic Research (TIGR) was studied. Can reliable signal data be obtained if a heterologous cDNA microarray hybridization is employed? Can the effects of the tobamoviral vector be subtracted away from the effects of the construct in question? To determine hybridization conditions, *N. benthamiana* plants were inoculated with *tobamoviral* vectors that will perturb the carotenoid biosynthesis pathway (Figure 1.2).

Ribozymes streamline the process

Figure 1.2. *Tobacco mosaic virus* vector with *CrtB* gene and ribozyme. Phenotype due to *CrtB* overexpression, 10 dpi.

As part of a National Science Foundation (NSF)-funded consortium, the Institute for Genomic Research (TIGR) has developed 10K cDNA microarrays for studying solanaceous plants. To select the elements arrayed on the NSF Potato Microarray, TIGR has constructed a set of non-redundant cDNA clones from the StGI. The GenePix Array List (GAL) files for potato 10,000 cDNA clone array (versions 1-3) are available for downloading, and the microarrays are available for distribution to the public research community on a cost-recovery basis. Clones on the array are amplified PCR products derived from various potato tissues. Elements on the microarray include cDNAs derived from healthy potato stolon, root, microtuber, dormant tuber, germinating eye, leaves, shoots, as well as *Phytophthora infestans*-challenged libraries (incompatible and compatible). Ten thousand clones on the microarray (http://www.tigr.org) have been sequenced and validated at TIGR. The control clones include potato cDNA, tomato

24

cDNA, and human spiking control clones, including genes involved in housekeeping functions, photosynthesis, and defense responses. There are also a few clones from the fungal pathogen *P. infestans*, as controls for pathogen infection. Through differential hybridization, studies using cDNA microarrays enable analysis of expression levels of large numbers of genes, providing insight into the manner in which genes are coordinately regulated.

In a review of gene expression analysis by transcript profiling, Donson *et al.* report on several groups that have performed analyses on cross hybridization to heterologous cDNAs in plant systems. Girke *et al.* hybridized arrays in a series of experiments with probes derived from seeds, leaves, and roots of *Arabidopsis*. They examined three different forms of an *FAD2* gene from *Arabidopsis* that was identical in length and GC content, but had nucleotide similarities of 100%, 90%, and 80%. No detectable hybridization occurred for the 80% fragment. In addition, four ferredoxin and three acyl-ACP-desaturase sequences showed cross hybridization between 60-70%. They concluded that cross-hybridization was estimated to occur if closely related genes have 70% to 80% sequence identity, and suggest that *Arabidopsis* arrays would be useful to hybridization studies for other genera such as *Brassica* (Girke *et al.*, 2000).

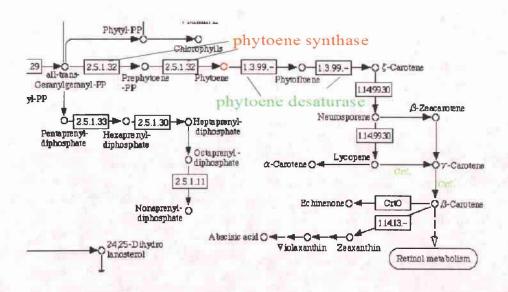
The issue of cross-hybridization existed for the studies presented in the following chapters because sequences from a variety of species converged *in vivo* as well as *in vitro*. Cross-hybridization is actually a double-edged sword. While the desired outcome is hybridization of *N. benthamiana* to the potato clones, it will be necessary to analyze

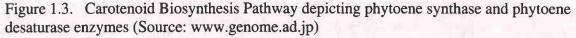
whether the viral vector inserts, in addition to endogenous transcripts, will also cross hybridize and cause a spurious elevation in the microarray analyses. The issue will be addressed by comparing sequences of potato, tomato, *Erwinia* and *N. benthamiana* for the carotenoid study, and potato, *Arabidopsis* and *N. benthamiana* for the ARF study. In addition to analyzing the level of homology, primer sequences for QRT-PCR will be designed, compared in all subject species, and selected for optimum results. QRT-PCR will be used as a method to discern hybridization of viral vector from that of endogenous plant genes.

1.3.1.3 Identification of Appropriate Controls

Because plant viruses will be utilized to introduce genes into *N. benthamiana*, it is important to understand the effects of viruses themselves on gene expression and to able to subtract out or at least recognize the effects of the viruses. One study has been conducted to investigate the effects of viruses on plant gene expression. Using microarray hybridization, Whitham *et al.* demonstrated in a time-course analysis that diverse plant viruses induced common sets of host genes in *Arabidopsis*, and found that *tobamoviruses* specifically and rapidly induce genes encoding heat shock and defense-associated proteins (Whitham *et al.*, 2003).

For the following microarray studies involving transfected plants, several options were considered regarding selection of appropriate controls: 1) plants transfected with an "empty" vector; 2) wild type non-infected plants; and 3) plants transfected with green fluorescent protein (GFP). Previous studies have demonstrated that transfection with an "empty vector", or viral vector with no insert, causes a more virulent phenotype compared to a vector carrying an inserted sequence. The 5' leader sequence (Ω) and the 3' pseudoknot of the viral genome interact to regulate and enhance translation. Insertion of a sequence between the movement and coat proteins causes a physical separation of these regions, resulting in decreased symptom production by the plant. Therefore, an "empty vector" control was not adopted and wild type uninfected plants were selected for initial studies.


Microarray analysis of initial transfection experiments using wild type uninfected plants as controls showed an increase in heat shock proteins, consistent with Whitham's data (Whitham *et al.*, 2003). Therefore, a virus-infected plant expressing green fluorescent protein (GFP) was selected as a control in an attempt to understand the specific impact of the *crtB*, *pds* and *ARF1* insert sequences in the treatment groups, and to eliminate or minimize changes in gene expression that occur because of virus infection. If both plants have changes in gene expression due to the virus, the viral effects will be subtracted out because microarray data is expressed as a ratio of the experimental and control groups. An assumption was made that GFP expression does not interfere with endogenous gene expression.


1.3.2 Case Study of a Metabolic Pathway: Carotenoid Biosynthesis

Research Objective 2	To investigate the effects of <i>tobamoviral</i> transfection on transcript abundance of carotenogenic genes in <i>N. benthamiana</i>	
Hypothesis 2	Viral vector transfection will cause perturbations in the pathway, demonstrating their utility for metabolic engineering studies	

1.3.2.1 Metabolic Engineering of Carotenogenesis

Carotenoid biosynthesis is a metabolic pathway (Figure 1.3) that has been extensively studied in the *Solanaceae* due to the high economic and nutritional value of carotenoids and because of the potential to identify enzymes in the pathway as herbicide targets. Carotenoids, both carotenes and xanthophylls (Busch *et al.*, 2002), protect the plant from excessive light energy and participate in light harvesting in the photosynthetic membranes.

Carotenoids are built from a 5-carbon compound isopentenyl diphosphate (IPP),

via the 1-deoxy-D-xylulose-5-phophate (DOXP) pathway or non-mevalonate pathway

(Bramley, 2002;Hirschberg, 2001). Table 1.1 shows the major enzymes of the pathway and the products resulting from their action on substrates. Isomerization of IPP to dimethylallyl diphosphate (DMAPP) is catalyzed by IPP isomerase. DMAPP is the activated substrate for the formation of geranylgeranylpyrophosphate (GGPP). Two molecules of GGPP condense to form 15-*cis* phytoene in a reaction catalyzed by phytoene synthase (*psy*). Phytoene desaturase (*pds*) and ζ -carotene desaturase (*zds*) are involved in subsequent desaturation reactions to form lycopene. Lycopene cyclase is involved in the cyclization of lycopene, leading to the formation of β -carotene, α carotene and ε -carotene. β -carotene hydroxylase catalyzes the formation of

CAROTENOGENIC ENZYME	PRODUCT/SUBSTRATE
IPP Isomerase	DMAPP
GGPP Synthase	GGPP
Phytoene Synthase	Phytoene
Phytoene Desaturase	ζ-carotene
ζ-carotene desaturase	Lycopene
Lycopene cyclase	β-carotene
β-carotene hydoxylase	xanthophylls
9-cis-epoxycarotenoid dioxygenase (NCED)	Abscisic acid (ABA)

Table 1.1. Major enzymes of the carotenoid biosynthesis pathway.

xanthophylls, which are formed by the oxygenation of carotenes by the addition of hydroxyl, epoxy, or keto groups to β -carotene. NCED catalyzes the cleavage of 9-*cis* epoxycarotenoids, a key regulatory step in the abscisic acid (ABA) biosynthesis pathway

of higher plants. ABA plays a major role in the adaptation of plants to environmental stress, plant growth and development (Han *et al.*, 2004), and it is increased in response to attack by a variety of pathogens.

Metabolic engineering of carotenoid biosynthesis has been pursued in a variety of organisms for industrial, nutritional, and biomedical applications (Lee and Schmidt-Dannert, 2002;Rohlin *et al.*, 2001;Sandmann, 2001). Numerous genes in the pathway have been cloned from a variety of microorganisms and plants, and their functions identified. With the goals of increasing carotenoid content and creating novel compounds, investigations have focused on carotenoid production in transgenic microorganisms and plants, and have consequently shed light upon the regulatory mechanisms influencing the pathway .

In higher plants, genes encoding carotenogenic enzymes have been cloned from flowers, fruits, and leaves. For example, cDNAs involved in carotenogenesis in flowers that have been cloned from the medicinal plant, *Gentiana lutea*, include geranylgeranylpyrophosphate (GGPP) synthase, phytoene synthase (*psy*), phytoene desaturase (*pds*), and ζ -carotene desaturase (*zds*), and their functions were established by heterologous complementation in *E. coli* (Zhu *et al.*, 2002;Zhu *et al.*, 2003). Two genes encoding phytoene synthase were cloned from tomato, *psy1* which is active in fruit and *psy2* which is active in leaf tissue (Bartley and Scolnik, 1993). In microorganisms, the *crt* gene clusters that direct the biosynthesis of carotenoids such as lycopene, beta-carotene and astaxanthin have been isolated from carotenogenic bacteria such as *Erwinia* species and the marine bacterium *Agrobacterium aurantiacum*. Recombinant strains of noncarotenogenic bacteria such as *E. coli* and *Zymomonas mobilis* can also express *crt* genes and accumulate carotenoids (Misawa and Shimada, *J Biotech*, 1997). Genetic modification of the astaxanthin pathway has been studied in non-carotenogenic yeast, *Xanthophyllomyces dendrorhous* (Visser et al, FEMS Yeast Research, 2003; Verdoes *et al*, *Appl Environ Microbiol*, 2003) in an attempt to increase production of astaxanthin for use as a nutraceutical for the food and feed industries. The non-carotenogenic yeast strains, *Candida utilis* (Shimada *et al*, *J Biotech*, 1998) and *Saccharomyces cerevisiae* (Yamano *et al*, Biosci Biotechnol Biochem, 1994) have been shown to accumulate carotenoids if genes are placed under the control of yeast-derived promoters and terminators.

Several studies have been published that demonstrate that carotenoid accumulation can be modified through genetic manipulation in tomato. Metabolic engineering in tomato leads to an increase of beta-carotene and lycopene content in ripening fruit (Dharmapuri *et al.*, 2002;Rosati *et al.*, 2000). Fruit-specific expression in transgenic tomato plants engineered with an additional phytoene synthase causes an increase in total fruit carotenoids (Fraser *et al.*, 2002). In other studies, novel and nonnative carotenoid pigments have been produced in *Nicotiana* species, demonstrating the potential for altering pigmentation of fruits and flowers of horticultural and floricultural importance. Astaxanthin has been produced in transgenic tobacco (Mann *et al.*, 2000).

31

Metabolic engineering of the carotenoid pathway has also been demonstrated in *Nicotiana benthamiana* using tobamoviral vectors. Capsanthin, a non-native chromoplast-specific xanthophyll, was produced by transfecting plants with viral vectors engineered to express capsanthin-capsorubin synthase, and shown to be functionally integrated into the chloroplast membranes (Kumagai *et al.*, 1998). By introducing genes derived from *Narcissus pseudonarcissus* and *Erwinia uredovora*, a carotenogenic pathway was engineered into rice endosperm tissue that is completely devoid of carotenoids. Beyer *et al* produced a high beta-carotene 'golden rice' grain with the hope of providing an improved human nutritional benefit and to address vitamin A deficiencies (Beyer *et al.*, 2002).

My preliminary work using microarrays to investigate carotenoid biosynthesis is included in Chapter 2. In transfected plants, phytoene accumulates due to overexpression of *crtB*, a bacterial gene encoding phytoene synthase, or due to the knock-down of phytoene desaturase. Using potato cDNA potato microarrays for hybridization, transcriptional profiling of these plants at a single time point revealed an unexpected upregulation of endogenous phytoene synthase. It suggested a possible role for phytoene as a positive feedback mechanism. It also indicated that the heterologous system could provide useful information for functional genomic studies. An additional benefit to these hybridization studies is the insight provided into the genetics of *N. benthamiana*. Because the genomes are highly similar with respect to gene content and genome organization, the potato microarray could used to leverage a significant amount of information about its solanaceous relative. A more comprehensive analysis of the carotenoid pathway is presented in Chapter 3, including an examination of all carotenoid genes that were available for study on the microarray, followed by relative quantitation using real-time PCR.

1.3.3 Case Study of a Signaling Pathway Involving a Multigene Family: ADP Ribosylation Factor-1 (ARF-1)

Research Objective 3	To conduct a time-course analysis of $ARF-1_{as}$ -transfected N. benthamiana using transcriptional profiling technologies
Hypothesis 3	A subset of genes relating to G-protein signaling can be filtered from the microarray data for further characterization by analyzing gene expression patterns across the time course

1.3.3.1 ARF Gene Function and Regulation

In 1999, the original patent on cytoplasmic inhibition of endogenous plant gene expression by viral RNA was issued (Kumagai, 1999). This patent describes the use of plant viruses to introduce and study the effects of an antisense construct on endogenous plant gene expression. It demonstrated that an episomal RNA viral vector can be used to deliberately manipulate a major, eukaryotic biosynthetic pathway. Subsequently, Baulcombe coined the phrase "virus-induced gene silencing" or VIGS, to describe this phenomenon (Baulcombe, 1999).

Kumagai *et al.* secured another patent that describes how plant viral vectors can be used to conduct a functional genomic screen using genes encoding GTP-binding proteins. This particular invention exemplified that genes encoding GTP binding proteins in one plant can silence endogenous gene expression in an unrelated plant. It was demonstrated that antisense constructs of ADP-ribosylation factors (ARFs) derived from *Arabidopsis thaliana* caused severe stunting in *N. benthamiana* when introduced using TMV vectors (Kumagai, 2002b).

ARFs are a multigene family of GTP-binding proteins belonging to the Ras superfamily, which is comprised of over 100 small G proteins identified in eukaryotes, from yeast to humans. There are five families in this superfamily, based on structural classification, that include ARF, (intracellular vesicle trafficking); Ran (nucleocytoplasmic transport); Ras (regulation of gene expression); Rho (cytoskeletal organization/gene expression); Rac (Pathogen Defense); and Rab (intracellular vesicle trafficking).

ARFs are monomeric, ranging in size from 20-40 kDa. They share similarity with the alpha subunit of heterotrimeric G proteins, but unlike these proteins, they require a GTPase-activating protein (GAP) to accelerate their intrinsic GTPase activity. They are present in all eukaryotes examined to date (Randazzo *et al.*, 2000), and are best described for their role in membrane traffic (protein secretion, cell migration, and signal transduction) and intracellular signaling systems.

ARFs are highly conserved at the nucleotide and amino acid levels, and in addition to ARFs, other family members include the ARF-like ARLs and the SARs (secretion-associated and RAS-related), which are associated with COPII vesicle transport from the endoplasmic reticulum to form the cis-face of the Golgi apparatus. They have been cloned from a number of species and have been highly studied in mammals and in yeast, and functional conservation of ARF has been demonstrated between yeast and humans (Kahn *et al.*, 1991). An interspecies comparison of ARFs demonstrated an evolutionary conservation of nucleotide sequences of both the untranslated as well as the coding regions. Indeed, an unusually high degree of conservation exhibited by the untranslated regions implicates these proteins to possess a regulatory role (Price *et al.*, 1996). Less is known about the function of ARF in plants, although its role in the secretory pathway has been well described.

In cases of heterotrimeric G proteins, knock-out of the alpha subunit causes dwarfing in rice, and interest in the regulatory aspects in plants has been generated because semi-dwarfs produce high levels of heterologous proteins (Sasaki *et al.*, 2002). ARFs are allosteric activators of the NAD:arginine ADP-ribosyltransferase activity of cholera toxin. Cholera toxins, like many bacterial toxins, are ADP ribosyltransferase enzymes that commonly use GTP binding proteins as substrates. The ADP ribosyltransferase, which transfers the ADP-ribose moiety of NAD to a target protein with the release of nicotinamide.

In humans, ARF acts as a tumor suppressor; it is a positive regulator of p53, the gene most often disrupted in cancers. ARF1 is also a target of the Myc transcription factor, promoting malignant transformation. A number of cancer labs in the United States—National Cancer Institute in Bethesda; Emory University in Atlanta; Sloan-Kettering Cancer Center in New York; and University of Bristol in the United

36

Kingdom—study ARFs. Paul Randazzo at Lab of Cellular Oncology at the NCI, NIH is particularly interested in its regulation and has found that ARFs regulate membrane traffic at multiple sites and may serve as a point of integration (Randazzo *et al.*, 1992).

ARF function requires the regulated shuttling between a GTP-bound state active state and a GDP-bound inactive state. The GDP/GTP cycle of ARF is regulated by GTP exchange factors (GEFs). GTP-activating proteins (GAPs) activate GTPase activity of ARFs. Due to myristoylation at the amino terminus, ARF GTPases exhibit weak association with membranes. Much of the research into ARF GTPase function has focused upon their roles in coat

protein recruitment during vesicle formation (Szafer *et al.*, 2001). Although the molecular machinery of membrane traffic has been identified (Figure 1.4) regulatory mechanisms are not understood.

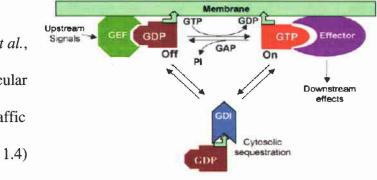


Figure 1.4. Conformational changes in the GDP/GTP cycle of GTP-binding proteins

ARFs play a significant role in the secretion of proteins. Protein sorting by the secretory pathway is in many cases dependent upon the budding of coated vesicles from the Golgi apparatus, which then fuse with their target membranes. In the secretory pathway, this could be the plasma membrane, the storage vacuole or the endoplasmic

reticulum. In the standard model for coat assembly, upon activation and nucleotide exchange, myristoylated ARF-GTPs bind to receptors on the Golgi membrane. They facilitate the formation of transport vesicles by recruiting clathrin and non-clathrin coatomer coats through a direct binding interaction to form coat protomer (COPI). At this point, protein cargo is captured and the coat self-assembles, polymerizes, and leads to deformation of the membrane. This forms a bud that pinches off and moves to some target.

Repression of ARF-1 in transgenic potato has been shown to cause 14-3-3 gene activation (Zuk *et al.*, 2003), that encode signaling proteins that are critical players in cell division, apoptosis, and cell cycle regulation. Plant 14-3-3 proteins are phosphoserine-binding proteins (29-33 kDa), the majority of which in animal cells target proteins involved in signal transduction and transcription. In plants, 14-3-3 proteins play a role in the regulation of the plasma membrane H(+)-ATPase and enzymes of carbon and nitrogen metabolism, as well as in plant development and stress responses (Roberts, 2003).

Chapter 4 of this dissertation summarizes investigations of the ARF multigene family. The ARF-1 that was used in this study was originally identified in a screen that was developed to examine nucleotide sequences in transfected plants by systemically knocking down endogenous gene expression using an antisense mechanism (Kumagai, 2002b). In this case, sequences from *Arabidopsis thaliana*, a plant with a wellcharacterized genome, were introduced to *N. benthamiana*, a plant that has yet to be characterized, using tobamoviral vectors. Subsequent sequencing of the cDNA clone that caused severe stunting in plants revealed ARF-1 (Kumagai *et al.*, 2002). To build upon these findings, a time-course transcriptional profiling analysis of an ARF-1 knock-down was conducted in order to associate phenotype with gene function. Gene expression analysis focused on the identification and characterization of genes involved in the G-signaling pathway.

1.4 REFERENCES

Agrawal, N., Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar, R. K. and Mukherjee, S. K. (2003) RNA interference: biology, mechanism, and applications, *Microbiol Mol Biol Rev* 67(4): 657-85.

Aharoni, A., Keizer, L. C., Bouwmeester, H. J., Sun, Z., Alvarez-Huerta, M.,
Verhoeven, H. A., Blaas, J., van Houwelingen, A. M., De Vos, R. C., van der Voet,
H., Jansen, R. C., Guis, M., Mol, J., Davis, R. W., Schena, M., van Tunen, A. J. and
O'Connell, A. P. (2000) Identification of the SAAT gene involved in strawberry flavor
biogenesis by use of DNA microarrays, *Plant Cell* 12(5): 647-62.

Bartley, G. E. and Scolnik, P. A. (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase, *J Biol Chem* 268(34): 25718-21.

Baulcombe, D. C. (1999) Fast forward genetics based on virus-induced gene silencing, *Curr Opin Plant Biol* 2(2): 109-13.

Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R. and Potrykus, I.
(2002) Golden Rice: Introducing the beta-carotene biosynthesis pathway into rice
endosperm by genetic engineering to defeat vitamin A deficiency, *J Nutr* 132(3): 506S-510S.

Boonham, N., Walsh, K., Smith, P., Madagan, K., Graham, I. and Barker, I. (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis, *J Virol Methods* 108(2): 181-7.

Bramley, P. M. (2002) Regulation of carotenoid formation during tomato fruit ripening and development, *J Exp Bot* 53(377): 2107-13.

Burch-Smith, T. M., Anderson, J. C., Martin, G. B. and Dinesh-Kumar, S. P. (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants, *Plant J* 39(5): 734-46.

Bystricka, D., Lenz, O., Mraz, I., Dedic, P. and Sip, M. (2003) DNA microarray: parallel detection of potato viruses, *Acta Virol* 47(1): 41-4.

Darnet, S. and Rahier, A. (2004) Plant sterol biosynthesis: identification of two distinct families of sterol 4-alpha-methyl oxidases, *Biochem J* 378(Pt 3): 889-98.

Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B. and Giuliano, G. (2002) Metabolic engineering of xanthophyll content in tomato fruits, *FEBS Lett* 519(1-3): 30-4.

Fagard, M. and Vaucheret, H. (2000) Systemic silencing signal(s), *Plant Mol Biol* 43(2-3): 285-93.

Fitzmaurice W. P., Hellmann G. M., Grill L. K., Kumagai M. H., della-Cioppa, G.
R. (1996) DNA sequences encoding enzymes useful in carotenoid biosynthesis, USPTO
Vol. 5,539,093, United States: Large Scale Biology Corporation (Vacaville, CA).

Fraser, P. D., Romer, S., Shipton, C. A., Mills, P. B., Kiano, J. W., Misawa, N., Drake, R. G., Schuch, W. and Bramley, P. M. (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner, *Proc Natl Acad Sci U S A* 99(2): 1092-7.

Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. (2000) Microarray analysis of developing Arabidopsis seeds, *Plant Physiol* 124(4): 1570-81.

Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar,
E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E.,
Lewinsohn, E., Zamir, D., Vainstein, A. and Weiss, D. (2002) Rose scent: genomics
approach to discovering novel floral fragrance-related genes, *Plant Cell* 14(10): 2325-38.

Han, S. Y., Kitahata, N., Sekimata, K., Saito, T., Kobayashi, M., Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshida, S. and Asami, T. (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants, *Plant Physiol* 135(3): 1574-82.

Hirschberg, J. (2001) Carotenoid biosynthesis in flowering plants, *Curr Opin Plant Biol* 4(3): 210-8.

Jones, L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J. and Baulcombe, D. C. (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing, *Plant Cell* 11(12): 2291-301.

Kahn, R. A., Kern, F. G., Clark, J., Gelmann, E. P. and Rulka, C. (1991) Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins, *J Biol Chem* 266(4): 2606-14.

Kubota, K., Tsuda, S., Tamai, A. and Meshi, T. (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing, *J Virol* 77(20): 11016-26.

Kumagai, M. H., della-Cioppa G. R., Donson J., Harvey D. A., Grill L. K. (1999) Cytoplasmic inhibition of gene expression *USPTO* patent #5,922,602, United States: Large Scale Biology Corporation (Vacaville, CA). Kumagai M. H., della-Cioppa G. R., Donson J., Harvey D. A., Grill L. K. (2004) Cytoplasmic inhibition of gene expression, *USPTO* patent #6,720,183, United States: Large Scale Biology Corporation (Vacaville, CA).

Kumagai, M. H., della-Cioppa, G. R., Erwin, R., McGee, D. R. (2002) Method of compiling a functional gene profile in a plant by transfecting a nucleic acid sequence of a donor plant into a different host plant in an anti-sense orientation, *USPTO* patent #6,426,185, United States: Large Scale Biology Corporation (Vacaville, CA).

Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K. and Grill, L.
K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, *Proc Natl Acad Sci U S A* 92(5): 1679-83.

Kumagai, M. H., Keller, Y., Bouvier, F., Clary, D. and Camara, B. (1998) Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in *Nicotiana benthamiana*, *Plant J* 14(3): 305-15.

Lee, G. P., Min, B. E., Kim, C. S., Choi, S. H., Harn, C. H., Kim, S. U. and Ryu, K.
H. (2003) Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses, *J Virol Methods* 110(1): 19-24.

Lee, P. C. and Schmidt-Dannert, C. (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms, *Appl Microbiol Biotechnol* 60(1-2): 1-11.

Liu, Y., Schiff, M., Marathe, R. and Dinesh-Kumar, S. P. (2002a) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for *N*-mediated resistance to tobacco mosaic virus, *Plant J* 30(4): 415-29.

Liu, Y., Schiff, M., Serino, G., Deng, X. W. and Dinesh-Kumar, S. P. (2002b) Role of SCF ubiquitin-ligase and the COP9 signalosome in the *N* gene-mediated resistance response to Tobacco mosaic virus, *Plant Cell* 14(7): 1483-96.

Llave, C., Kasschau, K. D. and Carrington, J. C. (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway, *Proc Natl Acad Sci U S A* 97(24): 13401-6.

Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I. and Baulcombe, D. C. (2003) Virus-induced gene silencing in plants, *Methods* 30(4): 296-303.

Mann, V., Harker, M., Pecker, I. and Hirschberg, J. (2000) Metabolic engineering of astaxanthin production in tobacco flowers, *Nat Biotechnol* 18(8): 888-92.

Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J. and Vance, V. B. (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing, *Plant Mol Biol* 43(2-3): 295-306.

Mitchell, R., Chiang, C. Y., Berry, C. and Bushman, F. (2003) Global analysis of cellular transcription following infection with an HIV-based vector, *Mol Ther* 8(4): 674-87.

Price, S. R., Nightingale, M. S., Tsuchiya, M., Moss, J. and Vaughan, M. (1996) Interspecies relationships among ADP-ribosylation factors (ARFs): evidence of evolutionary pressure to maintain individual identities, *Mol Cell Biochem* 159(1): 15-23.

Randazzo, P. A., Nie, Z., Miura, K. and Hsu, V. W. (2000) Molecular aspects of the cellular activities of ADP-ribosylation factors, *Sci STKE* 2000(59): RE1.

Randazzo, P. A., Northup, J. K. and Kahn, R. A. (1992) Regulatory GTP-binding proteins (ADP-ribosylation factor, Gt, and RAS) are not activated directly by nucleoside diphosphate kinase, *J Biol Chem* 267(25): 18182-9.

Roberts, M. R. (2003) 14-3-3 Proteins find new partners in plant cell signalling, *Trends Plant Sci* 8(5): 218-23. Robertson, D. (2004) VIGS vectors for gene silencing: Many Targets, Many Tools, Annu Rev Plant Biol 55: 495-519.

Rohlin, L., Oh, M. K. and Liao, J. C. (2001) Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design, *Curr Opin Microbiol* 4(3): 330-5.

Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B. and Giuliano, G. (2000) Metabolic engineering of betacarotene and lycopene content in tomato fruit, *Plant J* 24(3): 413-9.

Saedler, R. and Baldwin, I. T. (2004) Virus-induced gene silencing of jasmonateinduced direct defences, nicotine and trypsin proteinase-inhibitors in *Nicotiana attenuata*, *J Exp Bot* 55(395): 151-7.

Sandmann, G. (2001) Carotenoid biosynthesis and biotechnological application, *Arch Biochem Biophys* 385(1): 4-12.

Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G. S., Kitano, H. and Matsuoka, M. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice, *Nature* 416(6882): 701-2. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson,
I. W., Somerville, S. C. and Maclean, D. J. (2003) Systemic Gene Expression in
Arabidopsis during an Incompatible Interaction with *Alternaria brassicicola*, *Plant Physiol* 132(2): 999-1010.

Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S.
C. and Manners, J. M. (2000) Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis, *Proc Natl Acad Sci U S A* 97(21): 11655-60.

Susi, P., Hohkuri, M., Wahlroos, T. and Kilby, N. J. (2004) Characteristics of RNA silencing in plants: similarities and differences across kingdoms, *Plant Mol Biol* 54(2): 157-74.

Szafer, E., Rotman, M. and Cassel, D. (2001) Regulation of GTP hydrolysis on ADPribosylation factor-1 at the Golgi membrane, *J Biol Chem* 276(51): 47834-9.

Voinnet, O., Pinto, Y. M. and Baulcombe, D. C. (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants, *Proc Natl Acad Sci U S A* 96(24): 14147-52.

Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible *Arabidopsis thaliana* plants, *Plant J* 33(2): 271-83.

Zhu, C., Yamamura, S., Koiwa, H., Nishihara, M. and Sandmann, G. (2002) cDNA cloning and expression of carotenogenic genes during flower development in *Gentiana lutea*, *Plant Mol Biol* 48(3): 277-85.

Zhu, C., Yamamura, S., Nishihara, M., Koiwa, H. and Sandmann, G. (2003) cDNAs for the synthesis of cyclic carotenoids in petals of *Gentiana lutea* and their regulation during flower development, *Biochim Biophys Acta* 1625(3): 305-8.

Zuk, M., Prescha, A., Kepczynski, J. and Szopa, J. (2003) ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers, *J Agric Food Chem* 51(1): 288-94.

CHAPTER 2. PRODUCTION OF RABBIT NP1 DEFENSIN IN TRANSFECTED PLANTS BY AN RNA VIRAL VECTOR USING AN ORANGE VISIBLE MARKER

Kumagai $MH^{1,2,*}$, Busto JL^3 , Donson J^2 , della-Cioppa $G^{2,4}$, Selsted M^5 , Bouvier F^6 , and Camara B^6 .

¹Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Agricultural Science 218, Honolulu, HI 96822; ²Large Scale Biology, Inc., 3333 Vaca Valley Parkway, Vacaville, CA 95688; ³Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822; ⁴Predictive Diagnostics, Inc., 3333 Vaca Valley Parkway, Vacaville, CA 95688; ⁵Departments of Pathology and Microbiology & Molecular Genetics, University of California College of Medicine, Irvine, CA 92697-4800; ⁶Institut de Biologie Moleculaire des Plantes du Centre National de la Recherche Scientifique and Universite Louis Pasteur, 12 rue du General Zimmer, 67084 Strasbourg, France.

*For correspondence (tel: 808 956-7354; FAX: 808 956-3542); e-mail:monto@hawaii.edu)

FOREWORD

This manuscript was submitted for publication to *The Plant Journal* in November 2004. Bibliographic citations have been modified to conform to the style of the dissertation. The contributions that I made to this work include the construction of a tobacco mosaic viral vector construct that contained the phytoene synthase (*crtB*) gene derived from *Erwinia herbicola* together with a ribozyme, and the subsequent microarray investigation of the overexpression effects of *crtB* on the carotenoid biosynthesis pathway in *Nicotiana benthamiana*. Phenotypically, this correlated with a plant that exhibits a bright yellow color change in the leaves and flowers.

Because an appropriate microarray was not commercially available, it was necessary to investigate a system that would be instrumental in understanding the gene expression profile. Additional requirements included the development of an experimental design with appropriate controls; establishing effective hybridization and scanning protocols; and selection and mastery of data analysis software. Potato microarrays developed at The Institute of Genomic Research (TIGR) enabled me to determine the utility of a heterologous system to acquire data, and to study the gene expression changes in the carotenoid pathway. In effect, RNA derived from *Nicotiana benthamiana* plants treated with TMV-*ctrB* was hybridized to potato cDNA microarrays, followed by an analysis using GeneSpring (Agilent, formerly Silicon Genetics). The high degree of homology that exists among solanaceous plant species sufficiently enabled the cDNA hybridization of *N. benthamiana* to *Solanum tuberosum*. In the initial hybridizations, endogenous phytoene synthase and phytoene desaturase were tracked for changes in gene expression at ten days post-inoculation (dpi), using GFP-transfected plants as controls. These early investigations also provided insight into the genome of *N*. *benthamiana*, which has yet to be fully sequenced.

2.1 ABSTRACT

We have developed a visible marker to study plant viruses and to produce heterologous proteins. A cDNA encoding a fusion of a chloroplast transit peptide and *Erwinia herbicola* phytoene synthase was placed under the transcriptional control of a tobamovirus subgenomic promoter. One week after inoculation, systemically infected Nicotiana benthamiana plants were analyzed for enzyme activity. Leaves from transfected plants expressing phytoene synthase in the chloroplast developed a bright orange phenotype. This visible marker can be used to monitor gene activity, viral replication, and movement. Analysis of the carotenoid content indicated that there was an accumulation (up to 3-fold) of β -carotene, lutein, phytoene, and phytofluene. Transcriptional profiling revealed that the expression of endogenous phytoene synthase and phytoene desaturase was triggered under these conditions. Phytoene synthase can tolerate C-terminal fusions. Systemically infected tissue containing a chimeric gene encoding phytoene synthase and an antimicrobial peptide (defensin) developed an orange phenotype and the hybrid protein cross-reacted to anti-phytoene synthase and antidefensin antibodies. This system may be used to target biologically active peptides to the plant chloroplasts.

53

2.2 INTRODUCTION

In leaves the chloroplast membranes have almost exclusively the same carotenoid composition and maintain a specific carotenoid to chlorophyll or protein ratio. Imbalance between the different pigment components induces compensatory adjustment as shown in lutein-deficient mutants of *Arabidopsis* (Pogson et al., 1996) and in xanthophyll epoxide deficient mutants of *Nicotiana plumbaginifolia* (Marin et al., 1996) where the zeaxanthin content is increased to compensate the deficiency. The same trend has been observed in tobacco (Misawa et al., 1994) and tomato (Romer et al., 2000) leaves, following the introduction of the bacterial phytoene desaturase *crt1* gene under the control of the constitutive CaMV 35S promoter.

The molecular basis underlying this tight control of leaf carotenogenesis is unknown and contrasts markedly with that operating in sink tissue such as tubers, flowers, fruits and seeds. Data gained from these non-photosynthetic tissues, reveals that phytoene synthase which dimerizes two geranylgeranyl backbones to phytoene (Dogbo et al., 1988), plays a prominent role in increasing the basal levels of carotenoids. For instance, expression of bacterial phytoene synthase gene resulted in a 50-fold and a 43-fold increase of the carotenoid content in the seeds of canola (Shewmaker et al., 1999) and *Arabidopsis* (Lindgren et al., 2003), respectively. These data contrast with those reported for the expression of an additional phytoene synthase gene in tomato (Fray et al., 1995) and tobacco leaves (Busch et al., 2002) indicating a modest accumulation of lycopene paralleled by a marked dwarfism of the plants. To further explore the regulatory and phenotypic effects of increasing phytoene synthase in leaves, we used an RNA-based viral vector system (Kumagai et al., 1995) (Kumagai et al., 1998) to manipulate carotenoid biosynthesis in the chloroplast and to study its potential as a new visible marker in various solanaceous species. In our experiments, a bacterial phytoene synthase gene from *Erwinia herbicola* (Armstrong et al., 1990) was used to avoid endogenous gene silencing (Kumagai et al., 1995). Here we report the boosting effect of overexpressing phytoene synthase and display the associated transcriptional profiling. Furthermore, based on the color phenotype and the flexibility of phytoene synthase to tolerate C-terminal fusions, we demonstrate the potential use of this system to overexpress antimicrobial peptides.

2.3 RESULTS

2.3.1 Expression of phytoene synthase in plant chloroplast (+/- CTP)

In this study, we have developed a new viral vector, TTU51, consisting of tobacco mosaic virus strain U1 (TMV-U1) (Goelet, 1982), and tobacco mild green mosaic virus (TMGMV; U5 strain) (Solis, 1990). The open reading frame (ORF) for *Erwinia herbicola* phytoene synthase (*CrtB*) was placed under the control of the tobacco mosaic virus (TMV) coat protein subgenomic promoter in the vector TTU51. This construct also contained the gene encoding the chloroplast transit peptide (CTP) for the small subunit of rubisco and was called TTU51 CTP *CrtB* (Fig. 2.1). Infectious RNA was prepared by *in* *vitro* transcription using SP6 DNA-dependent RNA polymerase and was used to mechanically inoculate *N. benthamiana*. The hybrid virus spread throughout all the non-inoculated upper leaves and was verified by local lesion infectivity assay and polymerase chain reaction (PCR) amplification (result not shown).

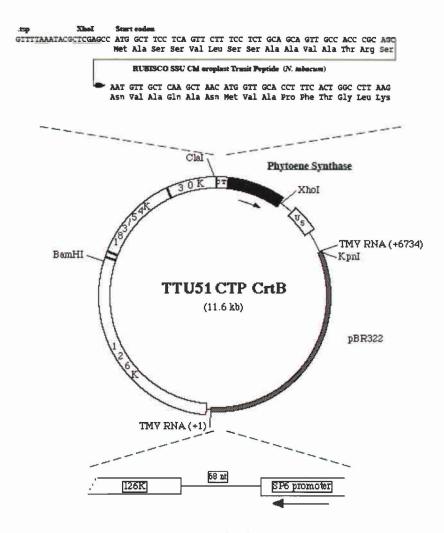


Figure 2.1. Phytoene expression vector TTU51 CTP *CrtB*. This plasmid contains the TMV-U1 126-, 183-, and 30-kDa ORFs, the TMV-U5 coat protein gene, the SP6 promoter, the *Nicotiana tabacum* gene encoding the chloroplast targeting peptide of the small subunit of ribulose-1,5-biphosphate carboxylase, the *Erwinia herbicola* phytoene

synthase gene, and part of the pBR322 plasmid. The TAA stop codon in the 30-kDa ORF is underlined. The TMV-U1 subgenomic promoter located within the minus strand of the 30-kDa ORF controls the expression of phytoene synthase. The putative transcription start point (tsp) of the subgenomic RNA is indicated with a period (.).

The leaves from plants transfected with TTU51 CTP *CrtB* developed an orange pigmentation (Fig. 2.2b) that spread systemically during plant growth and viral replication (Fig. 2.2c). There was a dramatic visual difference if one compares an uninfected plant (Fig. 2.2a) to one week after transfection (Fig. 2.2b). As a control, the sequence encoding the chloroplast transit peptide was removed, creating plasmid TTU51 *CrtB*. One to two week post inoculation, plants transfected with TTU51 *CrtB* did not produce the orange phenotype (result not shown). This result suggests that overexpression of phytoene synthase in the plant chloroplast is required for the phenotypic change.

Figure 2.2. Transfected *N. benthamiana plants*. (a) Uninfected (b) *N. benthamiana* transfected with TTU51 CTP *CrtB* (c) Time course of *N. benthamiana transfected* with TTU51 CTP *CrtB*. Left to right, 1 day, 7 days, and 14 days.

2.3.2 Phenotypic analysis of transfected plants expressing CrtB

Virions were isolated from *N. benthamiana* plants transfected with TTU51 CTP *CrtB* and directly applied to *N. benthamiana*, *N. clevelandii*, *N. tabacum*, and *Solanum tuberosum*. Two to four weeks after inoculation, infected plants were visually monitored. Orange symptoms were observed in the inoculated leaves of the four plant species (Fig. 2.3), while orange systemic symptoms were only observed in *N. benthamiana* and *N. clevelandii*. This result suggests that the phytoene synthase gene may be used to screen various viral vectors for their ability to retain the CTP *CrtB* insert on a large number of different host plants.

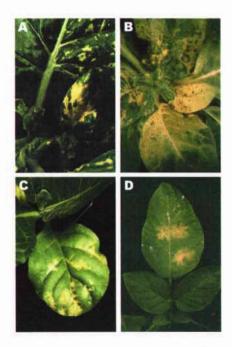


Figure 2.3. Plants transfected with TTU51 CTP CrtB. (a) N. benthamiana (b) N. clevelandii (c) N. tabacum (d) Solanum tuberosum.

2.3.3 Enzymatic and pigment analysis of transfected TTU51 CTP CrtB plants

Leaves from plants transfected with TTU51 CTP *CrtB* had a decrease in chlorophyll content (result not shown) that exceeded the slight reduction that is usually observed during viral infection (Kumagai et al., 1998). Since previous studies have indicated that the pathways of carotenoid and chlorophyll biosynthesis are interconnected (Susek, 1993), we compared the rate of synthesis of phytoene to chlorophyll. Two weeks post inoculation, chloroplasts from plants infected with TTU51 CTP *CrtB* transcripts were isolated and assayed for enzyme activity. The ratio of phytoene synthesis to chlorophyll synthesis was 0.55 in transfected plants and 0.033 in non-inoculated plants (control). Phytoene synthase activity from plants transfected with TTU51 CTP *CrtB* was assayed using isolated chloroplasts and labeled geranylgeranyl PP. Under these conditions, there was a large increase in phytoene and an unidentified C_{40} alcohol in the CrtB plants, probably corresponding to a prephytoene alcohol derivative (Fig. 2.4a).

We analyzed the pigment content of control and transfected plants by TLC and HPLC. The TLC profile (Fig. 2.4b) revealed a marked increase of the carotene fraction isolated from leaves transfected with TTU51 CTP *CrtB* compared to that of control (Fig. 2.5). This trend was further confirmed by HPLC analysis (Fig. 2.5a-d), which revealed that the orange fraction contained mainly β -carotene (Fig. 2.5b) and the two UV-absorbing carotenoids, phytofluene (Fig. 2.5c) and phytoene (Fig. 2.5d) and the absence of esterified carotenoids. The pigment content of control plants and plants transfected with TTU51 CTP *CrtB* was measured.

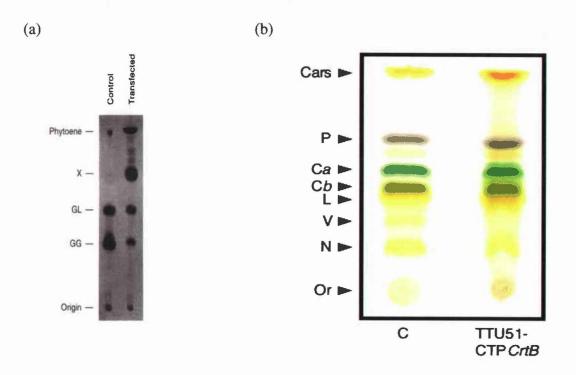


Figure 2.4. Enzymatic assays and TLC analysis of pigments. (a) Autoradiograph from phytoene synthase and chlorophyll synthetase assay from non-inoculated *N. benthamiana* (control) and plants transfected with TTU51 CTP *CrtB*. The products from the reaction were separated by thin layer chromatography on silica gel plate using benzene/ethyl acetate (90 /10, v/v) as a developing solvent. From left to right extracts from: non-inoculated plants and TTU51 CTP *CrtB* transfected plants. The different abbreviations refer to the compounds (X), unidentified C_{40} alcohol, (GL), geranyllinalool, (GG), geranylgeraniol, and the origin (O). (b) Thin layer chromatography of control and transfected *N. benthamiana*. From left to right : pigment extract from non-inoculated plant (C) and from transfected plant using TTU51 CTP *CrtB*. Pigments were separated as described under "Experimental procedures". Abbreviations refer to Cars, carotenes; P, pheophytine; Ca, chlorophyll *a*; Cb, chlorophyll *b*; L, lutein; V, violaxanthin; N, neoxanthin; Or, the origin.

There was a 3-fold increase of β -carotene in plants expressing *CrtB*, followed by the accumulation of phytofluene and phytoene (Table 2.1). Concerning the xanthophylls, we noted that lutein was increased 1.5-fold while the violaxanthin content decreased in contrast to neoxanthin (Table 2.1). None of these changes was observed in control plants.

Carotenoids (mg/g fresh weight)							Chlorophylls (mmol/mol chlorophyll)
Plant	Phytoene	Phytofluene	β- carotene	Lutein	Violaxanthin	Neoxanthin	a + b
Control	0	0	65 <u>+</u> 4	130 ± 8	48 ± 4	10 ± 2	1100 ± 55
TTU51 CTP CrtB	208 ± 10	50 <u>+</u> 9	194 <u>+</u> 5	191 <u>+</u> 14	14 ± 2	45 ± 3	985 ± 36

Table 2.1. Pigment composition of control and transfected N. benthamiana leaves

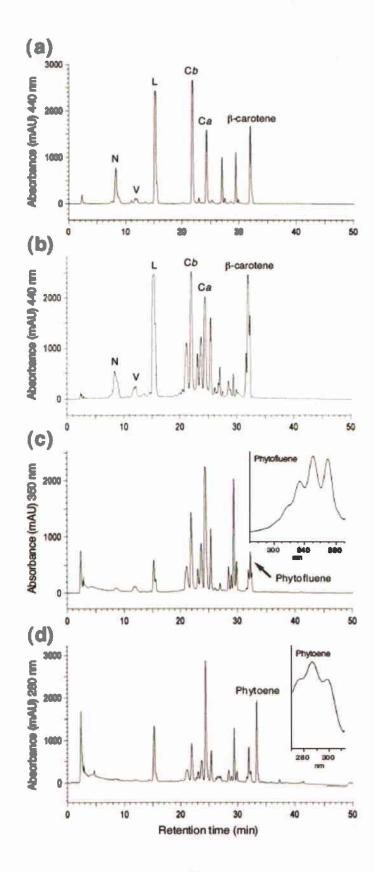


Figure 2.5. HPLC profiles of pigment content from control and transfected *N*. *benthamiana*. (a) Pigments from control plant detected at 440 nm; (b-d) Pigments from TTU51 CTP CrtB plants detected respectively at 440, 350 and 280 nm. Pigment analysis was carried out as described under Experimental procedures. Abbreviations refer to N, neoxanthin; V, violaxanthin; L, lutein; Ca, chlorophyll *a*; *Cb*, chlorophyll *b*. Peaks eluting between 27 to 30 min represent chlorophyll derivatives.

2.3.4 Transcriptional profiling of plants overexpressing phytoene synthase

A 10K potato cDNA microarray system developed at The Institute for Genomic Research (TIGR) was employed to analyze global gene expression in plants overexpressing phytoene synthase derived from *Erwinia herbicola*, and to determine the cause of the phenotypic color change in the new leaves. Solanaceous species share similar genomes with respect to gene content and genome organization, and there is a high degree of nucleotide sequence homology among the members of this family. For example, examination of sequence homology for phytoene synthase and phytoene desaturase between *N. benthamiana* and that of the potato cDNAs spotted on the array revealed an 80-90% identity. In an effort to extract gene expression data for *N. benthamiana*, the heterologous potato system was selected, despite the fact that the two species display diverse adaptive features. Initial studies to determine hybridization conditions utilized *N. benthamiana* (non-infected) as a control and revealed good hybridization for highly conserved genes, and for genes recognized to be involved in viral defense, such as heat shock proteins (Lu et al., 2003). This data was consistent with another study that

demonstrated that tobamoviruses cause an induction of various heat shock genes and genes involved in plant stress and defense responses in *Arabidopsis* (Whitham et al., 2003).

By digesting the TTU51 CTP *CrtB* vector with *Kpn*I and *Stu*I, and ligating the 6163 bp fragment to a 4397 bp fragment from a *Kpn*I-*Stu*I digested viral vector (pBS 740 AT #120) that carries a ribozyme (Turpen et al., 1993), a modified viral vector, TTU51 CTP *CrtB* RZ was developed. The construction of this vector eliminated the need for linearization prior to *in vitro* transcription reactions. Infectious RNA was prepared by *in vitro* transcription using a T7 DNA-dependent RNA polymerase and was used to mechanically inoculate two lower leaves of *N. benthamiana* plants using carborundum. Control plants were transfected with a construct that expresses the green florescent protein (TTOSA1 APE pBAD), in an attempt to subtract out the effects of the viral vector. Microarray hybridizations were performed at ten days post-inoculation (10 dpi).

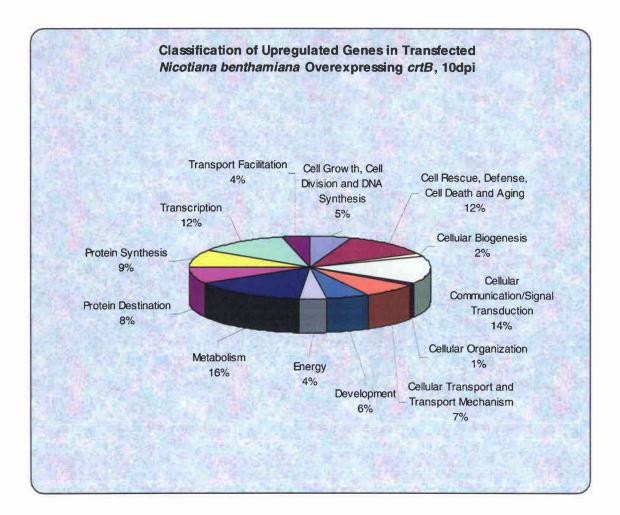


Figure 2.6. Classification of upregulated genes in transfected *N. benthamiana* overexpressing *CrtB*, 10dpi, as compared to GFP transfected plants.

Transcriptional profiling identified 165 annotated genes that were upregulated with a 2-fold or greater expression, and genes were classified by comparing TIGR annotations to the MIPS scheme (Munich Information Center for Protein Sequences). Upregulated genes included a large number of defense genes (12%) that protect against toxins and oxidative stress, including glutamate-cysteine ligase, mitogen-activated protein (MAP) kinase 4, monodehydroascorbate reductase, methionine sulfoxide reductase, glutathione S-transferase T5, and TMV-induced protein I. Other upregulated genes included those

involved in metabolism (16%); cell communication/signal transduction (14%);

transcription (12%); transport (11%); protein synthesis (9%); protein destination (8%); and to a lesser extent, genes involved in energy; development; cellular biogenesis; and cellular organization (Figure 2.6). Unexpectedly, there was also a greater than 2-fold change in gene expression in endogenous *N. benthamiana* phytoene synthase (*psy*) and phytoene desaturase (*pds*) genes.

2.3.5 Expression of a mammalian defensin in transfected plants

Defensins are a family of small, cationic antimicrobial peptides that are found in the mammalian immune system (Lehrer, 1991). They contain a core of three disulfide bonds and are rich in arginine residues. Since purified defensins can kill a wide range of grampositive and gram-negative bacterial, fungal, and enveloped viral pathogens, they may be difficult to produce in recombinant expression systems. Defensins also occur in plants and have been shown to confer acquired resistance to plant pathogens (Kanzaki et al., 2002). We are specifically interested in the production of alpha-defensins because they have anti-HIV activity (Chang *et al.*, 2003;Mackewicz *et al.*, 2003).

Figure 2.7. N. benthamiana infected with TTU51A CTP CrtB NP1 transcripts.

In our study we fused a synthetic gene encoding rabbit NP1 defensin (Selsted et al., 1985) to the C-terminal end of phytoene synthase and determine whether the expression of the chimeric CrtB NP1 enzyme could be visually monitored in plants. In this experiment, a unique *Eco*RV site was inserted in *CrtB* by PCR mutagenesis directly upstream of the stop codon. A synthetic NP1 sequence was then cloned adjacent to *CrtB*, infectious RNA was made *in vitro*, and directly applied to plants. One to two weeks post inoculation, leaves from plants transfected with TTU51A CTP *CrtB* NP1 developed an orange phenotype (Fig. 2.7). The 39-KDa CrtB NP1 fusion accumulated in systemically infected leaves and was analyzed by immunoblotting, using *E. coli* produced phytoene synthase and an NP1 fusion as standards. Both phytoene synthase and the C-terminal fusion to NP1 were detected in transfected plants using a rabbit anti-CrtB antibody. The CrtB NP1 chimera was approximately 3.5 kDa larger than phytoene synthase (Fig. 2.8a, lanes 2, 3). Recombinant CrtB NP1 from sytemically infected *N. benthamiana* also cross-reacted with a guinea pig anti-NP1 antibody (Fig. 2.8b, lane 3). No detectable

cross-reacting protein was observed in the non-infected *N. benthamiana* control plants (Fig. 2.8b, lane 1) or those that were infected with TTU51 CTP *CrtB* (Fig. 2.8b, lane 2). These results suggest that CrtB NP1 fusion is targeted to the chloroplast in an enzymatically active form.

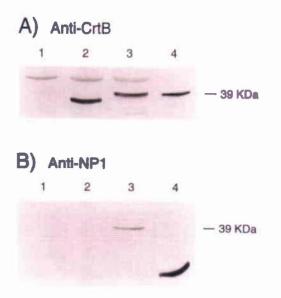


Figure 2.8. Protein analysis of a transfected *N. benthamiana* plant 11 days after inoculation. (a) Western blot analysis (anti-CrtB). Lanes: 1, non-infected *N. benthamiana*; 2, *N. benthamiana* transfected with TTU51 CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51A CTP *CrtB* NP1; 4, *E. coli* expressed CTP *CrtB*. (b) Western blot analysis (anti-NP1). Lanes: 1, non-infected *N. benthamiana*; 2, *N. benthamiana* transfected with TTU51 CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51 CTP *CrtB*. (b) Western blot analysis (anti-NP1). Lanes: 1, non-infected *N. benthamiana*; 2, *N. benthamiana* transfected with TTU51 CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51 CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51A CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51A CTP *CrtB*; 3, *N. benthamiana* transfected with TTU51A CTP

2.4 DISCUSSION

In this study, the *Erwinia herbicola* phytoene synthase gene was placed under the control of the TMV coat protein subgenomic promoter in TTU51, a hybrid tobamoviral vector. Approximately 4 to 6 days after transfection, systemically infected plants developed a bright orange phenotype that can be a useful visible marker to study viral replication and movement. Transfected plants can be analyzed at various times post inoculation because the detection of the phytoene synthase phenotype does not require removal or preparation of the infected tissue. By comparison, histochemical staining for the detection of β glucuronidase (GUS) activity often requires the excision of the leaf from the plant and the removal of chlorophyll by ethanol or chloral hydrate (Jefferson et al., 1987). Since this procedure damages the sample, additional analysis of the same tissue at various times after inoculation is impossible. The transient expression of CrtB has similar attributes to the viral expression of the green fluorescent protein (GFP) (Baulcombe et al., 1995), (Heinlein et al., 1995), (Casper, 1996). Both are nondestructive and can be directly visualized in whole plants at various times during development. One main difference in the two markers is that the detection of CrtB does not require ultraviolet lights. The CrtB orange phenotype can be easily seen in normal sunlight. This attribute may be beneficial when screening a large number of plants or in outdoor field conditions.

Enzyme assays of isolated chloroplasts revealed that along with the increase in phytoene synthase level there is a concomitant decrease in chlorophyll synthetase activity. Chlorophyll biosynthesis may also decrease due to the channeling, of geranylgeranyl pyrophosphate (GGPP) toward the synthesis of carotenoids. In a similar vein, it has been shown that the channeling of GGPP to the synthesis of phytoene and lycopene, reduces its availability for the biosynthesis of the plant hormones gibberellins, and induces dwarfism in tomato (Fray et al., 1995). This finding is supported by the increased accumulation of β -carotene giving the orange color along with the accumulation of phytofluene and phytoene and lutein. Our data show that like in seeds, the overexpression of phytoene synthase can lead to massive synthesis of carotenoid in photosynthetic leaves which do not form structures for their disposal as shown in non-green plastids (Camara et al., 1995). Due to their potential inability to constitute molecular rivets for plastid membranes (Gruszecki, 1999), the amount of β -carotene, phytoene and phytofluene probably represents the maximum that could allow the function of the photosynthetic membranes.

Results from the microarray revealed an upregulation of the endogenous phytoene synthase and phytoene desaturase genes at the 10 dpi point. This result may explain the accumulation of phytofluene (Fig. 5c, Table 1). These results were also observed in microarray studies in which plants transfected with antisense phytoene desaturase were compared to wild type plants (data not shown). Since an accumulation of phytoene occurs due to crtB overexpression as well as phytoene desaturase knock-out (Kumagai *et al.*, 1995), this result could suggest that the availability of phytoene may play a key role as a regulator of carotenoid gene expression in leaves as noted in seeds (Lindgren *et al.*, 2003; Shewmaker *et al.*, 1999; Wong *et al.*, 2004).

The transient expression of phytoene synthase can be used in other areas of molecular biology. Since purification tags have helped in the detection and isolation of heterologous proteins, we decided to determine whether phytoene synthase could tolerate C-terminal fusions. In this context it is interesting to note that in fungi, phytoene synthase is fused to lycopene cyclase (Arrach et al., 2001). In this experiment a rabbit antimicrobial peptide (defensin) was selected because it is difficult to produce in other recombinant expression systems, and has potential therapeutic properties as a peptide based antibiotic. The rabbit defensin NP1 contained three dipeptide Arg repeats that may be a substrate for a KEX2-like protease. Since this enzyme is located in the ER/Golgi complex, it may be difficult to secrete NP1 without concomitant cleavage. In our experiment, without the concomitant cleavage, we targeted the defensin to the chloroplast using a phytoene synthase fusion, and visually monitored the expression in plants. One week after inoculation, systemically infected tissue containing a chimeric gene encoding phytoene synthase and NP1 developed an orange phenotype. The 39-KDa CrtB NP1 fusion accumulated in upper non-inoculated leaves and the hybrid protein cross-reacted to anti-phytoene synthase and anti-defensin antibodies. No detectable cross-reacting protein was observed in the non-infected N. benthamiana control plants. These results suggest that the phytoene synthase NP1 fusion is targeted to the chloroplast in an enzymatically active form. It is interesting to note that a reciprocal experiment fusing NP1 to the C-terminal end of GFP destroyed the ability of GFP to be fluorescent. Phytoene synthase fusions can be isolated from chloroplasts using anti-CrtB affinity chromatography. The transient, directed expression of CrtB NP1 by a viral vector

suggests that this system may be useful to sequester other biologically active peptides in the plant chloroplasts.

Finally through the use of a viral vector encoding a bacterial phytoene synthase gene we have induced an uncontrolled buildup of carotenoid in chloroplasts, a characteristic feature of chromoplasts. Transcriptional profiling revealed that the expression of endogenous phytoene synthase and phytoene desaturase was triggered under these conditions. This reveals that the step catalyzed by phytoene synthase represents a crucial target for the regulation of carotenoid biosynthesis. Further analysis of this phenomenon is thus expected to provide insight into the mechanisms involved. Our study also revealed that the ability of phytoene synthase to tolerate C-terminal fusion and the phenotypic orange coloration due the accumulation of β -carotene could be developed as an alternative strategy to transplastomic technology.

2.5 EXPERIMENTAL PROCEDURES

2.5.1 Plasmid Constructions

The chloroplast-targeting phytoene synthase expression vector, TTU51 CTP CrtB (Figure 1), was constructed in several subcloning steps. First, a unique SphI site was inserted in the start codon for the Erwinia herbicola phytoene synthase gene by polymerase chain reaction (PCR) mutagenesis (Saiki et al., 1985) using oligonucleotides CrtB M1S 5' CCA AGC TTC TCG AGT GCA GCA TGC AGC AAC CGC CGC TGC TTG AC 3' (upstream) and CrtB P300 5' AAG ATC TCT CGA GCT AAA CGG GAC GCT GCC AAA GAC CGG CCG G 3' (downstream). The CrtB PCR fragment was subcloned into pBluescript (Stratagene) at the *Eco*RV site, creating plasmid pBS664. A 938 bp SphI, XhoI CrtB fragment from pBS664 was then subcloned into a vector containing the sequence encoding the N. tabacum chloroplast transit peptide (CTP) for the small subunit of ribulose-1,5-bisphosphate carboxylase (RUBISCO) (O'Neal et al., 1987), creating plasmid pBS670. Next, the tobamoviral vector, TTU51, was constructed. A 1020 bp fragment from the tobacco mild green mosaic virus (TMGMV; U5 strain) containing the viral subgenomic promoter, coat protein gene, and the 3' end was isolated by PCR using TMGMV primers 5' GGC TGT GAA ACT CGA AAA GGT TCC GG 3' (upstream) and 5' CGG GGT ACC TGG GCC GCT ACC GGC GGT TAG GGG AGG 3' (downstream), subcloned into the *Hinc*II site of Bluescript KS-, and verified by dideoxynucleotide sequencing (Sanger et al., 1977). This clone contains a naturally occurring duplication of 147 bp that includes the whole upstream pseudoknot domain in the 3' noncoding region. The hybrid viral cDNA consisting of TMV-U1 and TMGMV

was constructed by swapping a 1-Kb *XhoI-KpnI* TMGMV fragment into TTO1 (Kumagai et al., 1995), creating plasmid TTU51. Finally, the 1.1 Kb *XhoI* CTP *CrtB* fragment from pBS670 was subcloned into the *XhoI* of TTU51, creating plasmid TTU51 CTP *CrtB*. As a CTP negative control, a 942 bp *XhoI* fragment containing the *CrtB* gene from pBS664 was subcloned into TTU51, creating plasmid TTU51 *CrtB*.

TTU51A CTP *CrtB* NP1 was designed to express a phytoene synthase defensin fusion in the chloroplasts. First, a unique *Sph*I site was inserted 3 bp upstream of the stop codon for the *CrtB* gene by PCR mutagenesis using oligonucleotides *CrtB* M1S *s* CCA AGC TTC TCG AGT GCA GCA TGC AGC AAC CGC CGC TGC TTG AC 3' (upstream) and *CrtB* His *s*' CTA GAT CTC CTA GGT TAG TGA TGG TGA TGG TGA TGG ATA TCA ACG GGA CGC TGC CAA AGA CCC CG 3' (downstream). The 1106 bp *Xho*I, *Eco*RV CTP *CrtB* fragment was then subcloned into a plasmid containing a synthetic rabbit NP1 gene consisting of the following sequence: *s*' GAT ATC GAA GGT CGT GTG GTC TGT GCG TGC AGA CGA CGA CGC CGC CGC CGC TAA CCT AGG 3'. The resulting plasmid was called TTO1A CTP *CrtB* NP1. A unique *Avr*II site was inserted upstream of the TMGMV coat subgenomic promoter by PCR mutagenesis using oligonucleotides *ClaI s*' TAA TCG ATG ATG ATT CGG AGG CTA C *s*' (upstream) and NP1 R33AS *s*' CCG GTC GAC CTA GGT TAG CGG CGG CAG CAG AGT GGG *s*' (downstream). The 1228 bp *XhoI*, *Sal*I CTP *CrtB* NP1 fragment was then subcloned into TTU51, creating plasmid TTU51A CTP *CrtB* NP1.

TTOSA1 APE pBAD was designed to express the green florescent protein (GFP) in the cytoplasm. Using PCR mutagenesis the *Sph*I site in the 126K replicase open reading

frame (ORF) of TTO1A was removed using oligonucleotide 5' CGT CCA GGT TGG GCA TAC AGC AGT GTA CAT ATG C 3' and a unique *Pme*I site was inserted at the 3' end of tomato mosaic virus cDNA (fruit necrosis strain; ToMV-FN) (Valverde, 1991) using oligonucleotide 5' CGG GGT ACC GTT TAA ACT GGG CCC CAA CCG GGG GTT CCG GG 3'. A 1.4 Kb *XhoI, AvrII* fragment from TTO1A 103L (Kumagai et al., 2000) containing the rice α-amylase OS103 cDNA was inserted, creating plasmid TTOSA1 APE 103L. A unique *SphI* site (start codon) and a unique *AvrII* site (adjacent to the stop codon) was inserted in the jellyfish *Aequorea victoria* GFP cDNA by PCR mutagenesis using oligonucleotides GFP M1S 5' TAA GCA TGC TGA AAG GAG AAG AAC TTT TCA CTG GAG TT 3' (upstream) and GFP K238 5' TAC CTA GGA GAT ATC CTT GTA TAG TTC ATC CAT GCC ATG TGT 3' (downstream), subcloned into TTOSA1 APE 103L, creating plasmid TTOSA1 APE pBAD.

2.5.2 In vitro transcriptions, inoculations, and analysis of transfected plants

N. benthamiana plants were inoculated with *in vitro* transcripts of *Kpn*I-digested TTU51 CTP *CrtB*, TTU51A CTP *CrtB* NP1, TTOSA1 APE pBAD, and TTU51 CTP *CrtB* RZ as described (Dawson, 1986).

2.5.3 Immunological detection of CrtB and NP1 from transfected N. benthamiana

Total soluble plant protein concentrations were determined (Bradford, 1976) using bovine serum albumin as a standard. The proteins were analyzed on a 0.1% SDS/12.5% polyacrylamide gel (Laemmli, 1970) and transferred by electroblotting for 1 hr to a nitrocellulose membrane (Towbin, 1979). The blotted membranes were incubated for 1 hr with a 2000-fold dilution of anti-CrtB antiserum (phytoene synthase detection) or 2000-fold dilution of anti-NP1 antisera (defensin detection). Using standard protocols, the antisera was raised in rabbits (Robert Sargeant, Ramona, CA) against a synthetic Nterminal phytoene synthase 15-mer peptide MSQPPLLDHATQTM +C conjugated to KLH (Immuno-Dynamic, Inc.) or in guinea pigs (Babco) against a synthetic 33-mer rabbit NP1 peptide conjugated to ovalbumin. The enhanced chemiluminescence horseradish peroxidase-linked, goat anti-rabbit IgG and goat anti-guinea pig IgG assays (Cappel Laboratories) were performed according to the manufacturer's (Amersham) specifications. The blotted membranes were subjected to film exposure times of up to 10 seconds.

2.5.4 Phytoene synthase assay

The chloroplast were prepared as described previously (Camara, 1993). The phytoene synthase assays were carried out in an incubation mixture (0.5 ml final volume) buffered with Tris-HCL, pH 7.6, containing [¹⁴C] geranylgeranyl PP (100,000 cpm)(prepared using pepper GGPP synthase expressed in *E. coli*), 1 mM ATP, 5 mM MnCl₂, 1 mM

MgCl₂, Triton X-100 (20 mg per mg of chloroplast protein) and chloroplast suspension equivalent to 2 mg protein. After 2 h incubation at 30°C, the reaction products were extracted with chloroform methanol (Camara, 1993), subjected to TLC on a silica gel plate developed with benzene/ ethyl acetate (90/10), and autoradiographed.

2.5.5 Chlorophyll synthetase assay

For the chlorophyll synthetase assay, the isolated chloroplasts were lysed by osmotic shock before incubation. The reaction mixture (0.2 ml, final volume) consisting of 50 mM Tris-HCL (pH 7.6) containing [¹⁴C] geranylgeranyl PP (100,000 cpm), 5 MgCl₂, 1 mM ATP, and ruptured plastid suspension equivalent to 1 mg protein was incubated for 1 hr at 30°C. The reaction products were analyzed as described previously.

2.5.6 Pigment analysis

Total pigments extracts from leaves of non-inoculated and transfected *N. benthamiana*, were separated by thin-layer chromatography on a silica gel plate using hexane/acetone (60/40, v/v) as developing solvent (Kumagai et al., 1998) and by HPLC coupled to diode array detection as described previously (Bouvier et al., 2003) except a linear gradient of acetonitrile:water, 90/10 v/v) to 100% ethylacetate for 45 min was used. Authentic standards were use to calibrate the detector response.

2.5.7 cDNA microarray analysis

At ten days post-inoculation (10 dpi), RNA was isolated separately (Qiagen RNeasy) from two *crtB*-inoculated plants and from two GFP-inoculated plants, and quantified. Fluorescently-labeled cDNA was generated for microarray screening. Total RNA (25 µg) was reverse transcribed (Invitrogen Fluoroscript) and labeled with Amersham cyanine-3 (Cy3) dye for each *crtB*-inoculated plant or with cyanine-5 (Cy5) dye for each of the control plants. Cy3/C5 populations were mixed and hybridized to each of two 10K potato cDNA microarrays (TIGR) using recommended hybridization conditions. A detailed description of TIGR Potato Microarray optimized methods, the array design, and the cDNA description file used for this study (GenePix Array List, GAL file version1) can be found at the following URL:

http://www.tigr.org/tdb/potato/microarray_comp.shtml.

Signal data were obtained by scanning slides in an Affymetrix 286 scanner using Jaguar software, and data analysis was performed using GeneSpring software (Silicon Genetics, Redwood City). Jaguar spot files and spreadsheets of GeneSpring processed data reflecting transcript abundance is made available as supplementary material.

78

2.6 ACKNOWLEDGEMENTS

We thank Robert Sargeant (Ramona, California) for preparing the anti-phytoene synthase antibody, Dr. JoAnne Fillatti (Monsanto, Davis) for the potato cultivar, and Tony Novelozo (Axiom, Davis) for the plant photographs. We would like to acknowledge Kathy Hanley, David Clary, Damon Harvey, Sherri Wycoff, and Johanna Fink for their expert technical assistance. We also thank Dr. Daniel Chamovitz for his expert advice and helpful encouragement. This work was supported in part by EEC Agro-Industry program, NSF (through the Marine Bioproducts Engineering Center, EEC-9731725), and the USDA Special Grants Program for Tropical and Subtropical Agriculture, Agreement # 2002-34135-12791.

2.7 REFERENCES

Armstrong, G.A., Alberti, M., and Hearst, J.E. (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. *Proc Natl Acad Sci USA* 87, 9975-9979.

Arrach, N., Fernandez-Martin, R., Cerdà-Olmedo, E., and Avalos, J. (2001) A single gene for lycopene cyclase, phytoene synthase and regulation of carotene biosynthesis in *Phycomyces*. *Proc Natl Acad Sci USA* 98, 1687-1692.

Baulcombe, D.C., Chapman, S., and Santa Cruz, S. (1995) Jellyfish green fluorescent protein as a reporter for virus infections. *Plant J* **7**, 1045-1053.

Bouvier, F., Suire, C., Mutterer, J., and Camara, B. (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in *Crocus* secondary metabolites biogenesis. *Plant Cell* 15, 47-62.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72, 248-254.

Busch, M., Seuter, A., and Hain, R. (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. *Plant Physiol* 128, 439-453.

Camara, B. (1993) Plant phytoene synthase complex: component enzymes, immunology, and biogenesis. *Methods Enzymol* 214, 352-365.

Camara, B., Hugueney, P., Bouvier, F., Kuntz, M., and Monéger, R. (1995) Biochemistry and molecular biology of chromoplast development. *Inter Rev Cytol* 163, 175-247.

Casper, S.J., Holt, Curtis A. (1996) Expression of the green fluorescent proteinencoding gene from a tobacco mosaic virus-based vector. *Gene* 173, 69-73.

Chang, T.L., Francois, F., Mosoian, A., and Klotman, M.E. (2003) CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. *J Virol* 77, 6777-6784.

Dawson, W.O., Beck, D. L., Knorr, D. A., Grantham, G. L. (1986) cDNA Cloning of the Complete Genome of Tobacco Mosaic Virus and Production of Infectious Transcripts. *Proc Natl Acad Sci USA* 83, 1832-1836.

Dogbo, O., Laferrière, A., d'Harlingue, A., and Camara, B. (1988) Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. *Proc Natl Acad Sci USA* 85, 7054-7058.

Fray, R.G., Wallace, A., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., and Grierson, D. (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. *Plant J* 8, 693-701.

Goelet, P., Lomonossoff, G.P., Butler, P.J.G., Akam, M.E., Gait, M.J. and Karn, J. (1982) Nucleotide sequence of tobacco mosaic virus RNA. *Proc Natl Acad Sci USA* 79, 5818-5822.

Gruszecki, W.I. (1999) Carotenoids in membranes. In The Photochemistry of Carotenoids, H.A. Frank, A.J. Young, G. Britton, and R.J. Cogdell, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 363-379.

Heinlein, M., Epel, B.L., Padgett, H.S., and Beachy, R.N. (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. *Science* **270**, 1983-1985.

Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants *EMBO J* 6, 3901-3907. Kanzaki, H., Nirasawa, S., Saitoh, H., Ito, M., Nishihara, M., Terauchi, R., and
Nakamura, I. (2002) Overexpression of the wasabi defensin gene confers enhanced
resistance to blast fungus (*Magnaporthe grisea*) in transgenic rice. *Theor Appl Genet* 105, 809-814.

Kumagai, M.H., Donson, J., della-Cioppa, G., and Grill, L.K. (2000) Rapid, highlevel expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector. *Gene* **245**, 169-174.

Kumagai, M.H., Keller, Y., Bouvier, F., Clary, D., and Camara, B. (1998) Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in *Nicotiana benthamiana*. *Plant J* **14**, 305-315.

Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill,
L.K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. *Proc Natl Acad Sci USA* 92, 1679-1683.

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227, 680-685.

Lehrer, R.I., Ganz, T., Selsted, M.E. (1991) Defensins: Endogenous antibiotic peptides of animal cells. *Cell* 64, 229-230.

Lindgren, L.O., Stalberg, K.G., and Hoglund, A.S. (2003) Seed-specific overexpression of an endogenous *Arabidopsis* phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. *Plant Physiol* **132**, 779-785.

Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. (2003) High throughput virusinduced gene silencing implicates heat shock protein 90 in plant disease resistance. *EMBO J* 22, 5690-5699.

Mackewicz, C.E., Yuan, J., Tran, P., Diaz, L., Mack, E., Selsted, M.E., and Levy, J.A. (2003) Alpha-defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. *AIDS* **17**, F23-32.

Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., and Marion-Poll, A. (1996) Molecular identification of zeaxanthin epoxidase of *Nicotiana plumbaginifolia*, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of *Arabidopsis thaliana*. *EMBO J* **15**, 2331-2342.

Misawa, N., Masamoto, K., Hori, T., Ohtani, T., Böger, P., and Sandmann, G. (1994) Expression of an *Erwinia* phytoene desaturase gene not only confers multiple

resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. *Plant J* **6**, 481-489.

O'Neal, J.K., Pokalsky, A.R., Kiehne, K.L., and Shewmaker, C.K. (1987) Isolation of tobacco SSU genes: characterization of a transcriptionally active pseudogene. *Nucleic Acids Res* **15,** 8661-8677.

Pogson, B., McDonald, K.A., Truong, M., Britton, G., and DellaPenna, D. (1996) *Arabidopsis* carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. *Plant Cell* **8**, 1627-1639.

Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., and Bramley, P.M. (2000) Elevation of the provitamin A content of transgenic tomato plants. *Nat Biotechnol* **18**, 666-669.

Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* **230**, 1350-1354.

Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chainterminating inhibitors. *Proc Natl Acad Sci USA* 74, 5463-5467. Selsted, M.E., Brown, D.M., DeLange, R.J., Harwig, S.S., and Lehrer, R.I. (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. *J Biol Chem* 260, 4579-4584.

Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S., and Ke, D.Y. (1999) Seedspecific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. *Plant J* **20**, 401-412X.

Solis, I., Garcia-Arenal, F. (1990) The complete nucleotide sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic virus. *Virology* 177, 553-558.

Susek, R., Ausubel, FM, Chory, J. (1993) Signal transduction mutants of *Arabidopsis* uncouple nuclear CAB and RBCS gene expression from chloroplast development. *Cell*74, 787-789.

Towbin, H., Staehelin, T. & Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci USA* 76, 4350-4354.

Turpen, T.H., Turpen, A.M., Weinzettl, N., Kumagai, M.H., and Dawson, W.O.
(1993) Transfection of whole plants from wounds inoculated with *Agrobacterium tumefaciens* containing cDNA of tobacco mosaic virus. *J Virol Methods* 42, 227-239.

Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., Wang, X., and Hou, Y.M. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible *Arabidopsis thaliana* plants. *Plant J* **33**, 271-283.

Wong, J.C., Lambert, R.J., Wurtzel, E.T., and Rocheford, T.R. (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. *Theor Appl Genet* **108**, 349-359.

2.8 SUPPLEMENTARY MATERIALS

Microarray data tables for gene expression in *N. benthamiana* infected with TTU51 CTP-*CrtB*-RZ transcripts are provided in Appendix I in Excel format for easy viewing. The following data was submitted as Supplementary Material to *The Plant Journal* that is intended for access through the on-line edition. Normalized gene expression data represent the ratio of Cy3 signals of *crtB*-transfected experimental samples to cy5 signals of GFP-transfected controls.

Raw cy3 and cy5 signal data for each of the two microarrays was combined for import into GeneSpring software for analysis. Gene lists generated from LOWESS normalized values for 2-fold upregulated genes. The "Combined Clusters" file lists the upregulated genes that were clustered using K-means for 5 clusters, (100 iterations) for the standard correlation. The TIGR Master Gene Table (Versions 1 and 2) for the clones on the 10K cDNA potato microarray can be found at the following url: www.tigr.org.

CHAPTER 3. TRANSCRIPTIONAL CHANGES IN CAROTENOID GENES INDUCED BY TOBAMOVIRAL TRANSFECTION

Busto JL¹ and Kumagai MH². University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences¹ and Department of Molecular Biosciences and Bioengineering², Honolulu, Hawaii.

3.1 ABSTRACT

Manipulation of carotenoid biosynthesis was accomplished by transfecting *Nicotiana* benthamiana with tobamoviral vectors that carry genes encoding enzymes in the pathway. Transcriptional profiling was conducted using a heterologous cDNA microarray system and quantitative real-time PCR (QRT-PCR) to determine the impact of transfection on the expression of endogenous phytoene synthase (psy) and phytoene desaturase (pds), in order to gain insight into regulation of the synthesis of these enzymes. Plants were transfected with tobamoviral vectors carrying a *crtB* (phytoene synthase) cDNA derived from *Erwinia herbicola*, or with viral vectors carrying an antisense construct of a gene encoding phytoene desaturase derived from ripening tomato. Previous reports indicate that both transfections result in an accumulation of colorless phytoene, which may act as a signal in the regulation of the pathway. Microarray analysis shows an elevation of endogenous psy and pds mRNAs in the crtBtransfected plant experiments, which was validated using QRT-PCR, as well as an accumulation of transcripts from IPP isomerase and β -carotene hydroxylase. At ten days post-inoculation plants transfected with a partial pds antisense construct developed photobleaching in newly formed leaves due to cytoplasmic knock-down of phytoene desaturase mRNA. The delayed phenotype is indicative of an early suppression of the host silencing machinery by the *tobamoviral* vector. Microarray analysis revealed high

levels of virally derived *pds* transcript, suggesting that at this time point the virus is escaping RNA silencing. A differential QRT-PCR analysis discerned that although the viral vector *pds* transcript is high, there is a 78-fold decrease in the endogenous *pds* transcript accumulation compared to wild type *N. benthamiana*. Other genes in the pathway did not show significant changes in mRNA levels with the exception of a 5-fold decrease in transcript levels of a putative 9-cis-epoxycarotenoid dioxygenase (NCED), a key regulatory enzyme in abscisic acid biosynthesis. QRT-PCR analysis of norflurazontreated plants that also accumulate phytoene, showed a 5-fold reduction in levels of *pds* transcripts by QRT-PCR. Overall, these data indicate that manipulation of the carotenoid pathway using *tobamoviral* vectors can impact the accumulation of transcripts both upstream and downstream of targeted enzymes, but that phytoene does not have a direct role in the regulation of the pathway.

3.2 INTRODUCTION

Carotenoids are 40-carbon isoprenoid pigments that contain conjugated double bonds, endowing fruits, flowers and leaves with a range of beautiful colors. Essential components of photosynthetic membranes, they function to protect chlorophylls from photo-oxidation, and to assist in the harvesting of light (Cunningham and Gantt, 1998). In addition, they are precursors of the hormone abscisic acid (ABA), and provide nutritional benefits in fruits as precursors to essential vitamins and as antioxidants (Bramley, 2002).

In eukaryotes, carotenoid enzymes are encoded from nuclear genes. Upon translation in the cytoplasm, enzymes are modified with a transit peptide, and are transported to the chloroplast where the carotenoid biosynthesis pathway proceeds. Genes encoding these enzymes have been cloned from bacteria, algae, fungi and plants, and have been used for metabolic engineering and biotechnological applications in both carotenogenic and non-carotenogenic organisms (Hirschberg, 2001). Such investigations had shed light upon pathway regulation in photosynthetic tissue, which is distinct from those mechanisms operating in fruits and flowers (Bramley, 2002; Thelander, 1986).

Key factors determining the regulation of the pathway have not as yet been identified, although light, stress, and stage of development appear to influence gene induction (Giuliano, *et al.*, 2003; Liu, *et al.*, 2004; Simkin, *et al.*, 2003). Regulation of carotenoid biosynthesis in plant leaves is thought to be tight and to occur at the level of transcription, and has been investigated by creating transgenic plants or by studying mutants that possess altered carotenoid synthesis and accumulation (Bramley, 2002). In genetically-manipulated plants, accumulated intermediates, including phytoene and lycopene, or the decrease in chlorophyll levels (Giuliano, *et al.*, 1993) (Corona, *et al.*, 1996) have been proposed as possible signals influencing transcriptional rates.

The use of bleaching herbicides that compete with carotenoid desaturation reactions have been employed to study two of the early enzymes in the pathway, phytoene synthase (*psy*) and phytoene desaturase (*pds*). Norflurazon, [NF, (4-chloro-5methylamino-2-(3-trifluoromethylphenyl)-pyridazin-3(2H)one)] is a chlorosis-inducing herbicide that causes a noncompetitive inhibition of *pds*, leading to an accumulation of phytoene and a subsequent photobleaching of leaves and other organs (Breitenbach, *et al.*, 2001) (Simkin, *et al.*, 2000). Phytoene is a colorless carotenoid that is unable to protect the plants against photo-oxidation of the chlorophylls (Jung et al, 2000).

Simkin *et al* measured the amount of accumulated phytoene in norflurazon-treated *Capsicum annum* plantlets to be 1.6x that of an untreated control. Using reverse-phase HPLC, Kumagai *et al* showed that treatment with norfluorazon causes the level of phytoene in *Nicotiana benthamiana* plants to rise to 74x that of a control plant (Kumagai, *et al.*, 1995). Transgenic *N. tabacum* plants expressing antisense *pds* also accumulate phytoene (Busch, *et al.*, 2002). Levels of *psy* and *pds* transcripts have been measured in these phytoene-accumulating plants to gain insight into regulation of carotenoid enzyme synthesis. Traditionally, levels of *pds* were difficult to assay using Northern blot analysis, although the development of reverse-transcription PCR polymerase chain

91

reaction (RT-PCR) assays provided a level of sensitivity that enabled these rare transcripts to be detected (Corona, *et al.*, 1996; Giuliano, *et al.*, 1993).

Over the past ten years, published reports using RT-PCR to assay carotenoid enzyme transcripts have been inconsistent. Giuilano *et al* studied both organ-specific and temporal expression of *psy* and *pds* in tomato seedlings and in the phytoene-accumulating *ghost* mutant. They demonstrated that norflurazon treatment of plants causes a 2-fold increase in the level of transcript of *psy* mRNA and a 10-fold increase in *pds* mRNA using reverse-transcription assays (Giuliano, *et al.*, 1993). In contrast to Giuliano's results, no change in transcript levels of *psy* or *pds* was found in norflurazon-treated pepper using comparative RT-PCR (Simkin, *et al.*, 2003), nor was there any change in the levels of zeta-carotene desaturase (*zds*) or plastid terminal oxidase (*ptox*). No significant induction of *pds* gene expression was found in norflurazon-treated *Arabidopsis* plants or in white sectors of the *Arabidopsis immutans* variegation mutant using a competitive RT-PCR method (Wetzel and Rodermel, 1998). However, activation of the *pds* promoter occurs during chemically induced arrest of pigment biosynthesis due to norflurazon treatments (Corona, *et al.*, 1996).

Transfecting plants with viral vectors carrying sense or antisense constructs that have homology to endogenous genes is an alternative method that can provide insight into carotenoid biosynthesis regulation. By mechanically inoculating leaves with infectious viral transcripts, endogenous mRNAs are degraded in the cytoplasm by virusinduced gene silencing (VIGS) causing a decrease in the levels of carotenogenic enzymes. Within days of inoculation, plants present with phenotypes that are striking in appearance, often with alterations of the natural pigmentation. Transfection technology can be effectively combined with transcriptional profiling methods to gain insight into pathway regulation. Microarray studies have been used extensively to investigate viral transfection in animal systems, but microarray analyses have not been reported for transfected plants. In addition, quantitative real-time PCR (QRT-PCR) enables validation of targets identified in microarray studies, and provides an enhanced level of sensitivity over traditional RT-PCR.

This investigation seeks to further explore regulatory mechanisms by examining the transcriptional changes in carotenoid genes induced by tobamoviral transfection. Previous reports have shown that *N. benthamiana* plants transfected with a tobamoviral vector expressing phytoene synthase have a level of phytoene 11x that of the untransfected control, and those transfected with a tobamoviral vector (TTO1 PDS⁻) expressing an antisense *pds* have a level 51x that of the untransfected control (Kumagai, *et al.*, 1995). The effect of this accumulation of phytoene in young *N. benthamiana* plants was examined using 10K potato cDNA microarrays developed by The Institute for Genomic Research (TIGR) and QRT-PCR technologies.

3.3 RESULTS

3.3.1 Nicotiana benthamiana Plant Transfections

For the transcriptional profiling experiments, *Nicotiana benthamiana* plants were transfected at the 6-8 leaf stage with *in vitro* transcripts of *tobamoviral* vectors that overexpress phytoene synthase, TTU51 CTP *crtB* RZ (Kumagai MH, 2004), or cause a cytoplasmic knock-down of phytoene desaturase mRNA ,TTO1 *PDS*⁻ (Kumagai, *et al.*, 1995) using a rub-inoculation technique. Symptoms of virus infection first appeared at 4 dpi in the *CrtB*-inoculated leaves, with yellow-to-orange color changes continuing to develop in newly formed leaves. Transfection with this vector causes an upregulation of genes in the carotenoid biosynthesis pathway by targeting a bacteria-derived phytoene synthase to the chloroplast.

Transfection with TTO1 *PDS*⁻ produces the antisense transcript of a partial *pds* cDNA derived from ripening tomato, causing photobleaching at approximately 10 dpi in newly formed leaves (Figure 3.2) and eventually in stems and flowers. This plasmid contains the open reading frames (ORFs) encoding the 126-, 183-, and 30-kDa proteins (126K, 185/54K, and 30K) that are under the control of the SP6 promoter; a *XhoI* fragment of the partial tomato phytoene desaturase cDNA in the negative orientation that is under the control of the TMV-U1 coat protein subgenomic promoter. The subgenomic promoter is located within the minus strand of the 30K ORF. Control plants were transfected with a viral vector, TTOSA1 APE pBAD that expresses green fluorescent protein (GFP), to minimize gene expression changes due to effects of the virus.

3.3.2 Bioinformatics Analysis

Sequence information for the tomato *pds* insert in the TTO1 PDS⁻ viral vector was derived using BLAST alignments (Figure 3.1). Cloning primers (Kumagai, *et al.*, 1995) and sequence information for *pds* available in NCBI for *Lycopersicon esculentum* (*Le*) mRNA (complete cds, M88683) were aligned to determine the insert sequence and length (647 bp).

```
(a)
```

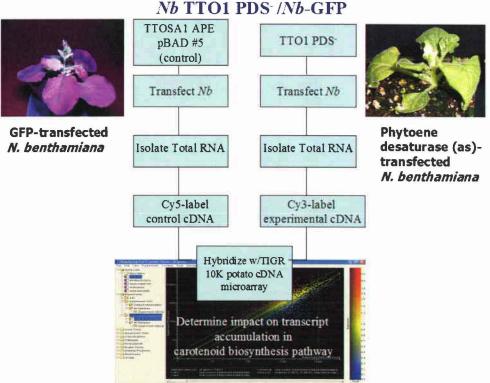
```
Alignment of LePDSclone__F to GB_PL1:TOMPHYTDES
     M88683 Lycopersicon esculentum phytoene
     desaturase(pds) mRNA, complete cds. 6/1995
          Length = 2321
 Score = 44.1 bits (22), Expect = 0.001
 Identities = 22/22 (100%)
 Strand = Plus / Minus
Query: 9
           tgtgttcttcagttttctgtca 30
           Sbjct: 1589 tgtgttcttcagttttctgtca 1568
Alignment of LePDSclone_R to GB_PL1:TOMPHYTDES
         M88683 Lycopersicon esculentum phytoene
          desaturase (pds) mRNA, complete cds. 6/1995
          Length = 2321
 Score = 36.2 bits (18), Expect = 0.23
 Identities = 18/18 (100%)
 Strand = Plus / Plus
Query: 12 ttgatttctccgaagctt 29
          Sbjct: 943 ttgatttctccgaagctt 960
```

(b)

	Reverse cloning primer-→	
	attcagccgcttgatttctccgaggtttacccgctcctttaaatggaa	
	GTTCAGCCGCTTTGATTTTCCTGGAGCTCTTCCTGCGCCCATTAAATGGAA	
	ttttagccatcttaaagaataacgaaatgcttacatggccagagaaagtc	1031
1032		1081
1046	AAATTTGCTATTGGACTCTTGCCAGCAATGCTTGGAGGGCAATCTTATGT	1095
1082	$\label{eq:QRT_Mb_F1} \begin{array}{c} QRT \ \ \ Mb_F1 \rightarrow (88\%) \end{array}, \\ \texttt{tgaagctcaagatgggataagtgttaaggactggatgagaaagcaaggtg} \\ $	1131
1096	TGAAGCTCAAGACGGTTTAAGTGTTAAGGACTGGATGAGAAAGCAAGGTG	1145
	tgccggacagggtgacagatgaggtgttcattgctatgtcaaaggcactc	
	TGCCTGATAGGGTGACAGATGAGGTGTCCATGCCATGTCAAAGGCACTT <qrt (91%)<="" nb_r1="" th=""><th></th></qrt>	
	aactttabaaccctgacgasttttcaatgcagtgcattttgatcgcatt 	1231 1245
1232	gaacaggtttcttcaggagaaacatggttcaaaaatggctttttagatg	1281
1246	GAACAGATTTCTTCAGGAGAAACATGGTTCAAAAATGGCCTTTTTAGATG	1295
1282	gtaatceteetgagagaetttgeatgeegattgttgaacaeattgagtea	1331
1296	GTAACCCTCCTGAGAGACTTTGCATGCCGATTGTGGAACATATTGAGTCA	1345
	aaaggtggccaagtcagactgaactcacgaataaaaaagattgagctgaa	
1382	tgaggatggaagtgtcaagagttttatactgagtgacggtagtgcaatcg	1431
1396	TGAGGATGGAAGTGTCAAATGTTTTATACTGATAATGGCAGTACAATTA	1445
1432	agggagatgcttttgtgtttgccgctccagtggatattttcaagcttcta	1481
1446	AAGGAGATGCTTTTGTGTTTGCCACTCCAGTGGATATCTTGAAGCTTCTT	1495
	ttgcctgaagactggaaagagattccatatttccaaaagttggagaagtt	
	TTGCCTGAAGACTGGAAAGAGATCCCATATTTCCAAAAGTTGGAGAAGCT ACTGTCTTTTGACT agtcggagtacctgtgataaatgtacatatatggtt	-
	AGTEGGAGTTCCTGTGATAAATGTCCATATATGGTTTGACAGAAAACTGA	
1582	TCTTGTGT <forward .<="" cloning="" primer="" th=""><th>1631</th></forward>	1631
	AGAACACATCTGATAATCTGCTCTTCAGCAGAAGCCCGTTGCTCAGTGTG	

Figure 3.1. Determination of phytoene desaturation (*pds*) insert sequence in TTO1 PDS-viral vector. (a) BLAST Alignments for cloning primers LePDSclone_F and
LePDSclone_R against *Lycopersicon esculentum* (*Le*) mRNA, complete cds (M88683).
(b) Sequence alignment of *Le pds* viral vector insert to *Nb pds* cDNA, depicting QRT-

PCR primers *Nb*PDS_F1 and *Nb*PDS_R1 (amplicon = 111 bp). Top sequence represents *Le pds* M88683 and bottom sequence represents *Nb pds* I23876 (Sequence 3 from US patent #5539093).

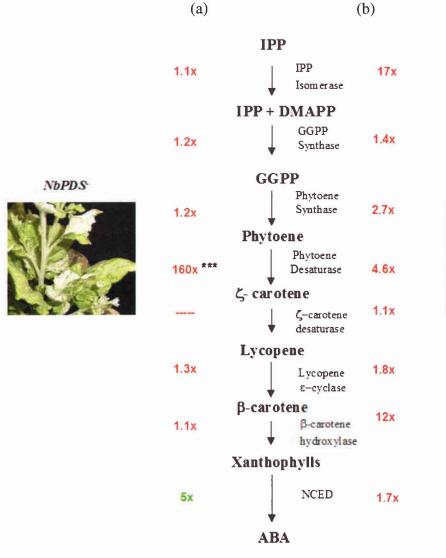

Although *Nicotiana benthamiana* has served as a model organism for virusinduced gene silencing (VIGS) studies, little information about its genetics has been publicly available until recently. cDNAs encoding carotenoid biosynthesis enzymes in this plant that encode *psy* and *pds* are found in published patents (Kumagai MH, 2004; Kumagai, 1999), and in addition, a large number of sequences are now available in the NCBI database. As of January 2004, TIGR Gene Index reported over 6100 unique sequences. Access to sequence information for *N. benthamiana* was critical in understanding the potential for the transcripts of the viral vector inserts to hybridize to the potato cDNAs in the microarray study (Table 3.1).

	Nbpds Seq#3	TTO1 PDS-	Stpds (Le)
Nbpds Seq#3	100%	92%	88%
TTO1 PDS-	92%	100%	96%
Stpds (Le)	88%	96%	100%

Table 3.1. Comparison of *pds* sequence homology of *Nicotiana benthamiana* and *Lycopersicon esculentum* to *Solanum tuberosum* to determine the possibility of transcript hybridization in microarray experiments.

3.3.3 Microarray Design and Analysis: Changes in Transcript Levels of Carotenoids in *CrtB*- and *PDS*_{as}-transfected plants

For transcriptional profiling studies, *N. benthamiana* plants were transfected with the tobamoviral vector, TTO1 PDS⁻, which carries a partial antisense *pds* cDNA from ripening tomato (Kumagai, *et al.*, 1995). Leaves were harvested at 10 dpi for microarray assays of carotenoid gene transcripts (Figure 3.2).



Microarray Experimental Design for Nb TTO1 PDS⁻/Nb-GFP

Figure 3.2. Microarray design for analysis of transcript abundance in virus-transfected *N*. *benthamiana* plants (10 days post-inoculation) using TTOSA1 APE pBAD-transfected plants (expressing GFP) as controls.

Leaf RNA was isolated from two treated and two control plants and first strand cDNA was synthesized using cyanine-3 and cyanine-5 fluorescent dyes. Differentially labeled cDNAs were quantified, pooled, and hybridized to heterologous 10K potato cDNA microarrays purchased through The Institute for Genomic Research (TIGR). Microarray data analysis was using GeneSpring software (Agilent Technologies, formerly Silicon Genetics) revealed unexpectedly high levels of *pds* transcript, an average 160-fold change (p < 0.0009) at ten days post-inoculation (dpi) compared to plants transfected with a GFP control.

No significant fold change was detected for *psy* or for other genes in the pathway that could be assayed using this microarray (Figure 3.3). However, a putative 9-cisepoxycarotenoid dioxygenase (NCED) showed a 5-fold decrease in transcript level compared to control levels. This enzyme catalyzes a key regulated step in the abscisic acid (ABA) biosynthesis pathway in higher plants. In contrast, microarray analysis of leaf carotenogenesis enzymes in the *crtB*-transfected plants at 10 dpi showed increased endogenous transcripts for isopentenyl pyrophosphate (IPP) isomerase (17x), *psy* (3x) *pds* (5x), and β -carotene hydroxylase (12x).

NbCrtB

Figure 3.3. Microarray fold change for enzymes in the carotenoid biosynthesis pathway.
(a) *PDSas*-transfected *Nb*; and (b) *CrtB*-transfected *Nb*. All values shown in red
represent upregulation or no significant change, with the exception of a 5-fold decrease in
NCED, a putative 9-cis-epoxycarotenoid dioxygenase, shown in green. (** accumulated *pds* transcript due to viral vector insert).

3.3.4 Quantitative Real-Time PCR Assays

In order to validate the microarray findings of both *CrtB* and *PDS*-transfection experiments, a relative quantitative real-time PCR (QRT-PCR) was performed as an independent assay to examine the abundance of *psy* and *pds* mRNAs. Primers for both target and reference genes were designed using BioRad's Beacon Designer 2.1. cDNAs synthesized from RNA at 10 dpi from both *CrtB*- and GFP-transfected plants were used as template for the QRT reactions. Internal reference genes included the small subunit of rubisco (GenBank #X01722), a large ribosomal protein (RPL37a) (GenBank #BQ515266), or ubiquitin (GenBank #CK294769).

CrtB-transfection of plants produces a bacterial phytoene synthase. We previously reported (Kumagai, *et al.*, 2004)that levels of endogenous *psy* and *pds* are elevated at 10 days post-inoculation (dpi) using microarray analysis. Additional assays using QRT-PCR confirmed that these transcripts accumulate in the leaves of *crtB*-transfected plants. Pfaffl method (Pfaffl, 2001) calculations that take into account efficiencies of amplification for both target and reference genes show a 2-fold accumulation of endogenous *psy* compared to GFP-transfected controls. In *CrtB*-treated plants, efficiency of amplification of the *psy* target was 95.0% (correlation coefficient 1,00). Efficiency of amplification of the rubisco reference gene was 98.6% (correlation coefficient .999). The possibility that levels of endogenous *psy* were elevated due to viral vector contributions was ruled out. The QRT-primers designed to amplify endogenous *psy* do not amplify the *CrtB* viral vector insert in conventional RT-PCR at the melting

temperature used in QRT-PCR presumably because of the low homology between the bacterial *crtB* and the endogenous *pds* (data not shown). QRT-PCR analysis also showed a 13-fold increase in *pds* in *CrtB*-treated plants compared to GFP-transfected control plants. Efficiencies of amplification of the *pds* target and rubisco reference genes were 95.5% (correlation coefficient .999) and 99.2%, respectively. The melt curve analysis showed no primer dimers for either assay.

In order to assay the levels of endogenous *pds* in *PDSas*-transfected *N*. *benthamiana*, two sets of QRT-PCR primers (Figure 3.4) were designed to distinguish between transcript accumulation due to the viral vector insert (*Nb*PDS_F1 and *Nb*PDS_R1), and that due to the endogenous plant *pds* (*Nb*PDS_F2 and *Nb*PDS_R2).

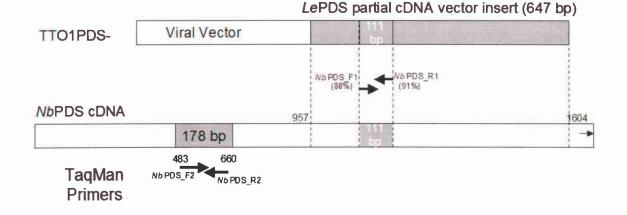


Figure 3.4. TaqMan Primer Design. Regions of *pds* cDNA depicting amplification using primer sets that lie within the viral vector insert (QRT primer Set#1: *Nb*PDS_F1 and *Nb*PDS_R1) and outside the viral vector insert (QRT primer Set#2: *Nb*PDS_F2 and *Nb*PDS_R2). (Not drawn to scale)

The *N. benthamiana pds* sequence (Fitzmaurice WP, 1996) was used to design the "inside" primers (Figure 3.1) and these were then blasted against the *Le pds* mRNA to determine the degree of homology which showed approximately 90%. To assay the levels of endogenous *pds*, primers were designed outside of the region of homology to the tomato-derived *pds* partial cDNA, in order to eliminate contributions from amplification of the viral vector insert in QRT reactions.

In conventional reverse transcription PCR, amplification of *pds* using primer set #1 produced an amplicon of 111 bp for both the viral vector plasmid and for the cDNA template derived from *Nb PDS*-treated plants. Amplification of *pds* using primer set #2 produced an amplicon of 178 bp only for the cDNA template derived from *Nb PDS*-treated plants. Information regarding potential amplification of the viral vector insert (lane 8) was used to differentiate its contributions from those of endogenous transcript amplification in QRT-PCR reactions (Figure 3.5).

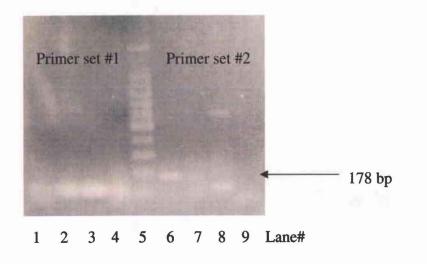


Figure 3.5. RT-PCR reaction depicting amplification of phytoene with primer set #1 (Lanes 1-4) and primer set #2 (Lanes 6-9), 1.5% agarose gel. Templates are *Nb* wild type cDNA in lanes 1 and 6; *Nb PDS*⁻ cDNA in lanes 2 and 7; and Viral vector plasmid TTO1 *PDS*⁻ in lanes 3 and 8. Lanes 4 and 9 shows no template control. Lane 5 is Promega 100 bp ladder.

QRT-PCR was then performed on *PDSas*-transfected *N. benthamiana* plants using primer set# 1, *Nb*PDS_F1 and *Nb*PDS_R1, with an expected amplicon of 111 bp. Assays using GFP-transfected plants as controls showed that *PDSas*-transfected *N. benthamiana* had 282-fold higher levels of *pds* mRNA transcript (data not shown), confirming findings in the microarray data. QRT-PCR assays using untransfected plants as controls also revealed higher levels of *pds* in the *PDSas*-transfected plants, indicated that the viral vector was contributing to high *pds* levels (Figure 3.6a). To eliminate contributions from the virus, and to obtain additional information about the effects of phytoene accumulation on endogenous *pds* transcript accumulation, a comparison of *PDSas*-transfected, *Nb* wild type, and norflurazon-treated plants was performed using QRT-PCR primer set#2.

N. benthamiana plants were treated with norflurazon (NF) by applying 5 mL to the base of the plant at the 6-8 leaf stage. These plants showed a photobleaching effect beginning at 2 days post application, and RNA was extracted from leaves at this time and prepared for QRT-PCR assays. Relative QRT-PCR showed that compared to wild type, pds_{as} -treated plants present with a 78-fold decrease and NF-treated plants show a 5-fold decrease in transcript (Figure 3.6b). Products of QRT-PCR were run out on a 1.5% agarose electrophoresis gel to check for the presence of additional bands due to any non-specific binding of the viral insert. No additional bands were apparent (data not shown), and the melt curve analyses indicated a lack of primer dimers.

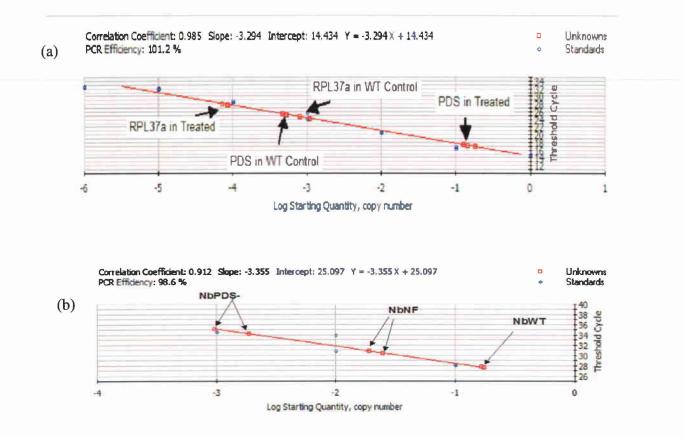


Figure 3.6. BioRad iCycler QRT-PCR graphical analysis of pds levels.

- (a) Depicting high levels of *pds* due to viral vector insert amplification in transfected plants compared to wild type controls (untransfected), using primer set #1; and
- (b) QRT-PCR graphical analysis of *pds* transcript abundance in *pds*-transfected plants, in wild type controls, and in norflurazon-treated plants using QRT primer set#2.

The levels of pds transcript accumulation were also assayed in GFP-transfected plants

(Table 3.2) to ascertain its use as a control in microarray and QRT-PCR studies. GFP-

transfected controls show levels of pds mRNA comparable to that in the pds_{as} -transfected plant.

Constructs	Amount normalized pds mRNA ^a (AU) ^b	Relative Abundance of <i>pds</i> mRNA levels ^c (%)
Wild Type (untransfected)	1.35	100
Norflurazon-treated	0.27	20
Nb TTOSA1 APE pBAD-	0.02	1.7
transfected		
Nb TTO1 PDS ⁻ -transfected	0.01	1.2

^a Value represents the mean from one experiment. For each sample, QRT-PCR was performed in duplicate. ^b Arbitrary unit. ^c relative to wild type control

Table 3.2. Quantitative real-time PCR determination of relative abundance of endogenous *pds* mRNA in TTO1 *PDS*_{as}-transfected *Nicotiana benthamiana* plants compared to norflurazon-treated, untransfected wild type and GFP-transfected control plants.

106

3.4 DISCUSSION

This investigation studies the effects of TTU51 CTP CrtB RZ and TTO1 PDS⁻ transfection on carotenogenic enzymes in young N. benthamiana leaves. Previous reports indicate that both transfections accumulate phytoene (Kumagai, et al., 1995), which may influence regulation of carotenoid biosynthesis genes. Overexpression of phytoene synthase with the TTU51 CTP CrtB RZ viral vector causes an increase in endogenous transcript accumulation at 10 dpi for enzymes upstream of psy (IPP isomerase) and downstream of *psy* (*pds* and β -carotene hydroxylase). Microarray data shows elevation of enzymes leading to the formation of ζ -carotene and β -carotene, yellow and orange-colored pigments, respectively. The approximate 5-fold increase (p < p0.03) in expression of *pds* that catalyzes the formation of ζ -carotene and the 12-fold increase (p < 0.05) in expression of β -carotene hydroxylase that catalyzes the formation of β -carotene may contribute to the orange-yellow phenotype seen in leaves, stems, flowers, and roots. The use of a heterologous insert derived from Erwinia herbicola enables a clear distinction in the interpretation of microarray and QRT-PCR data for impact on endogenous *psy* transcripts, due to low homology of the bacterial sequence to Nb and potato. The levels of endogenous psy in CrtB-transfected plants are also increased at 10 dpi.

All carotenoids are derived from isopentenyl diphosphate (IPP) (Bramley, 2002). Isomerization of IPP to dimethylallyl diphosphate (DMAPP) is catalyzed by IPP isomerase, which shows a 17-fold increased level of transcript (p < 0.04) in the *CrtB*- transfected plants compared to the GFP-transfected controls. It is reasonable to suggest that the increase in IPP isomerase upstream of *psy* leads to a greater concentration of DMAPP, the activated substrate for the formation of geranylgeranylpyrophosphate (GGPP). Two molecules of GGPP condense to form 15-*cis* phytoene in a reaction catalyzed by *psy*. Therefore, overexpression of *CrtB* appears to cause an increase in phytoene because of increased transcript levels of IPP isomerase, which then drives the pathway to proceed at elevated levels. It appears that phytoene accumulation is a by-product rather than the signal for upregulation of this gene in the pathway. A microarray analysis of *CrtB*-transfected plants at additional time points would shed light on the cause of the increase in IPP isomerase transcripts. Overall, these data also indicate a potential use of the TTU51 CTP *CrtB* RZ viral vector for metabolic engineering of leaf carotenogenesis in *N. benthamiana* and other solanaceous plants for targeted increase in pathway intermediates.

In the pds_{as} -transfection studies, the sequence of the viral vector tomato-derived insert shares 92% homology with endogenous *N. benthamiana pds*, which is sufficient for gene silencing of endogenous *pds* transcripts to occur. Analysis of pds_{as} -transfected plants at 10 dpi using a heterologous potato cDNA microarray showed an average of 160fold increase of *pds* mRNA compared to the GFP-transfected control. These results indicated a possible elevation of transcripts because of viral vector contributions. The cDNAs for microarray hybridization were synthesized using oligo d(T) priming; the viral insert is partial and lacks a poly-(A) tail. However, there is a run of five As in the insert cDNA that may result in the synthesis of cDNA during the reverse-transcription reactions. The tomato-derived *pds* insert shares 96% homology with the potato cDNA clone sequences on the microarray, whereas the homology of endogenous *N*. *benthamiana pds* is 88%. cDNAs produced from viral template would cause a spurious elevation in the *pds* fold-change on the microarray.

While there was a possibility that the elevation of endogenous *pds* was real, QRT-PCR was employed to address this question and two sets of quantitative real-time PCR primers were designed using *N. benthamiana* sequence information. The first set was designed within the 647 bp partial cDNA insert sequence present in TTO1 PDS⁻, with primers sharing 90% homology. Conventional PCR confirmed that the QRT-PCR primer set #1 (*NbPDS_*F1 and *NbPDS_*R1) could amplify the insert in the viral vector. QRT-PCR experiments showed a 370-fold increase over the GFP control plant levels and a 280-fold increase in *pds* transcript accumulation over the untransfected plants, indicating a contribution from the viral vector. Primer set #2 (*NbPDS_*F2 and *NbPDS_*R2) was designed upstream of the region of homology to the endogenous *pds* transcript (Figure 5). QRT-PCR experiments using primer set #2 showed that the endogenous levels of *pds* were significantly decreased (78x) when compared to levels in wild type control.

The cDNA for the real-time PCR experiments was synthesized using BioRad's iScript, which employs both oligo-d(T) and random primers. The use of two QRT-PCR primer sets enabled us to determine that cDNAs were synthesized from the viral vector template causing an elevation in *pds* transcript levels. It appears that viral vector inserts lacking poly-(A)s can also serve as templates for cDNA synthesis using oligo-d(T)

priming, hence the elevated levels observed on the microarray for the pds_{as} -transfection experiments.

It is also important to also consider the issue of posttranscriptional gene silencing. The conventional wisdom has been that viruses are both targets and inducers of PTGS. The phenotype of the pds_{as} -treated plant provides important clues. It is not until 10 dpi that the photobleaching of the leaves is just beginning to progress in the newly forming leaves. This may be related to the stability of the PDS enzyme. At this time point, results of the microarray and QRT-PCR using primer set #1 show that the *tobamoviral* vector has caused a high level of *pds* transcript to accumulate, suggesting that the virus may be capable of evading RNA silencing by the host plant, as well as impeding the degradation of homologous gene transcripts. However, QRT-PCR using primer set #2 shows a reduction in the accumulation of endogenous *pds*. Therefore, while the endogenous transcript is targeted for degradation, the viral genome is not. There is currently a lack of knowledge regarding the amount of the viral-derived RNA that is available in the plant for gene silencing.

Investigations have demonstrated that TMV infection can reverse GFP silencing in leaves of transgenic *N. benthamiana* plants (Voinnet, *et al.*, 1999). In addition, studies of tomato mosaic virus (ToMV) implicate the 130K replicase protein as a suppressor of posttranscriptional gene silencing, potentially blocking the utilization of small interfering RNAs (siRNAs) (Kubota, *et al.*, 2003). TMV may use its replicase protein to suppress gene silencing in a manner similar to (ToMV), as evidenced by a delay in the phenotype, and an accumulation of viral inserts at the 10 dpi point.

Microarray data show that other genes in the carotenoid biosynthesis pathway are not significantly affected by phytoene accumulation. However, NCED, a putative 9-cisepoxycarotenoid dioxygenase, showed a 5-fold decrease in transcript level compared to control levels. NCED catalyzes the cleavage of 9-cis epoxycarotenoids, a key regulatory step in the abscisic acid (ABA) biosynthesis pathway of higher plants. ABA plays a major role in the adaptation of plants to environmental stress, plant growth and development (Han, et al., 2004), and it is increased in response to attack by a variety of pathogens. The microarray data suggests that the TTO1 PDS⁻ viral vector may be able to evade host RNA-silencing defenses by downregulating the production of ABA. Recent studies on plant virus suppression mechanisms suggest that in addition to virus-encoded suppressor proteins, the "escape" mechanism used by viruses may be mediated by plant host responses to different types of stress, including heat shock (Taliansky, et al., 2004). Data from additional microarray experiments (not shown) using wild type untransfected plants as controls as well as from published microarray studies of tobamovirus-infected plants reveal an upregulation of heat shock proteins, such as Hsp70s (Whitham, et al., 2003).

3.5 EXPERIMENTAL PROCEDURES

3.5.1 Viral Vector Constructs

For the transcriptional profiling experiments, control plants were transfected with TTOSA1 APE pBAD (Kumagai *et al.*, submitted for publication 2005) and experimental plants overexpressing phytoene synthase (*crtB*) were transfected with a modified TTU51 CTP *crtB* (Kumagai *et al.*, submitted for publication 2005). By digesting a TTU51 CTP *crtB* vector with *Kpn*I and *Stu*I, and ligating the 6163 bp fragment to a 4397 bp fragment from a *Kpn*I-*Stu*I digested viral vector 740AT#120 (Kumagai *et al.*, 2002) that carries a ribozyme, a modified viral vector, TMV CTP *crtB*-RZ was developed. The construction of this vector eliminates the need for linearization prior to *in vitro* transcription reactions. The TTO1 PDS⁻ viral vector (Kumagai, *et al.*, 1995) contains a partial tomato phytoene desaturase cDNA in the antisense orientation that is under the control of the TMV-U1 coat protein subgenomic promoter.

3.5.2 Plant Inoculations and Treatments

N. benthamiana plants were grown from seed and kept under lights at 25C. *In vitro* transcription reactions were performed for TTU51 CTP *crtB* RZ (T7 promoter), and for TTOSA1 APE pBAD and TTO1 PDS⁻ (SP6 promoter) using Ambion mMessage mMachine *in vitro* transcription kits. At the 6-8 leaf stage of development, two lower leaves were rub-inoculated with *in vitro* transcripts using carborundum. Norflurazon treatments involved application of 5 mL of 10 *u*M norflurazon (Sigma) to the base of *N. benthamiana* plants at the 8-leaf stage.

3.5.3 Labeling and Hybridization for cDNA microarrays

At 10 days post-inoculation, *CrtB*-transfected *N. benthamiana* plant leaf material was ground in liquid nitrogen. Total RNA (25µg) was extracted using Qiagen RNeasy kits, quantified, and differentially labeled with fluorescent cyanine-3 (cy3) or cyanine-5 (cy5) dyes (Amersham, Cat Nos. PA53022, PA55022) using Invitrogen Fluoroscript kit (Cat# L1013-01) for first-strand cDNA synthesis.

For *pds*_{as}-transfected plants, leaf material at 10 dpi was ground in liquid nitrogen. Total RNA was extracted using TRIzol® (Invitrogen Cat. No. 15596-018), and cleaned using Qiagen RNeasy Clean-Up protocol. Invitrogen SuperScript Direct cDNA Labeling System (Cat# L1015-01) was used for the *PDS* microarray study. Quality and quantity of RNA was checked on a 1% agarose gel, Shimadzu spectrophotometer, or Agilent 2100 Bioanalyzer and cy-dye labeled cDNA was quantified using a Beckmann spectrophotometer. As a control for both microarray studies, RNA from GFP-transfected plants was isolated, quantified, reverse transcribed and labeled with cy5 dye using the same procedures. Equal amounts of labeled treated and control cDNA were mixed and hybridized in replicate to 10K potato cDNA microarrays from TIGR (The Institute for Genomic Research). Hybridization and post-hybridization washes were performed using recommended hybridization conditions found in protocols developed by TIGR. A detailed description of TIGR Potato Microarray optimized methods, the array design, and the cDNA description file used for this study (GenePix Array List, GAL file versions 1 and 2) can be found at the following URL:

http://www.tigr.org/tdb/potato/microarray_comp.shtml.

Scanning of the microarrays for the *crtB* experiments was performed using an Affymetrix 286 scanner. Scanning of the microarrays for the *pds* experiments was performed using the BioRad VersArray ChipReader. Raw signal data was combined into text files that were imported into GeneSpring (Agilent, formerly Silicon Genetics) software for background subtraction, normalization by LOWESS and analysis. Gene lists were generated for 2-fold upregulated genes

3.5.4 Quantitative Real-time PCR (QRT-PCR) Primer Design

QRT-PCR primer sets were designed using BioRad's Beacon Designer 2.1. Sense and antisense primers for quantitative real-time PCR for *psy* and *pds* were derived from U.S. patent #5,539,093, sequence #1 and sequence #3, respectively. The forward primer for phytoene synthase is *Nb*Psy1_F (5' GCTGGTACGGTTGGGTTGAT 3'); reverse primer for phytoene synthase is *Nb*Psy1_R (5' GCATGTGCTAATTCATCTTGAGGT 3'), product length = 191 bp, Tm = 86.1°C. *PDS* primer set #1 (Figure 2 and 5) amplifies a region of *N. benthamiana pds* that has homology to the viral vector tomato *pds* insert. The forward primer for phytoene desaturase is *Nb*Pds3_F1 (5'

CGGTTTAAGTGTTAAGGACTGGAT 3') and the reverse primer is *Nb*Pds3_R1 (5' AGCTCGTCAGGGTTTATGAAGT 3'), product length = 111 bp, Tm = 85.6° C. Primer set #2 was designed to a region of endogenous *pds* from position 483 to position 660. The forward primer is *Nb*Pds3_F2 (5' TGGGGCATAAGTTAAGGATTCG 3') and the reverse primer is *Nb*Pds3_R2 (5' TTAGTTGGGCGTGAGGAAGT 3'), product length = 178 bp, Tm = 86.3°C.

Several sets of primers for controls were used: ribulose-1,5-bisphosphate carboxylase (rubisco) small subunit (*Nicotiana sylvestris* GenBank #X01722) forward primer is RubSSU_F (5' ACAAGAAGAAGTACGAGACTCTCT 3') and reverse primer is RubSSU_R (5' CGAACATAGGTAGCTTCCACATG 3'), product length = 204, Tm = 87.1°C; ubiquitin (*N. benthamiana* GenBank #CK294769) forward primer is *Nb*UBI_F (5' CAACATCCAGAAGGAGTCTACC 3') and ubiquitin *Nb*UBI_R (5' GCCAGCGAAAATCAACCTCT 3'), product length = 193 bp, Tm = 85°C; and 60S Ribosomal Protein RPL37a_F (5' AGGTTAGCCAGCATAGCAAGT 3') and 60S Ribosomal ProteinPL37a_R (5' CCGCAATCTTTACATCCCCAAA 3'), product length = 94, Tm = 84.5°C.

3.5.5 cDNA Synthesis and QRT-PCR Assays

RNA that was extracted for microarray studies at 10 dpi was digested with amplification grade DNase I (Invitrogen Cat. No. 18068-015) and used for first strand cDNA synthesis for QRT-PCR assays. cDNA was synthesized using iScript cDNA Synthesis kit (BioRad Catalog #170-8890) for treated and control plants, in which RNA is primed with oligo dT₍₂₀₎ and random primers. A ten-fold dilution series was prepared for standard curves. Reaction mixtures for standards and unknowns were comprised of BioRad SYBR Green Supermix, cDNA template, and QRT-PCR primers at 200 nM concentration, and applied to a 96-well plate. QRT-PCR and melt curve reactions were performed on a BioRad

iCycler using the thermal protocol: Cycle 1: 3 mins at 95°C; Cycle 2: 40 repeats of 10 sec at 95°C, 15 sec at optimum Tm of primers; Cycle 3: 1 min at 95°C; Cycle 4: 1 min at 55°C; Cycle 5: 80 repeat of 10 sec at 55°C, increasing 0.5°C. Efficiencies were determined for target and reference genes, when possible, and Pfaffl's method of calculating fold change ratios was used (Pfaffl, 2001).

3.6 ACKNOWLEDGEMENTS

The authors wish to thank Large Scale Biology Corporation (LSBC); Stan Kwang and Jon Miyake, at BioRad, for help with primer design, and technical assistance; and the USDA Special Grants Program for Tropical and Subtropical Agriculture, Agreement # 2002-34135-12791. The authors also wish to thank the faculty and staff at the University of Hawaii at Manoa Biotechnology Core Facility for use of the Affymetrix scanner and BioRad iCycler; the faculty and staff at the Hawaii Institute of Marine Biology (HIMB) Core Facility (Coconut Island) for the use of the VersArray ChipReader, and the faculty and staff at the Research Retrovirology Laboratory (RRL) at Leahi Hospital, Oahu, for the use of the Beacon Designer 2.1 primer design software. A very special thank you— Malo 'aupito—is given to Dr. Pakieli Kaufusi for his unfailing patience, interest and assistance with all aspects of this project.

3.7 REFERENCES

Bramley, P. M. (2002) Regulation of carotenoid formation during tomato fruit ripening and development, *J Exp Bot* 53(377): 2107-13.

Breitenbach, J., Zhu, C. and Sandmann, G. (2001) Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors, *J Agric Food Chem* 49(11): 5270-2.

Busch, M., Seuter, A. and Hain, R. (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco, *Plant Physiol* 128(2): 439-53.

Corona, V., Aracri, B., Kosturkova, G., Bartley, G. E., Pitto, L., Giorgetti, L., Scolnik, P. A. and Giuliano, G. (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development, *Plant J* 9(4): 505-12.

Cunningham, F. X. and Gantt, E. (1998) Genes and Enzymes of Carotenoid Biosynthesis in Plants, *Annu Rev Plant Physiol Plant Mol Biol* 49: 557-583.

Fitzmaurice W. P., Hellmann G. M., Grill L. K., Kumagai M. H., della-Cioppa, G.
R. (1996) DNA sequences encoding enzymes useful in carotenoid biosynthesis, USPTO
Vol. 5,539,093, United States: Large Scale Biology Corporation (Vacaville, CA).

Giuliano, G., Al-Babili, S. and von Lintig, J. (2003) Carotenoid oxygenases: cleave it or leave it, *Trends Plant Sci* 8(4): 145-9.

Giuliano, G., Bartley, G. E. and Scolnik, P. A. (1993) Regulation of carotenoid biosynthesis during tomato development, *Plant Cell* 5(4): 379-87.

Han, S. Y., Kitahata, N., Sekimata, K., Saito, T., Kobayashi, M., Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshida, S. and Asami, T. (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants, *Plant Physiol* 135(3): 1574-82.

Hirschberg, J. (2001) Carotenoid biosynthesis in flowering plants, *Curr Opin Plant Biol* 4(3): 210-8.

Kubota, K., Tsuda, S., Tamai, A. and Meshi, T. (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing, *J Virol* 77(20): 11016-26.

Kumagai, M. H., Busto, J. L., Donson, J., della-Cioppa, G., Selsted, M., Grill, L. K., Bouvier, F. and Camara, B. (2005) Production of rabbit NP1 defensin in transfected plants by an RNA viral vector using an orange visible marker, *Submitted to Plant Journal for publication*.

Kumagai, M. H., della-Cioppa G. R., Donson J., Harvey D. A., Grill L. K. (1999) Cytoplasmic inhibition of gene expression, *USPTO* patent #5,922,602, United States: Large Scale Biology Corporation (Vacaville, CA). Kumagai M. H., della-Cioppa G. R., Donson J., Harvey D. A., Grill L. K. (2004) Cytoplasmic inhibition of gene expression, *USPTO* patent #6,720,183, United States: Large Scale Biology Corporation (Vacaville, CA).

Kumagai, M.H., della-Cioppa, G. R., Erwin, R. L., McGee, D. R. (2002) Method of compiling a functional gene profile in a plant by transfecting a nucleic acid sequence of a donor plant into a different host plant in an anti-sense orientation, *USPTO* patent # 6,426,185, United States:Large Scale Biology Corporation (Vacaville, CA).

Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K. and Grill, L.
K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, *Proc Natl Acad Sci U S A* 92(5): 1679-83.

Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, V. F. and Dinesh-Kumar, S. P. (2004) Virus Induced Gene Silencing of a DEFICIENS Ortholog in *Nicotiana benthamiana*, *Plant Mol Biol* 54(5): 701-11.

Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, *Nucleic Acids Res* 29(9): e45.

Simkin, A. J., Breitenbach, J., Kuntz, M. and Sandmann, G. (2000) In vitro and in situ inhibition of carotenoid biosynthesis in *Capsicum annuum* by bleaching herbicides, *J Agric Food Chem* 48(10): 4676-80.

Simkin, A. J., Zhu, C., Kuntz, M. and Sandmann, G. (2003) Light-dark regulation of carotenoid biosynthesis in pepper (*Capsicum annuum*) leaves, *J Plant Physiol* 160(5): 439-43.

Taliansky, M., Kim, S. H., Mayo, M. A., Kalinina, N. O., Fraser, G., McGeachy, K.
D. and Barker, H. (2004) Escape of a plant virus from amplicon-mediated RNA silencing is associated with biotic or abiotic stress, *Plant J* 39(2): 194-205.

Thelander, M., Narita, J.O., Gruissem, W. (1986) Plastid differentiation and pigment biosynthesis during tomato fruit ripening., *Current Topics in Plat Biochemistry and Physiology* 5: 128-141.

Voinnet, O., Pinto, Y. M. and Baulcombe, D. C. (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants, *Proc Natl Acad Sci U S A* 96(24): 14147-52.

Wetzel, C. M. and Rodermel, S. R. (1998) Regulation of phytoene desaturase expression is independent of leaf pigment content in *Arabidopsis thaliana*, *Plant Mol Biol* 37(6): 1045-53.

Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible *Arabidopsis thaliana* plants, *Plant J* 33(2): 271-83.

CHAPTER 4. TRANSCRIPTIONAL CHANGES IN THE ARF MULTIGENE FAMILY INDUCED BY TOBAMOVIRAL TRANSFECTION

Busto JL¹, Kaufusi PH² and Kumagai MH³. University of Hawaii at Manoa, Department of Plant and Environmental Protection Sciences¹ and Department of Molecular Biosciences and Bioengineering³, Leahi Hospital, Department of Retroviral Studies² Honolulu, Hawaii.

FOREWORD

ADP-ribosylation factors (ARFs) are members of a multigene family of GTP-binding proteins that are highly conserved at the nucleotide level across the kingdoms. In plants, ARF-1 is known to have a role in membrane trafficking, recruiting coatomer coats, and interacting with phospholipase D in signaling pathways. In a forward genomics screen using recombinant *tobacco mosaic virus* vectors, Kumagai *et al.* demonstrated that an *Arabidopsis thaliana ARF-1* expressed in antisense orientation leads to a severely stunted phenotype in *Nicotiana benthamiana* plants (U. S. Patent #6,426,185).

My contributions are an extension of this work to explore the use of viral vectors in a functional genomic study of a multigene family. My experiments were designed to understand the increasing severity of the dwarf phenotype by examining the transcriptional changes induced in ARF_{as} -transfected *N. benthamiana* plants. Using cDNA microarray and quantitative real-time PCR analyses, a time-course investigation was conducted over a 20-day period, in parallel with a Western blot analysis, to determine the levels of *ARF*-1 mRNA and protein, as well as to examine changes in transcript accumulation of other genes.

4.1 ABSTRACT

ADP-ribosylation factors (ARFs) are members of a multigene family of GTP-binding proteins that are highly conserved at the nucleotide level across the kingdoms. In plants, ARF-1 is known to have a role in membrane trafficking, recruiting coatomer coats, and interacting with phospholipase D in signaling pathways. A forward genomics screen using recombinant tobacco mosaic virus vectors revealed that an Arabidopsis thaliana ARF-1 expressed in antisense orientation leads to a severely stunted phenotype in Nicotiana benthamiana plants. To understand changes in gene expression induced by tobamoviral transfection, transcriptional profiling was performed using a heterologous cDNA microarray and quantitative real-time PCR. A microarray time-course analysis shows that transcripts of the viral vector ARF insert accumulate to high levels in the plant, indicating that the virus is escaping RNA silencing. Over a 20-day period, there is an accumulation of endogenous plant transcripts that have a gene expression pattern that parallels that of the viral vector ARF transcript. Detection of ARF proteins by Western analysis shows that ARF protein levels gradually decline and that all ARF family members are knocked down by 20 days post-inoculation. Phenotypically, the plant shows a progression in stunted leaf development and signs of necrosis at 20 dpi, at which point, 383 genes are downregulated. A Welch ANOVA identified 16 genes for further characterization that may play a role in G-protein signaling. This study demonstrates that viral vector technology can be combined with transcriptional profiling for a functional genomic analysis of a multigene family.

122

4.2 INTRODUCTION

Tobamoviral vectors have been developed for gene silencing studies, in addition to the heterologous expression of proteins. Transfected plants produce phenotypic or biochemical changes that result from endogenous gene silencing or overexpression. In forward genomic screens, construction of cDNA libraries in viral vectors can be used to systematically analyze large numbers of infected plants (Kumagai *et al.*, 2002; Baulcombe, 1999). By sequencing the nucleic acid insert in the cDNA viral vector, phenotypes can be associated with gene sequences. In this investigation, a gene from *Arabidopsis thaliana* encoding an ADP-ribosylation factor (*ARF-1*) in the antisense orientation was identified in a forward genomics screen (Kumagai, 2002).

The *Arabidopsis* genome contains 93 genes that encode small GTP-binding proteins, including RAB, RHO, RAN and ARF GTPases (Vernoud *et al.*, 2003). These proteins function as molecular switches that cycle between "active" and "inactive" states by binding to and hydrolyzing GTP. ARFs are highly conserved at the nucleotide level among mammals (Price *et al.*, 1996) and other eukaryotic organisms (Kahn *et al.*, 1991). In plants, published reports have focused mainly on the role of ARF within the secretory pathway, deciphering its role in intracellular trafficking (Memon, 2004). Studies conducted in *A. thaliana* protoplasts using dominant-negative mutant studies implicate ARF-1, but not ARF-3 in intracellular trafficking (Lee *et al.*, 2002) and in *Nicotiana* protoplasts, dominant-negative mutants demonstrate a role for ARF-1 in the vacuolar-

sorting route (Pimpl *et al.*, 2003). In *Arabidopsis* and tobacco-cultured cells, dominantnegative mutants reveal ARF's role in the maintenance of the Golgi organization (Takeuchi *et al.*, 2002). Expression of ARF-1 in an antisense orientation in *Solanum tuberosum* results in alteration in plant phenotype, an increase in starch accumulation in tubers, and an increase in glucose synthesis in sink organs. Repression of ARF in potato results in 14-3-3 gene activation (Zuk *et al.*, 2003).

In mammals, ADP ribosylation factors function in a number of different roles in addition to its role in the secretion. ARF-1 is known to participate in actin remodeling, pathogenic mechanisms, cytoskeletal organization, and signal transduction (Randazzo *et al.*, 2000). It also functions in cell proliferation and is highly studied for its role in cancer development (Colicelli, 2004; Randazzo *et al.*, 2000; Zuk *et al.*, 2003). In addition to their role in secretion, plant ARFs may also function as targets of signal transduction in the cell periphery, as is reported for mammalian ARFs. In this investigation, microarrays will be used to filter the global gene expression profile to a small subset of genes to conduct further studies related to ARF's role in signal transduction.

The use of microarrays in functional genomics studies (Stuart *et al.*, 2003) is based on the hypothesis that genes traveling in the same pathway will show similar gene expression changes when a system is perturbed. In this investigation, this "guilt by association" approach (Quackenbush, 2003) was used to analyze gene expression changes occurring in plants transfected with antisense *ARF* to identify genes associated with G-protein signaling. Plants were studied over time using microarray and quantitative real-time PCR technologies to understand the role of the ARF family and to associate phenotype with gene expression changes. In addition, the impact of the viral vector as it replicates and accumulates its *ARF* antisense transcript was evaluated.

4.3 RESULTS

4.3.1 Construction of an *Arabidopsis thaliana* cDNA Library in an RNA Viral Vector

An *Arabidopsis thaliana* CD4-13 cDNA library (*Arabidopsis* Biological Resource Center) with inserts of 0.5-1 kb was digested with *Not*I, and subcloned into the *tobacco mosaic virus* vector, pBS740, under the transcriptional control of a tobamovirus subgenomic promoter. Following transformation, approximately 2000 recombinant plasmid DNAs were isolated from C600 cells from overnight cultures using a BioRobot (Qiagen), and infectious RNAs from 430 independent clones were directly applied to the leaves of *N. benthamiana* plants. One to two weeks after inoculation, transfected plants were visually monitored for changes in growth rates, morphology, and color. Plants that were severely stunted were selected for further analysis.

4.3.2 Forward Genomics Screen Reveals a Gene Encoding a GTP Binding Protein DNA sequence analysis of one of the clones causing a stunted phenotype contained an *Arabidopsis* GTP binding protein open reading frame (ORF) in the antisense orientation (Figure 4.1). A TMV-U1 subgenomic promoter of the viral vector that is located within the minus strand of the 30-kDa ORF controlled the synthesis of the CD4-13 antisense subgenomic RNA.

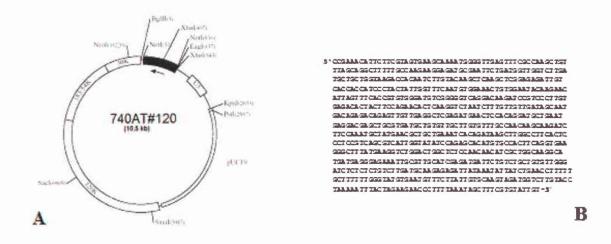


Figure 4.1. ADP Ribosylation Factor-1 Expression Vector. A) The viral vector 740 AT#120 contains the TMV-U1 126-, 183- and 30 kDa ORFs, the TMV U5 coat protein, T7 promoter, part of the pUC19 plasmid, and B) an *Arabidopsis thaliana ARF-1* cDNA in antisense orientation.

The 782 bp *Not*I fragment of 740 AT #120 containing the ADP-ribosylation factor (*ARF*) cDNA was characterized. Nucleotide sequence analysis and amino acid sequence comparisons were performed using DNA Strider, PCGENE and National Center for Biotechnology Information (NCBI) Blast programs. 740 AT #120 contained an open reading frame (ORF) in the antisense orientation that encodes a protein of 181 amino

acids with an apparent molecular weight of 20,579 daltons. The nucleotide sequence from 740 AT #120 exhibits a high degree of homology (81-84% identity and positive) to rice, barley, carrot, corn and *A. thaliana* DNA encoding *ARFs*. The amino acid sequence derived from 740 AT #120 exhibits an even higher degree of homology (96-98% identity and 97-98% positive) to ARFs from rice, carrot, corn and *A. thaliana*. The homology of viral vector *At ARF* to a cloned partial *N. benthamiana ARF* was 85%, and to *N. benthamiana* sequence (Genbank Accession #CN743800) was 84%. The phenotype of the plant suggested that this level of homology was sufficiently high for a virus-induced gene silencing (VIGS) knock-down of the transcript in the cytoplasm.

A heterologous potato cDNA microarray system developed by The Institute for Genomic Research (TIGR) was used to determine the impact of *ARF*_{as}-transfection on *N. benthamiana*. Because a highly homologous sequence was used to induce a VIGS phenotype, an analysis of the homology of *ARF-1* sequences of *N. benthamiana* and of the *Arabidopsis* viral insert to *Solanum tuberosum* was required (Table 4.1). There were five annotated potato clones, spotted in duplicate, that were identified as targets for *ARF* transcript hybridization. Although it was recognized that there were additional sequences on the microarray to which *ARF*s could potentially hybridize, there was not sufficient annotation to determine this. Limited information regarding *N. benthamiana ARF* mRNA sequences was found in several online databases, including NCBI, TIGR *Nb* Gene Index, and USPTO (published patents). This sequence information enabled an analysis of *N. benthamiana* homology to potato cDNA clones on the microarray.

S. tuberosum ARF clones on cDNA microarray	Viral vector At ARF-1 SeqID20, US Patent #6,426,185 (773 bp)	Nb ARF (391 bp); SeqID27, US Patent # 6,426,185*	Nb ARF (582 bp) (5') EST CN743800 SAL_US006xj22f1.a. [gi:47508797]	Nt ARF (553 bp) SeqID136, Patent #WO03012096
ARF (BQ508962)	442/528 (83%)	332/387 (85%)	449/488 (92%)	278/307 (90%)
ARF (BQ512403)	429/527 (81%)	328/390 (84%)	399/486 (82%)	211/252 (83%)
ARF (BQ519021)	315/376 (83%)	288/301 (95%)	283/328 (86%)	220/263 (83%)
Probable ARF (BQ117540)	43/53 (81%)	NS	NS	NS
ARF-like (ARL) (BQ121152)	NS	NS	NS	NS
740 AT #120 Viral Vector At ARF-1 (SeqID20)	100%	332/390 (85%)	412/487 (84%)	222/265 (83%)

Table 4.1. Identities from ARF BLAST Alignments. Homology of At ARF and Nicotiana ARF sequence to clones on the TIGR potato cDNA microarray. (*Same as SeqID14, US Patent # 6,700,040); "NS" indicates no significant homology by NCBI Blast (bl2seq) search. At (Arabidopsis thaliana); Nb (Nicotiana benthamiana); Nt (Nicotiana tabacum).

Over 80% homology over several hundred bases was found between the Arabidopsis and Nicotiana ARF sequences to three of the clones on the potato microarray (BQ508962, BQ512403, and BQ519021), suggesting that cross-hybridization could occur on the microarray. Previous studies have estimated that cross-hybridization can occur if related genes have greater than 70-80% sequence identity in *Arabidopsis* (Girke *et al.*, 2000) and about 80% identity in maize (McGonigle *et al.*, 2000).

4.3.3 Microarray Time Course Analysis

A time-course analysis was conducted at 4-day intervals over a 20-day period to investigate gene expression changes due to the effects of antisense *ARF-1*. Phenotypic appearance of the plant showed a progression of curled and stunted leaf development, and necrosis was apparent by 20 dpi (Figure 4.2). Leaves were harvested beginning at 4 dpi, and RNA was extracted for cDNA synthesis for both *ARF*-treated and GFP-treated plants.

Figure 4.2. Phenotype of *ARF*-1_{as}-transfected *N. benthamiana plants*. Clockwise, 4dpi, 8dpi, 12 dpi, 16 dpi, and 20 dpi (center).

Differentially labeled cDNA from treated and control plants was mixed and hybridized to replicate cDNA potato micorarrays from each time point. Microarrays were scanned using a BioRad VersArray ChipReader, and raw signal data for treated and control samples was imported into GeneSpring for analysis. Background signals were subtracted and normalization was performed using LOWESS (locally weighted scatterplot smoothing). Genes were filtered for expression and confidence, and lists were generated for genes exhibiting over 2-fold expression, p-value < 0.05. An analysis of all time points of a 2-fold or greater transcript accumulation revealed a short list of "upregulated" genes (Table 4.2). A multiple testing correction (Benjamini and Hochberg false discovery rate) was used minimize significant genes due to chance.

GENBANK ACCESSION #	TIGR ANNOTATION		
BQ519023	F5I14.2 gene product (Arabidopsis thaliana)		
BQ515350	ATP synthase beta subunit (Lycopersicon esculentum)		
BQ508962 ADP Ribosylation factor (Oryza sativa japonica cultiv			
BQ506989	Probable shaggy-like protein-kinase dzeta [imported] (Arabidopsis thaliana)		
BQ511644	1644 similar to UP Q8X085 (Q8X085) Related to pre-mRNA splic SRp75 (Predicted protein), partial (6%) EST619059		
BQ514939 ATP synthase beta subunit (<i>Primula gaubaeana</i>)			
BQ519021 ADP-ribosylation factor [imported], pepper			
BQ512403	ADP-ribosylation factor [imported], rice		

Table 4.2. Upregulated genes in ARF_{as} -treated plants. Potato clones showing 2-fold or greater hybridization of *N. benthamiana* transcript for all time points, t-test p-value < 0.05. The cross-gene error model was active. The Benjamini and Hochberg MTC is a false discovery rate type of error control.

Three clones on the potato array (BQ508962, BQ519021, and BQ512403) with ARF annotations showed high signal intensity levels over time compared to GFP-transfected controls. Transcripts from transfected *N. benthamiana* hybridized to these clones and were progressively and significantly elevated until 20 dpi, at which point accumulation dropped (Table 4.3). It appeared that viral vector transcripts were hybridizing to the ARF clones on the microarray.

DAL DNA CL	Normalized Ratio (p-value)							
Potato cDNA Clone	4dpi	8 dpi	12 dpi	16 dpi	20 dpi			
ARF (BQ508962), homology to rice	15 (0.17)	16 (0.01)	63 (0.0005)	310 (0.05)	48 (0.29)			
ARF (BQ512403), homology to rice	10 (0.23)	13 (0.002)	128 (0.07)	92 (0.05)	5 (.71)			
ARF (BQ519021), homology to pepper	11 (.23)	13 (0.03)	19 (0.17)	39 (0.07)	7 (0.64)			

Table 4.3. Normalized ratios of *ARF* transcripts in *ARFas*-transfected plants compared to GFP-transfected plants. Signal intensities were normalized using LOWESS (GeneSpring).

ARF (BQ508962) was selected for further analysis, and a condition tree of "like ARF" was generated (Figure 4.3) to determine plant genes that paralleled the accumulation of virus-derived transcripts.

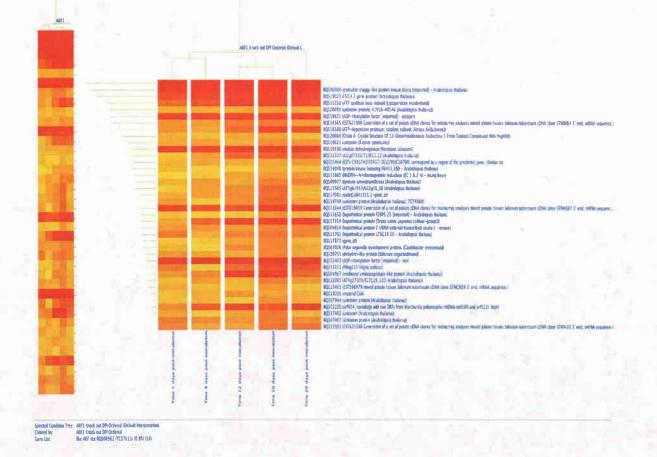


Figure 4.3. Condition tree of "Like ARF".

Genes with an expression pattern similar to ARF over the 20-day period were clustered using a similarity measure for standard correlation. Table 4.4 shows a list generated by a K-means clustering of "Like ARF (BQ508962)" based on the log of ratio mode (weight 1.0), for five clusters.

set1						
BQ111357	At2g07350/T13E11.12 (Arabidopsis thaliana)					
BQ111885	NADPHferrihemoprotein reductase (EC 1.6.2.4) - mung bean					
BQ113030	malonyl CoA					
	ESTs C99174(E10437) D22295(C10709) correspond to a region of the					
BQ505464	predicted gene.~Similar to					
BQ509977	tyrosine aminotransferase (Arabidopsis thaliana)					
	orf454; homology with two ORFs from Marchantia polymorpha mtDNA (orf169					
BQ511220	and orf322) high					
set2						
BQ112065	AT4g27500/F27G19_100 (Arabidopsis thaliana)					
	EST598979 mixed potato tissues Solanum tuberosum cDNA clone STMCN39					
BQ113403	5' end, mRNA sequence.					
BQ120092	unknown protein; 41916-40546 (Arabidopsis thaliana)					
	Chain A Crystal Structure Of 12-Oxophytodienoate Reductase 1 From Tomato					
BQ120669	Complexed With Peg400					
BQ506989	probable shaggy-like protein kinase dzeta [imported] - Arabidopsis thaliana					
BQ507944	unknown protein (Arabidopsis thaliana)					
	EST621980 Generation of a set of potato cDNA clones for microarray					
	analyses mixed potato tissues Solanum tuberosum cDNA clone STMIM64 5"					
BQ514565	end, mRNA sequence.					
BQ519021	ADP-ribosylation factor [imported] - pepper					
BQ519023	F5I14.2 gene product (Arabidopsis thaliana)					
set3						
BQ117081	emblCAB41315.1~gene_id					
BQ117354	hypothetical protein (Oryza sativa (japonica cultivar-group))					
BQ117872	gene id					
BQ504867	methionyl aminopeptidase-like protein (Arabidopsis thaliana)					
BQ507026	Polar organelle development protein. (Caulobacter crescentus)					
BQ512403	ADP-ribosylation factor [imported] - rice					
BQ513565	AT5g61910/k22g18_30 {Arabidopsis thaliana}					
BQ515350	ATP synthase beta subunit {Lycopersicon esculentum}					
set4	An Synthase bela Subdam (E) coperation eachemany					
BQ119190	malate dehydrogenase (Nicotiana tabacum)					
BQ119621	unknown (Ricinus communis)					
BQ120751	dehydrin-like protein (Solanum sogarandinum)					
BQ504814	hypothetical protein 2 (rRNA external transcribed spacer) - mouse					
BQ507407	Unknown protein (Arabidopsis thaliana)					
60307407	EST619059 Generation of a set of potato cDNA clones for microarray					
	analyses mixed potato tissues Solanum tuberosum cDNA clone STMHS87 5					
DOEAACAA	end, mRNA sequence.					
BQ511644						
BQ511701	hypothetical protein L73G19.50 - Arabidopsis thaliana					
BQ514048	protein kinase homolog F6H11.160 - Arabidopsis thaliana					
	EST623398 Generation of a set of potato cDNA clones for microarray					
	analyses mixed potato tissues Solanum tuberosum cDNA clone STMIV20 5					
BQ515983	end, mRNA sequence.					
set5						
BQ119748	unknown protein (Arabidopsis thaliana); TC74068					
BQ508962	ADP-ribosylation factor (Oryza sativa (Japonica cultivar-group))					
BQ511551	PBng110 {Vigna radiata}					
BQ511652	hypothetical protein F20P5.25 [imported] - Arabidopsis thaliana					
BQ516388	ATP-dependent protease; catalytic subunit (Atropa belladonna)					
BQ517402	unknown (Arabidopsis thaliana)					

Table 4.4. Gene list based on K-means clustering of "Like ARF (BQ508962)"

An analysis of downregulated genes was also conducted. At 20 dpi, downregulated genes cluster into 5 distinct sets (Figure 4.4). Between 16 and 20 dpi, endogenous plant gene transcript levels drop sharply in all sets, paralleling the progressively stunted phenotype seen in the plant.

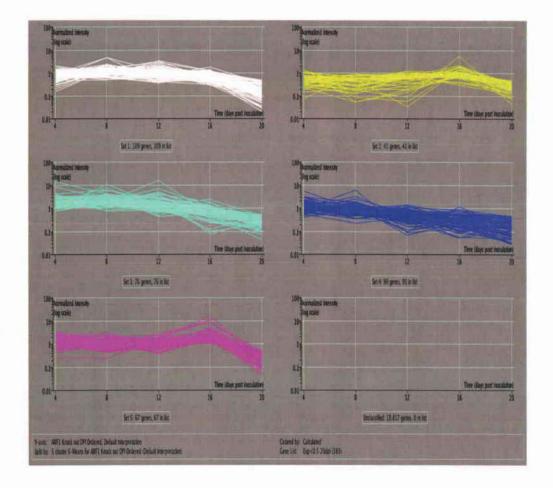
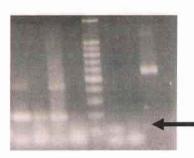


Figure 4.4. Downregulated genes, 20 dpi. Genes downregulated by *ARF* as treatment cluster into 5 distinct groups.

Set 5 of the cluster was selected for further analysis. A Welch analysis of variance (ANOVA), a parametric test, in which variances are not assumed equal, was performed to


determine genes at 20 dpi that have statistically significant differences from other time points (Table 4.5). This restriction tested 67 genes, with about 3 genes expected to pass the restriction by chance, using a p-value cutoff of 0.05, and yielded a list of 16 genes that are targeted for further characterization.

BQ114084	1.06E-04	BURP domain-containing protein {Bruguiera gymnorrhiza}		
BQ113521	0.00158048	50S ribosomal protein L29 (Boehm and Bonifacino, 2001)		
BQ113359	0.0057062	Chlorophyll A-B binding protein 13 chloroplast precursor (LHCII type III CAB 13). [Tomato]		
BQ120697	0.00942126	Ribulose bisphosphate carboxylase/oxygenase activase chloroplast precursor (RuBisCO activase) (RA).		
BQ113095	0.01147712	H-Protein precursor {Flaveria pringlei}		
BQ120783	0.01346456	unknown {Arabidopsis thaliana}; TC65789		
BQ115111	0.02458749	acyl CoA reductase-like protein - Arabidopsis thaliana		
BQ515352	0.02706783	photosystem II protein X precursor - Arabidopsis thaliana		
BQ509988	0.02769142	superoxide dismutase (EC 1.15.1.1) (Fe) - curled-leaved tobacco		
BQ115182	0.0306387	unknown protein {Arabidopsis thaliana}		
BQ113829	0.03450371	unknown protein {Arabidopsis thaliana}		
BQ119924	0.03467785	EST605500 mixed potato tissues Solanum tuberosum cDNA clone STMEN55 5' end, mRNA sequence.		
BQ114077	0.03814301	Glycerol-3-phosphate dehydrogenase [NAD(P)+] (EC 1.1.1.94) (NAD(P)H- dependent glycerol-3-phosphate		
BQ515383	0.04117716	putative 60S RIBOSOMAL PROTEIN L36 {Oryza sativa (japonica cultivar- group)}		
BQ118924	0.0430134	oligouridylate binding protein {Nicotiana plumbaginifolia}; TC58199		
BQ513474	0.04482397	EST620889 Generation of a set of potato cDNA clones for microarray analyses mixed potato tissues Solanum tuberosum cDNA clone STMIF38 5' end, mRNA sequence.		

Table 4.5. Welch ANOVA of Downregulated Cluster, 20 dpi, Set 5

4.3.4 Quantitative Real-Time PCR Assays

ARF1_{as}-transfection of plants produces an antisense ADP-Ribosylation Factor 1 that was predicted to cause a knock-down of endogenous transcript in the cytoplasm, based on the stunted appearance of the plant. However, microarray analysis shows that levels of ARFs are elevated over a twenty-day post-inoculation period compared to the GFP-transfected control plants. It was recognized that hybridization of the viral vector may have contributed to elevated levels in the microarray studies. To determine whether ARF-1 endogenous transcripts were being degraded by VIGS, quantitative real-time PCR (QRT-PCR) primers were designed such that they would not amplify the viral vector insert, using sequence information from the potato BQ508962 ARF rice ORF. The forward primer had 100% alignment with Nb ARF CN743800 and Nt ARF, and the reverse primer showed 95% alignment with Nt ARF. The QRT-PCR primers did not show significant homology by NCBI BLAST alignment to the 740AT #120 viral vector ARF insert. A 1.5% agarose gel electrophoresis of reverse transcription-PCR (RT-PCR) amplified products demonstrates that the QRT-PCR primers amplify the ARF_{as}-treated plant cDNA, but not the viral vector cDNA plasmid (Figure 5, lanes 6 and 7). To test the quality of the treated and control cDNA, primers that amplify ubiquitin were used, producing a 200 bp amplicon (Figure 4.5, lanes 1-4).

Lane 6: 108 bp expected QRT-PCR amplicon

Figure 4.5. 1.5% Agarose Gel Electrophoresis Gel of Reverse Transcription PCR reaction products. Performance of QRT-PCR target and reference primers in $ARF-1_{as}$ transfected *Nb* plants at Tm of 58C. Lanes 1-4, QRT ubiquitin reference primers as follows: Lane 1) Nb- ARF_{as} -transfected cDNA; Lane 2) Nb GFP-transfected cDNA; Lane 3) Nb WT cDNA; Lane 4) No template control (water). Lanes 6-9, QRT ARF1 primers as follows: Lane 6) *Nb* ARF-1_{as}-transfected; Lane 7) Viral vector 740 AT #120; Lane 8) Viral vector 740 AT #120 amplified with cloning primers, ARF1M1S and ARF1A180A (amplicon = 540 bp); Lane 9) No template control (water). Lane 5 shows Promega 100 bp ladder.

A relative quantitative real-time PCR (QRT-PCR) was then performed at the Tm optimized in the RT reaction to examine the abundance of *ARF*-1 mRNAs in transfected plant leaves. cDNAs synthesized from RNA at 12 dpi from both *ARFas*- and GFP-transfected plants were used as template for standards and unknowns in the QRT reactions. Pfaffl method calculations (Pfaffl, 2001) that take into account efficiencies of amplification for both target and reference genes show a reduction of endogenous *ARF* compared to that of GFP-transfected controls. In *ARFas*-treated plants, efficiency of amplification of the target was 97.9% (correlation coefficient 0.998, slope –3.374). Efficiency of amplification of the reference gene could not be obtained. Calculations

using delta-delta Ct showed that transcript levels of endogenous *ARF* were 2.4x lower that level of ARF in control samples (Figure 4.6a). In a second QRT assay, efficiency of amplification of the target in *ARF*_{as}-treated plants was 98.5% (correlation coefficient 0.986, slope –3.358). Efficiency of amplification of the reference gene was 81% (correlation coefficient .992, slope –3.881). Calculations using the Pfaffl method showed that transcript levels of endogenous *ARF* were again, 2.4x lower that level of ARF in control samples (Figure 4.6b). Melt curve analyses show *ARF* amplification products melted at predicted Tm.

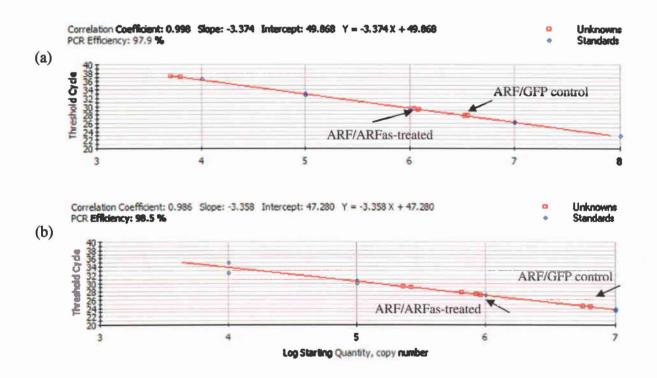


Figure 4.6. QRT-PCR graphical analysis of *ARF* transcript accumulation at 12 dpi, compared to GFP-transfected controls.

4.3.5 Western Blot Analysis

A new viral vector, TTOSA1 ARF1+ was constructed to overexpress *ARF*. TTOSA1 ARF+-transfected plants and uninfected wild type *N. benthamiana* that express basal levels of *ARF*-1 were selected as controls for a Western blot analysis. Reversetranscription assays were performed to verify transcript accumulation in the TTOSA1 ARF+-transfected plants (Figure 4.7). In addition, an *Arabidopsis thaliana* ARF-1 T-DNA insertion mutant (Salk _136703) was also assayed to determine the ability of the antibody to detect other members of the ARF family in a plant species.

Figure 4.7. 1% Agarose Gel Electrophoresis of Reverse-Transcription PCR products shows amplification of *ARF*-1 in overexpression (left), uninfected (central), and antisense-transfected (right) *N. benthamiana* plants using ARF1M1S and ARF1A180A primers. Lane 1) NEB 1 kb ladder; Lanes 2 and 3) *ARF*-1+ transfected plant cDNA (7 dpi); Lane 4) *Nb* uninfected WT cDNA; Lane 5) *ARF*-1+ transfected plant cDNA (35 dpi); Lane 6) *ARF*-1_{as} -transfected plant cDNA (8 dpi).

Crude protein extracts from each time point were assayed for the presence of ARF protein (Figure 4.8). The primary antibody used for the protein blots was a mouse

monoclonal that detects ARF1, ARF3, ARF5, and ARF6, and ARF4 to a lesser degree. This antibody is known to be effective in other species, but had not been tested in plants.

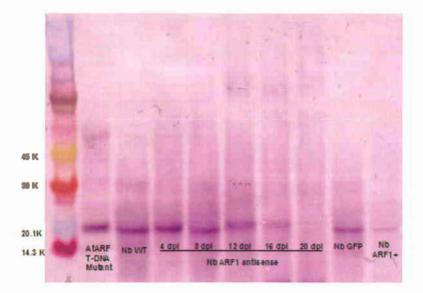


Figure 4.8. Western analysis of ARF1 leaf proteins (crude extract). Approximately 30 µg protein loaded per well. Lane 1. Molecular weight ladder (Amersham Biosciences RPN756PS Rainbow Marker) ; Lane 2. *Arabidopsis thaliana* ARF1 T-DNA Insertion Mutant (Salk _136703); Lane 3. *N. benthamiana* uninfected wild type control; Lanes 4-8. *N. benthamiana* transfected with *A. thaliana* antisense ADP-Ribosylation Factor 1, 4 dpi, 8 dpi, 12 dpi, 16 dpi, 20 dpi; Lane 9. *N. benthamiana* transfected with GFP, 16 dpi; Lane 10. Nb ARF1+ sense construct. (12.5% Polyacrylamide Gel Electrophoresis. Affinity Bioreagents ARF-1 mouse monoclonal primary antibody. Alkaline phosphatase secondary antibody.)

4.4 DISCUSSION

N. benthamiana plants develop a severely stunted phenotype of the newly developing leaves when transfected with a *tobamoviral* vector carrying an antisense insert of a partial cDNA of *ADP Ribosylation factor*-1 (*ARF*-1). This suggests that an *Arabidopsis* antisense transcript with homology to an endogenous target can hinder the expression of a gene in *N. benthamiana*. Transcriptional profiling was conducted in an attempt to correlate plant phenotype and gene function.

Information on the genetics of *N. benthamiana* is limited; however, USPTO, NCBI, and TIGR databases were useful sources of information for *ARF* gene sequences. Oligonucleotide-based GeneChipsTM and cDNA micorarrays are not commercially available for *N. benthamiana*. Instead, a heterologous potato cDNA microarray system from TIGR was employed, enabling a large amount of gene expression data to be extracted. Hybridization information provided insight into the *N. benthamiana* genome. By cross-referencing gene sequences of potato in the TIGR database to which treated plants hybridized, QRT-PCR primers were developed that amplify *ARF* transcripts in *N. benthamiana*. Therefore, target validation of the microarray data using QRT-PCR is facilitated. Amplification of transcripts in this plant also enables gene-specific information to be acquired in subsequent cloning and sequencing experiments. At 4, 8, 12, 16, and 20 days post-inoculation, RNA was extracted from transfected *N. benthamiana* plants for cDNA synthesis and hybridized to the potato microarrays. The cDNA microarray data showed that over time, ADP-ribosylation factors show the highest accumulation of transcript. While RNA was primed with oligo-d(T) to avoid synthesis of cDNA from the viral vector, microarray data suggested that the highly elevated levels of *ARF* transcript were due to viral vector contributions. It was also possible that other members in the ARF family that share homology to *ARF*-1 were hybridizing to the arrays.

To acquire additional information, QRT-PCR reactions were performed. Conventional reverse-transcription PCR (RT-PCR) determined that the QRT-PCR primers do not cause amplification of the viral vector *At ARF* insert. QRT-PCR results indicated that at 12 dpi, accumulation of endogenous *ARF*-1 transcript was 2.4-fold less than that of the GFP-transfected control plants. These results suggest that levels of *ARF*-*1* transcript are due to amplification of endogenous ARF-1, rather than from viral vector contributions. However, the possibility remains that *Nb* transcripts from other members of the ARF family are amplified. An additional consideration is that *tobamoviral* vectors designed to cause VIGS phenotypes may actually cause suppression of homology– dependent gene silencing due to their viral replicase protein. Additional QRT-PCR experiments at earlier time points would provide information about the progression of *ARF*-1 transcript degradation. Although there is probably no homology-dependent VIGS occurring in the GFPtransfected plant, RNA silencing of the viral genome may occur. In the ARF_{as} transfected plant, both VIGS and RNA silencing of the viral genome should be operating. It was expected that genes involved in homology-dependent silencing would show changes in expression levels throughout the time course. A virus-transfected plant was selected as a control in order to eliminate or at least minimize the effects of genes related to RNA silencing against the virus.

The phenotypes of both plants indicate high expression of the insert, and therefore viability of the virus. In addition, the transcript data from the microarray indicates a high level of accumulation of virus-derived *ARF* transcripts over time. Is there an impact of this transcript accumulation on endogenous gene expression? The microarray data would suggest so. Over time on the microarray, there is an increase in the accumulation of endogenous plant transcripts (Table 4) that have gene expression patterns that parallel the viral vector *ARF* transcript accumulation. A question arises as to whether changes in transcript levels reflect an induction by the virus in its attempt to escape silencing, or whether they are changing because of VIGS of endogenous *ARF*.

Western blot assays showed that over time there was a steady decline in levels of *ARF* protein. Available documentation on the use of the primary antibodies used in these protein experiments indicated that the ARF monoclonal antibody had not been tested in plant species. It was expected that protein levels in the *ARF* as-transfected plants would be knocked down. Therefore, uninfected wild type *N. benthamiana* plants were used as

controls to show that ARF proteins can be detected in plant species. In addition, *Arabidopsis* ARF-1 T-DNA insertion mutants were used to show that other ARF protein members could also be detected. In the *Nb*-transfection time course, the Western blot analysis showed that ARF proteins were detectable but steadily declining over a 16-day period, and that they were not detectable at 20 dpi. It is not clear whether the ARF-1 protein is produced over the course of the first 12 days, although by this point the transcript level had dropped over 2-fold. It is likely that the primary antibody also detected ARF-3, ARF-4, ARF-5, and ARF-6. It is clear, however, that the 740 AT #120 viral vector can cause a complete knock-down of the ARF protein family by 20 dpi. It appears that transfection with the new viral vector construct, TTOSA1 ARF1+ may also cause a knock-down of ARF protein, rather than the high levels expected due to overexpression. The phenotype appears as stunted as the antisense-transfection plants at 8 dpi, and Western analysis indicate that protein levels at 16 dpi are close to those at 12-16 dpi of the *ARF*_{as}-transfected plants.

Because no ARF proteins are detectable at the 20-day point, a further analysis to understand transcriptional changes between 16 and 20 dpi is warranted. There are 383 genes that are downregulated due to the *ARF*as-treatment at this time point that cluster into 5 distinct groups (Figure 4.5). Sixteen genes from set 5 (Table 4.5) showing statistically significant differences from other time points were identified for further characterization to shed light on the role of the ARF family in *N. benthamiana*. In conclusion, a *tobamoviral* transfection using a highly homologous *ARF* derived from *Arabidopsis* can effectively knock down production of an entire family of proteins in *N. benthamiana*. The effects of this knock-down on gene expression provides insight into the role that this family plays in the plant, and perhaps in other species, as well. In human studies where it is often difficult to study genes and gene families, plants could serve as a model for understanding gene and protein expression. When it desirable to knock down an entire family of proteins, studies using viral transfection have the advantage over those involving transgenic plants that require multiple genes to be transformed and often result in a lethal phenotype.

In the case of ARF, human and plant sequences have high homology at the nucleotide level. Ultraconserved elements in the human genome have been characterized, with orthologs present in rat, mouse, chicken and dog genomes, and many of the identified segments are also significantly conserved in fish (Bejerano *et al.*, 2004). These represent a class of genetic elements whose function and evolutionary origins have not yet been determined, although they appear to be involved in the regulation of transcription and development. Perhaps such regulatory elements have orthologs in plants. Plant transfections with human or other animal *ARF* sequences could provide insight into roles in these organisms as well.

4.5 EXPERIMENTAL PROCEDURES

4.5.1 Plasmid Constructions

An *Arabidopsis thaliana* cDNA library was constructed in a *tobamoviral* vector. Four *A. thaliana* cDNA libraries were obtained from the *Arabidopsis* Biological Resource Center (ABRC) and size-fractionated with inserts of 0.5-1 kb (CD4-13), 1-2 kb (CD4-14), 2-3 kb (CD4-15), and 3-6 kb (CD4-16). The *Arabidopsis thaliana CD4-13* cDNA library was digested with *Not*I. DNA fragments between 500 and 1000 bp were isolated by trough elution and subcloned into the *Not*I site of the tobacco mosaic virus vector, pBS740, placed under the transcriptional control of a tobamovirus subgenomic promoter. *E. coli* C600 competent cells were transformed with the pBS740 AT library and colonies containing *Arabidopsis* cDNA sequences were selected on LB Amp 50 ug/ml. Recombinant C600 cells were automatically picked using a Flexys robot (Genomic Solutions) and then transferred to a 96 well flat bottom block containing terrific broth (TB) Amp 50 ug/ml.

Digestion with *Not*I in most cases liberated the entire *A. thaliana* cDNA insert because the original library was assembled with *NotI* adapters. *Not*I is an 8-base cutter that infrequently cleaves plant DNA. In order to insert the *Not*I fragments into a transcription plasmid, the pBS735 transcription plasmid was digested with *PacI/Xho*I and ligated to an adapter DNA sequence created from the oligonucleotides 5'-TCGAGCGGCCGCAT-3' and 5'-GCGGCCGC-3'. The resulting plasmid pBS740 (Figure 4.1) contains a unique *Not*I restriction site for bi-directional insertion of *Not*I fragments from the CD4-13 library. Recovered colonies were prepared from these for plasmid minipreps with a Qiagen BioRobot 9600TM. The plasmid DNA preparations were performed on the BioRobot9600TM in a 96-well format and yielded transcription quality DNA. An *Arabidopsis* cDNA library was ligated into the plasmid and analyzed by agarose gel electrophoresis to identify clones with inserts. Clones with inserts are transcribed in vitro and inoculated onto *N. benthamiana*.

An *ARF-1* viral vector construct in the sense orientation was built using site-directed mutagenesis to amplify the 740 AT #120 insert. Forward Primer ARF1M1S (5' CACC GTCGACTGCAGCATG GGG TTG AGT TTC GCC AAG CTG TTT AGC 3') and reverse primer ARF1A180A (5'TCCCTAGGATCATGCCTTGCCAGCG ATGTTGTTGGAGAGCC 3') were used to re-orient the insert, which was then cloned into a linearized TTOSA1 APE pBAD viral vector with *Sal*I and *Avr*II restriction enzyme sites, creating TTOSA1 ARF-1+. The nucleotide sequencing of 740 AT #120 was carried out by dideoxy termination using double stranded templates (Sanger *et al.*, 1977).

4.5.2 Plant Treatments for Transcriptional Profiling and Protein Analyses

N. benthamiana plants were grown from seed and kept under lights at 25C. *In vitro* transcription reactions were performed for 740 AT #120 (T7 promoter), and for TTOSA1 APE pBAD and TTOSA1 ARF-1+ (SP6 promoter) using Ambion mMessage mMachine *in vitro* transcription kits. At the 4-6 leaf stage of development, two lower leaves were rub-inoculated with *in vitro* transcripts using carborundum. At 4, 8, 12, 16, and 20 days post-inoculation time points, *ARFas*- and GFP-transfected plant leaves displaying a

phenotype were harvested for RNA and protein extractions. Leaves from plants transfected with TTOSA *ARF*-1+ construct were harvested at 7 dpi for extraction of crude protein.

Seeds obtained from ABRC for ARF-1 T-DNA Insertion (Salk_136703) were surface sterilized, germinated on water agar, and transferred to 4-inch pots containing potting soil. Leaves were harvested and RNA extracted using Qiagen RNeasy kits. Reversetranscription PCR was performed using the following primers, to confirm the presence of the insertion: Left genomic primer (5' GGAATTTTTGGAGCCTCAAGATTGT 3'), Right genomic primer (5' TTCCGCAGAATCATCAACCATT 3'), and Left border primer of pROK2 (5' GCGTGGACCGCTTGCTGCAACT 3'). Plants were confirmed for the presence of the insertion by analyzing RT-PCR products on a 1% agarose gel electrophoresis (data not shown).

4.5.3 Labeling and Hybridization for cDNA microarrays

Total RNA was extracted using TRIzol® (Invitrogen Cat. No. 15596-018), and cleaned using Qiagen RNeasy Clean-Up protocol. Invitrogen SuperScript Direct cDNA Labeling System (Cat# L1015-01) was used to differentially label with fluorescent cyanine-3 (cy3) or cyanine-5 (cy5) dyes (Amersham, Cat Nos. PA53022. Quality and quantity of RNA was checked on a 1% agarose gel, and on a Shimadzu spectrophotometer. Cy-dye labeled cDNA was quantified using a Beckmann spectrophotometer. As a control for both microarray studies, RNA from GFP-transfected plants was isolated, quantified, 148 reverse transcribed and labeled with cy5 dye using the same procedures. Equal amounts of labeled treated and control cDNA were mixed and hybridized in replicate to 10K potato cDNA microarrays from TIGR (The Institute for Genomic Research). Hybridization and post-hybridization washes were performed using recommended hybridization conditions found in protocols developed by TIGR. A detailed description of TIGR Potato Microarray optimized methods, the array design, and the cDNA description file used for this study (GenePix Array List, GAL file versions 1 and 2) can be found at the following URL: http://www.tigr.org/tdb/potato/microarray_comp.shtml.

4.5.4 Microarray Scanning and Analysis

Scanning of the microarrays for the experiments was performed using the BioRad VersArray ChipReader. Raw signal data was combined into text files that were imported into GeneSpring (Agilent, formerly Silicon Genetics) software for background subtraction, normalization by LOWESS and analysis. Gene lists were generated for 2fold upregulated and downregulated genes.

K-means clustering of gene list "Like ARF (BQ508962)" was based on the following interpretation: ARF1 knock-down (default interpretation), Log of Ratio mode (weight 1.0). The parameters used were: number of clusters, 5; number of iterations, 100. The similarity measure was standard correlation. Downregulated genes were also clustered using K-means, with 5 clusters, 100 iterations, and a standard correlation similarity measure. A Welch ANOVA (parametric test, variances not assumed equal) was

performed on genes from set 5 of the downregulated clusters with statistically significant differences among the following groups based on values of 'Time': 12 days post inoculation, 16 days post inoculation, 20 days post inoculation, 8 days post inoculation, 4 days post inoculation; p-value cutoff 0.05, no multiple testing correction. This restriction tested 67 genes, with about 3.35 genes expected to pass the restriction by chance.

4.5.5 Quantitative Real-time PCR

QRT-PCR primers for both target and reference genes were designed using BioRad's Beacon Designer 2.1. Sense and antisense primers for quantitative real-time PCR for ARF-1 were derived from potato clone BQ508962 (ADP-Ribosylation Factor, rice). The forward primer for *ARF-1* is ARF1-1_F (GCCGAAATAACTGATAAGCTTGGA); reverse primer is *ARF*1_R (CCAATCAAGACCCTCATAAAGTCC), product length = 108 bp, product Tm = 86.3°C.

Primers for reference genes were aldehyde oxidase (BQ112643) and *Nb* phytoene synthase. Forward primer is 5' TTCGTCCAAAACATCTGGTGAAC 3' (23 bp), Tm=58.4°C, GC%=43.5; and reverse primer is 5'ACTGGTAATATTGCAGGGACATCT 3' (24 bp), Tm=58.5°C, GC%=41.7, product length=162, Tm=88.2°C. The forward primer for phytoene synthase is *Nb*Psy1_F 5' GCTGGTACGGTTGGGTTGAT 3'; reverse primer for phytoene synthase is *Nb*Psy1_R 5' GCATGTGCTAATTCATCTTGAGGT 3', product length = 191 bp, Tm = 86.1°C. Ubiquitin (*N. benthamiana*) forward primer is *Nb*UBI_F

150

5'CAACATCCAGAAGGAGTCTACC3' and ubiquitin *Nb*UBI_R 5'GCCAGCGAAAATCAACCTCT3', product length = 193 bp, Tm = 85°C.

Total RNA was digested with amplification grade DNase I (Invitrogen Cat. No. 18068-015) for first strand cDNA synthesis for QRT-PCR assays. cDNA was synthesized using iScript cDNA Synthesis kit (BioRad Cat. No. 170-8890) for treated and control plants, in which RNA is primed with oligo $dT_{(20)}$ and random primers. A ten-fold dilution series was prepared for standard curves. Reaction mixtures for standards and unknowns were comprised of BioRad SYBR Green Supermix (Cat. No. 170-8880), cDNA template, and QRT-PCR primers at 200 nM concentration, and applied to a 96-well plate. QRT-PCR and melt curve reactions were performed on a BioRad iCycler using the thermal protocol: Cycle 1: 3 mins at 95°C; Cycle 2: 40 repeats of 10 sec at 95°C, 15 sec at optimum Tm of primers; Cycle 3: 1 min at 95°C; Cycle 4: 1 min at 55°C; Cycle 5: 80 repeat of 10 sec at 55°C, increasing 0.5C. When efficiencies could be determined for target and reference genes, Pfaffl's method of calculating fold change ratios was used (Pfaffl, 2001 #64); otherwise, fold change was calculated using 2 ^(ΔCt).

4.5.6 Protein Isolation and Western Blot

Proteins were isolated from symptomatic leaves at each point in the time course for *ARF*-*I*-transfected plants using an extraction buffer (10 mM Tris.bis.propane (pH 6.0), 5 mM CaCl₂, and 10 mM β -mercaptoethanol). As a control, proteins were isolated from uninfected wild type plants and from TTOSA1 *ARF*+ -transfected plants. Proteins were also extracted from leaves of *Arabidopsis* T-DNA insertion mutant plants (Salk_136703) and used to determine ability of ARF-1 primary antibody to detect other members of the ARF family of proteins. Leaf material was massed and homogenized in liquid nitrogen using a mortar and pestle. Protein extraction buffer was added to the pulverized leaf powder in a 1:1 ratio. The mixture was centrifuged for 3 minutes at 14,000 rpm at 4°C. The supernatant was transferred to a new tube, and then centrifuged for 3 minutes at 14,000 rpm at 4°C.

Crude protein extracts were quantified using Bradford reagent (Sigma B6916), and electrophoresed on a NuPAGE 4-12% Bis-Tris gel in 1X MES SDS running buffer (500 mL) for about 2 hr. The proteins were transferred onto Hybond-ECL nitrocellulose membranes (Amersham Pharmacia Biotech) in 1X Tris-Glycine + 20% methanol, 1L. After transfer, the membrane was rinsed 2x with TTBS (Tween Tris-Buffer Saline, Tween-20 1:2000 TBS) before incubating in 5% BSA overnight at 4°C to block nonspecific binding. The membrane was washed 5x with TTBS (5 min per wash). After washing, the membrane was incubated for 3 hours with the appropriate primary antibody, ARF-1 mouse monoclonal (Affinity Bioreagents, Cat. No. MA3-060) that was diluted in TTBS containing 1% BSA. The membrane was then washed 3X with TTBS (5 min per wash). It was incubated with secondary antibody (goat antimouse) diluted in TTBS (1:5000) containing 1% BSA for 1 hour at room temperature. It was washed 3x with TTBS, incubated in the appropriate substrate for visualization, and detected by an alkaline phosphatase (AP) conjugate substrate kit.

4.6 ACKNOWLEDGEMENTS

The authors wish to acknowledge Large Scale Biology Corporation, and Tony Novelozo (Axiom, Davis) for the plant photographs. This work was supported in part by the USDA Special Grants Program for Tropical and Subtropical Agriculture, Agreement # 2002-34135-12791. The authors wish to thank Stan Kwang and Jon Miyake, at BioRad, for help with primer design, and technical assistance. The authors also wish to thank the faculty and staff at the University of Hawaii at Manoa Biotechnology Core Facility for use of the Affymetrix scanner and BioRad iCycler; the faculty and staff at the Hawaii Institute of Marine Biology (HIMB) Core Facility (Coconut Island) for the use of the VersArray ChipReader, and the faculty and staff at the Research Retrovirology Laboratory (RRL) at Leahi Hospital, Oahu, for the use of the Beacon Designer 2.1 primer design software.

4.7 REFERENCES

Baulcombe, D. C. (1999) Fast forward genetics based on virus-induced gene silencing, *Curr Opin Plant Biol* **2**, 109-113.

Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S. and Haussler, D. (2004) Ultraconserved elements in the human genome, *Science* **304**, 1321-1325.

Boehm, M. and Bonifacino, J. S. (2001) Adaptins: the final recount, *Mol Biol Cell* 12, 2907-2920.

Colicelli, J. (2004) Human RAS superfamily proteins and related GTPases, *Sci STKE*250, RE13.

Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. (2000) Microarray analysis of developing *Arabidopsis* seeds, *Plant Physiol* **124**, 1570-1581.

Kahn, R. A., Kern, F. G., Clark, J., Gelmann, E. P. and Rulka, C. (1991) Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins, *J Biol Chem* **266**, 2606-2614.

Kumagai, M. H., della-Cioppa, G.R., Erwin, R., McGee, D. R. (2002) Method of compiling a functional gene profile in a plant by transfecting a nucleic acid sequence of a

donor plant into a different host plant in an anti-sense orientation, USPTO Patent # 6,426,185, United States: Large Scale Biology Corporation (Vacaville, CA).

Lee, M. H., Min, M. K., Lee, Y. J., Jin, J. B., Shin, D. H., Kim, D. H., Lee, K. H. and Hwang, I. (2002) ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis, *Plant Physiol* **129**, 1507-1520.

McGonigle, B., Keeler, S. J., Lau, S. M., Koeppe, M. K. and O'Keefe, D. P. (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize, *Plant Physiol* **124**, 1105-1120.

Memon, A. R. (2004) The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants, *Biochim Biophys Acta* **1664**, 9-30.

Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, *Nucleic Acids Res* **29**, e45.

Pimpl, P., Hanton, S. L., Taylor, J. P., Pinto-daSilva, L. L. and Denecke, J. (2003) The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole, *Plant Cell* **15**, 1242-1256. Price, S. R., Nightingale, M. S., Tsuchiya, M., Moss, J. and Vaughan, M. (1996) Interspecies relationships among ADP-ribosylation factors (ARFs): Evidence of evolutionary pressure to maintain individual identities, *Mol Cell Biochem* **159**, 15-23.

Quackenbush, J. (2003) Genomics. Microarrays--guilt by association, *Science* **302**, 240-241.

Randazzo, P. A., Nie, Z., Miura, K. and Hsu, V. W. (2000) Molecular aspects of the cellular activities of ADP-ribosylation factors, *Sci STKE* **59**, RE1.

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chainterminating inhibitors, *Proc Natl Acad Sci USA* 74, 5463-5467.

Stuart, J. M., Segal, E., Koller, D. and Kim, S. K. (2003) A gene-coexpression network for global discovery of conserved genetic modules, *Science* **302**, 249-255.

Takeuchi, M., Ueda, T., Yahara, N. and Nakano, A. (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and *Arabidopsis* cultured cells, *Plant J* **31**, 499-515.

Vernoud, V., Horton, A. C., Yang, Z. and Nielsen, E. (2003) Analysis of the small GTPase gene superfamily of *Arabidopsis*, *Plant Physiol* **131**, 1191-1208.

Zuk, M., Prescha, A., Kepczynski, J. and Szopa, J. (2003) ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers, *J Agric Food Chem* 51, 288-294.

CHAPTER 5. CONCLUSIONS

Specific issues in the development of a transcriptional profiling system were addressed in order to study the utility of plant viral vector technology in metabolic engineering and functional genomic applications. Reflecting upon my work in its entirety, I have synthesized evidence from the data and have drawn conclusions regarding the use of heterologous hybridizations, the choice of controls and the impact of the virus and the viral insert on transcript accumulation.

Initial studies of TTU51/CTP-*CrtB*-RZ-transfected *Nicotiana benthamiana* using wild type non-infected controls produced reliable signal data using heterologous cDNA microarrays for the hybridization of the related solanaceous species, *Nicotiana benthamiana* and *Solanum tuberosum*. Signal information for thousands of genes was obtained with the 10K potato microarrays. A particularly favorable finding was that transfected plants showed an increase in heat shock proteins compared to controls. This was consistent with published data that *tobamovirus*-infection in *Arabidopsis thaliana* upregulates heat shock genes as a defense response.

Table A3 in Appendix I depicts data for subsequent hybridizations that used GFPtransfected plants as controls. Microarray conditions were adjusted to optimize hybridization temperature, and to reduce the background signal, such that it could be subtracted out prior to analysis. Microarray #753 was a single sample; #677 and #681 were hybridized together; and slides #9733 - #9737 and #5146 were also hybridized together. When analyzed together, 112 genes show an upregulation in seven of nine biological replicate hybridizations, demonstrating a high level of precision. In addition, independent experiments using quantitative real-time PCR (QRT-PCR) validated microarray findings that phytoene synthase and phytoene desaturase transcript levels are elevated in TTU51/CTP-*CrtB*-RZ-transfected *Nicotiana benthamiana* compared to GFP-transfected controls. This supports the use of the TIGR 10K potato microarray as a reliable tool for the extraction of *N. benthamiana* gene expression data in transfected plants.

As discussed in Chapter 1, a virus-infected plant expressing green fluorescent protein (GFP) was selected as a control in an attempt to eliminate or minimize changes in gene expression that occur because of virus infection, and to understand the specific impact of the *crtB*, *pds* and *ARF1* insert sequences in the treatment groups. Microarray analyses showed that heat shock genes were no longer upregulated when these controls were employed.

An assumption was made that GFP expression does not interfere with endogenous gene expression, although a microarray analysis of a GFP-transfected plant using a wild type non-infected control plant was not performed. However, the data in this research show that the use of GFP-transfected plants as controls is not ideal, at least for investigations of the carotenoid pathway. Evidence from quantitative real-time PCR experiments (Chapter 3, Table 3.2) indicates that GFP production impacts on the transcript accumulation of phytoene desaturase (*pds*), showing a highly reduced level compared to that of uninfected *N. benthamiana*. Phenotypically, GFP-transfected plants

show a fairly normal growth and development pattern, but in natural light the sections of leaves that are expressing GFP actually appear lighter in pigmentation compared to sectors not expressing GFP. This may be indicative of a change in carotenoid levels. In addition, HPLC data show that there is a 30% reduction in the total measured carotenoids (nmol/g) of a GFP-transfected *N. benthamiana* plant compared to that of an uninfected plant (Appendix II).

It is unclear why GFP-transfected controls show levels of *pds* mRNA comparable to that in the *pds*_{as}-transfected plants. Carotenoids absorb in the 460-550 nm range, protecting chlorophylls from photobleaching. Wild type GFP absorbs light at wavelengths of 395 nm and 475 nm, and red-shifted GFP mutants absorb at 490 nm. If expression of the GFP protein aids in protecting chlorophylls from photo-oxidation, this may impact the transcription of genes encoding carotenoid biosynthesis enzymes.

What are the implications then for the microarray data? The white phenotype of a pds_{as} -transfected plant is apparently due to a drop in carotenoid levels that leads to a subsequent photobleaching of leaves and other organs. So it would be expected that enzymes downstream in the pathway would be affected. Microarray data in the pds_{as} -transfection study show that transcript levels did not significantly decrease for these enzymes. However, the data probably do not accurately reflect the actual levels of transcripts of the other enzymes, because of the masking effects of the GFP control. Additional quantitative real-time PCR assays using uninfected plant controls would shed light on the actual levels of carotenoid transcripts in the pathway.

If GFP-transfected plants were to be used as controls in future studies, I would recommend that microarray analyses be performed to better understand the effects of GFP expression on the investigated pathway, by hybridizing GFP-transfected plant cDNA to wild type non-infected plant cDNA. Alternatively, if wild type non-infected plants are selected as controls, additional information about VIGS could be explored, particularly if it is correlated with the timing of the appearance of the phenotype, as well as a profile of protein abundance.

The length of the viral vector insert also confounded results. If the goal is to query the expression of the endogenous plant gene that has a homologous counterpart in the viral vector, conclusions cannot be drawn from microarray data alone. Both *pds* and *ARF* antisense transfections resulted in high levels of the endogenous plant gene on the microarray. Further analyses using conventional reverse-transcription PCR (RT-PCR) and QRT-PCR assays were necessary to distinguish between endogenous plant gene and viral vector sequence contributions. In the experiments outlined in this dissertation, the viral vectors had very long inserts (600-800 bp), requiring a careful analysis of sequence homology among the various species, and limiting the possibilities for primer design. Vector sequences unexpectedly served as templates when synthesizing cDNAs using oligo $d(T)_{20}$ priming leading to 1) hybridization on the cDNA microarray, and 2) amplification in the real-time PCR reactions.

One alternative that would possibly prevent the hybridization of viral vector insert sequences on cDNA microarrays would be to construct the viral vectors with shorter inserted sequences. Very short direct inverted-repeat (IR) viral vector inserts {Lacomme, 2003 #68} leading to desired or even more effective phenotypes would not serve as effective templates for cDNA synthesis because of the folded nature of the IR. A shorter sequence would also open up more options for the design of the QRT-PCR primers to query the endogenous gene.

Another possibility would be to use an oligo-based array. More affordable options now exist for microarray studies. Combi-Matrix (<u>http://www.combimatrix.com/</u>) creates oligonucleotide custom arrays (902 or 12K) by synthesizing 35-40 bp sequences based on GenBank accession numbers on a 5x22mm semiconductor using an electrochemical detritylation process. The custom arrays are user-defined, so that viral sequences can be used as controls. Fragmentation of labeled cDNA is performed prior to hybridization. If insert sequence cDNA is synthesized from viral template it would potentially hybridize to the oligos on the array. However, positive signals from the virus controls would serve as a red flag, indicating the need for additional assays.

With respect to the plant's ability to launch an RNA-mediated defense against the virus, phenotypic observations and data from microarray and real-time PCR experiments show that the virus escapes degradation. Levels of viral transcript are highly elevated in both pds_{as} and ARF_{as} transfections, indicating virus viability. Phenotypes are not only

delayed, but they are prolonged. *Tobamoviruses* use the replicase protein to suppress RNA silencing. Engineered TMV vectors with inserts may cause a delay in the expression of the phenotype by suppressing the homology-dependent silencing of the endogenous mRNA, as well as preventing targeting and degradation of its own genome. An analysis of short interfering RNAs (siRNAs) would shed additional light on the progression of VIGS in the plant. Overall, it appears that there is an advantage in using these vectors in functional genomics studies since the virus wins out over the plant in the RNA silencing race at least for several weeks following transfection.

I would also like to make a few comments about the terminology used in microarray and other gene expression assays. I utilized the terms "upregulation" and "downregulation" conservatively because it suggests that regulation at the transcriptional level is affected. Perhaps this is true, but the issue of transcript stability must also be considered. Microarray and QRT-PCR are more correctly indicating transcript accumulation at a given point in time, and levels of accumulation do not necessarily equate to a change in regulatory elements. I also opted for the term "knock down" rather than the term "knock-out" to describe the impact of viral vectors carrying antisense sequences. "Knock-out" is a term that is used to describe a null mutation in a gene that is introduced into a genome by homologous recombination causing replacement of the normal allele. The phenotype of the plants in the *ARF*_{as} transfections is progressively stunted, but protein and transcript levels remain high until the 20 dpi assays, at which point they show a complete knock down.

Overall, I would recommend the use of transcriptional profiling of plants transfected with *tobamoviral* vectors, for both metabolic engineering studies and for functional genomic investigations. If the goal is to correlate phenotype with gene function, I would incorporate additional experimental parameters, such as time or environmental conditions. Performing a "snapshot" study at one time point produces a very large amount of information for microarray studies. It is not possible to draw conclusions regarding gene function, as higher order statistical tests cannot be performed. Finally, I would also recommend that the study design include biological replication, and that metabolic profiling and Western analyses be performed in order to acquire protein data in tandem with the transcriptional profiling. In this way, a more comprehensive picture of the impact of transfection can be acquired.

APPENDIX I

Microarray data tables with normalized gene expression ratios are provided in this Appendix. Normalized gene expression data represent the ratio of Cy3 signals of transfected experimental samples to cy5 signals of GFP-transfected controls in *N. benthamiana*. Ratios were generated by combining raw cy3 and cy5 signal data for each microarray experiment and importing the file into GeneSpring software for analysis. Gene lists generated from LOWESS normalized values for 2-fold upregulated genes or downregulated genes. The TIGR Master Gene Table (Versions 1 and 2) for the clones on the 10K cDNA potato microarray can be found at the following url: <u>www.tigr.org</u>. The tables are as follows:

A1.	Normalized Upregulated Gene Expression Ratios (<i>CrtB</i> RZ/GFP) in "Classification of Upregulated Genes" (Figure 2.6)	166
A2.	Normalized Upregulated Gene Expression Ratios (<i>CrtB</i> RZ/GFP) for Selected Genes in Carotenoid Biosynthesis Pathway	182
A3.	Normalized Upregulated Gene Expression Ratios (<i>CrtB</i> RZ/GFP), 2-fold or greater occurring in 7 of 9 Replicates	183
A4.	Normalized Upregulated Gene Expression Ratios (<i>PDS</i> ⁻ /GFP), 2-fold or greater	194
A5.	Normalized Upregulated Gene Expression Ratios (ARF/GFP), 2-fold or greater, at 4, 8, 12, 16 and 20 dpi	205
A6.	Normalized Downregulated Gene Expression Ratios (<i>ARF</i> /GFP) in Set 5, "Downregulated Genes, 20 dpi" (Figure 4.4)	218

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ513194	Cell division cycle protein 48 homolog. (Bell pepper) (Capsicum annuum)	4.527 (4.436 to 4.618)	0.0443	13.21 (13.13 to 13.29)	0.00373	Cell Growth, Cell Division and DNA Synthesis
BQ507451	contains similarity to the auxin- independent growth promoter~gene_id	3.391 (2.417 to 4.364)	0.555	27.19 (26.92 to 27.46)	0.0216	Cell Growth, Cell Division and DNA Synthesis
BQ514390	DNA-damage inducible protein DDI1- like (Arabidopsis thaliana)	2.763 (2.149 to 3.378)	0.528	12.32 (11.24 to 13.40)	0.0166	Cell Growth, Cell Division and DNA Synthesis
BQ118979	Induced stolen tip protein TUB8 (Fragment). (Potato) (Solanum tuberosum)	2.600 (2.518 to 2.682)	0.0289	2.879 (2.809 to 2.95)	0.0167	Cell Growth, Cell Division and DNA Synthesis
BQ118419	MAR-binding protein (Nicotiana tabacum)	4.039 (1.83 to 6.247)	0.333	24.79 (18.08 to 31.50)	0.0134	Cell Growth, Cell Division and DNA Synthesis
BQ121688	photomorphogenesis repressor protein- like (Arabidopsis thaliana)	2.416 (2.140 to 2.693)	0.424	79.51 (42.97 to 116.1)	0.00975	Cell Growth, Cell Division and DNA Synthesis
BQ515065	probable 24-sterol C-methyltransferase (EC 2.1.1.41) - common tobacco	2.236 (0.748 to 3.724)	0.532	10.30 (10.02 to 10.59)	0.0212	Cell Growth, Cell Division and DNA Synthesis
BQ113671	tonneau 1a (Arabidopsis thaliana)	3.713 (3.657 to 3.770)	0.127	4.122 (3.939 to 4.305)	0.0183	Cell Growth, Cell Division and DNA Synthesis
BQ514038	translation elongation factor eEF1Balpha (clone 2) (validated) - Arabidopsis thaliana	3.312 (2.755 to 3.868)	0.0554	3.763 (3.184 to 4.343)	0.0155	Cell Growth, Cell Division and DNA Synthesis
BQ114714	ubiquitin-protein ligase 2 (Arabidopsis thaliana)	10.07 (9.869 to 10.28)	0.00912	3.56 (3.318 to 3.802)	0.0126	Cell Growth, Cell Division and DNA Synthesis; Protein Destination
BQ512152	At1g66240 T6J19_6 (Arabidopsis thaliana)	2.669 (2.537 to 2.802)	0.189	5,152 (5.048 to 5.255)	0.0173	Cell Rescue, Defense, Cell Death and Aging

A1. Microarray Experiment: TTU51 CTP CrtB-RZ/TTOSA1 APE pBAD (GFP) Classification of Upregulated Genes (Reference Figure 2.6)

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
	At1g79380 T8K14_20 (Arabidopsis	2.167 (2.123	0.010	6.527 (6.42	0.0154	
BQ508437	thaliana)	to 2.211)	0.219	to 6.634)	0.0154	Cell Rescue, Defense, Cell Death and Aging
BQ113636	Glutamatecysteine ligase chloroplast precursor (EC 6.3.2.2) (Gamma- glutamylcysteine synthetase)	4.545 (4.127 to 4.962)	0.0427	4.141 (3.983 to 4.298)	0.0119	Cell Rescue, Defense, Cell Death and Aging
BQ115048	glutathione synthase (EC 6.3.2.3) 2 - tomato; TC54503	5.209 (3.695 to 6.722)	0.114	17.29 (13.07 to 21.50)	0.0194	Cell Rescue, Defense, Cell Death and Aging
BQ515006	glutathione transferase (EC 2.5.1.18) class-phi - Commerson s wild potato	6.447 (3.41 to 9.484)	0.352	26.68 (20.29 to 33.07)	0.00959	Cell Rescue, Defense, Cell Death and Aging
BQ513598	hypothetical protein F18B13.2 (imported) - Arabidopsis thaliana	10.09 (9.912 to 10.26)	0.0522	20.38 (20.23 to 20.53)	0.00264	Cell Rescue, Defense, Cell Death and Aging
BQ516445	mitochondrial formate dehydrogenase precursor (Solanum tuberosum)	5.966 (2.380 to 9.551)	0.192	8.823 (7.925 to 9.720)	0.00987	Cell Rescue, Defense, Cell Death and Aging
BQ120295	Mitogen-activated protein kinase homolog 4 (EC 2.7.1) (MAP kinase 4) (AtMPK4). (Mouse-ear cress); TC50308	4.877 (3.268 to 6.486)	0.338	50.23 (44.01 to 56.45)	0.00674	Cell Rescue, Defense, Cell Death and Aging
BQ121623	monodehydroascorbate reduc tase (Brassica juncea); TC49833	2.303 (0.472 to 4.133)	0.626	11.70 (11.31 to 12.1)	0.00971	Cell Rescue, Defense, Cell Death and Aging
BQ121207	monodehydroascorbate reductase (NADH) (EC 1.6.5.4) cytosolic - tomato	2.243 (1.333 to 3.153)	0.581	9.509 (9.175 to 9.842)	0.0102	Cell Rescue, Defense, Cell Death and Aging
BQ516892	Peptide methionine sulfoxide reductase (EC 1.8.4.6) (Protein- methionine-S- oxide reductase)	4.651 (4.374 to 4.927)	0.0865	13.59 (13.07 to 14.11)	0.0163	Cell Rescue, Defense, Cell Death and Aging

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ508930	probable DnaJ protein (imported) - Arabidopsis thaliana	6.387 (4.700 to 8.073)	0.428	13.07 (12.08 to 14.06)	0.0064	Cell Rescue, Defense, Cell Death and Aging
BQ518442	Probable glutathione S-transferase (EC 2.5.1.18) (Auxin-induced protein PGNT1 PCNT110).	5.845 (4.269 to 7.422)	0.0593	11.07 (8.499 to 13.65)	0.00601	Cell Rescue, Defense, Cell Death and Aging
BQ120348	probable thioredoxin At2g35010 (imported) - Arabidopsis thaliana	5.417 (3.237 to 7.597)	0.427	16.36 (15.02 to 17.69)	0.0193	Cell Rescue, Defense, Cell Death and Aging
BQ517745	putative calcineurin B-like protein (Oryza sativa)	3.665 (3.518 to 3.812)	0.309	11.59 (10.06 to 13.12)	0.00353	Cell Rescue, Defense, Cell Death and Aging
BQ514137	putative glutathione S-transferase T5 (Lycopersicon esculentum)	5.694 (3.672 to 7.716)	0.179	7.09 (7.023 to 7.156)	0.00267	Cell Rescue, Defense, Cell Death and Aging
BQ507009	putative lysophospholipase (Arabidopsis thaliana)	3.541 (2.946 to 4.135)	0.237	9.675 (8.52 to 10.83)	0.0209	Cell Rescue, Defense, Cell Death and Aging
BQ510641	putative resistance protein (Lycopersicon esculentum)	16.89 (16.65 to 17.12)	0.000611	52.82 (52.23 to 53.4)	0.000316	Cell Rescue, Defense, Cell Death and Aging
BQ507505	TMV-induced protein I (Capsicum annuum)	27.36 (26.18 to 28.54)	0.00137	69.12 (67.48 to 70.75)	0.00118	Cell Rescue, Defense, Cell Death and Aging
BQ117125	heme oxygenase 1 (Lycopersicon esculentum)	3.807 (2.112 to 5.502)	0.325	7.662 (6.629 to 8.695)	0.0123	Cellular Biogenesis
BQ119649	polygalacturonase (EC 3.2.1.15) 1 beta chain precursor - tomato	38.15 (37.85 to 38.45)	0.000349	34.27 (32.35 to 36.19)	0.000556	Cellular Biogenesis
BQ112806	probable chaperonin-containing TCP-1 complex gamma chain F9D12.18 - Arabidopsis thaliana	3.086 (3.077 to 3.096)	0.323	14.74 (13.19 to 16.28)	0.00691	Cellular Biogenesis

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ118416	At2g03890 T18C20.9 (Arabidopsis thaliana)	3.549 (3.448 to 3.650)	0.11	15.33 (14.98 to 15.68)	0.00343	Cellular Communication/Signal Transduction
BQ516912	AT3g01490 F4P13_4 (Arabidopsis thaliana)	2.151 (1.72 to 2.582)	0.632	12.06 (11.63 to 12.49)	0.013	Cellular Communication/Signal Transduction
BQ511382	AT3g16910 K14A17_3 (Arabidopsis thaliana)	2.044 (1.973 to 2.116)	0.182	5.332 (4.472 to 6.193)	0.0129	Cellular Communication/Signal Transduction
BQ115193	CBL-interacting protein kinase 6 (Arabidopsis thaliana)	2.978 (2.450 to 3.505)	0.149	28.66 (27.70 to 29.63)	0.00561	Cellular Communication/Signal Transduction
BQ112245	GDP dissociation inhibitor - common tobacco	2.252 (1.896 to 2.607)	0.0932	15.96 (14.89 to 17.02)	0.00525	Cellular Communication/Signal Transduction
BQ118661	GTP-binding protein - garden pea	2.198 (2.094 to 2.303)	0.143	28.68 (28.43 to 28.92)	0.00268	Cellular Communication/Signal Transduction
BQ515193	GTP-binding protein F23K16.150 - Arabidopsis thaliana; TC43752	4.528 (4.085 to 4.970)	0.0395	10.11 (9.979 to 10.24)	0.0119	Cellular Communication/Signal Transduction
BQ510930	GTP-binding protein-like (Arabidopsis thaliana)	3.926 (3.206 to 4.646)	0.0656	15.9 (15.47 to 16.32)	0.00207	Cellular Communication/Signal Transduction
BQ112592	hypothetical protein F20D21.27 (imported) - Arabidopsis thaliana	2.335 (2.015 to 2.656)	0.196	25.26 (21.94 to 28.59)	0.00313	Cellular Communication/Signal Transduction
BQ118224	protein kinase-like protein (Arabidopsis thaliana)	4.285 (3.947 to 4.624)	0.0933	46.19 (40.66 to 51.73)	0.00864	Cellular Communication/Signal Transduction
BQ114148	protein phosphatase 2C (PP2C) (Fagus sylvatica)	10.92 (8.396 to 13.44)	0.0957	13.18 (12.56 to 13.81)	0.00625	Cellular Communication/Signal Transduction

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ511591	protein T27G7.10 (imported) - Arabidopsis thaliana	2.004 (1.751 to 2.256)	0.536	9.287 (9.208 to 9.366)	0.0109	Cellular Communication/Signal Transduction
BQ514070	putative GTP-binding protein; 106556- 109264 (Arabidopsis thaliana)	2.197 (2.120 to 2.275)	0.0555	12.65 (12.40 to 12.89)	0.00085	Cellular Communication/Signal Transduction
BQ513539	Ser Thr specific protein phosphatase 2A B regulatory subunit beta isoform	2.086 (0.195 to 3.976)	0.719	10.83 (10.63 to 11.02)	0.0182	Cellular Communication/Signal Transduction
BQ510123	Ser Thr specific protein phosphatase 2A B regulatory subunit beta isoform	2.054 (2.035 to 2.073)	0.67	22.69 (19.72 to 25.66)	0.00832	Cellular Communication/Signal Transduction
BQ113170	Serine threonine protein phosphatase PP1 isozyme 1 (EC 3.1.3.16). (Common tobacco)	4.618 (4.134 to 5.101)	0.015	10.61 (8.467 to 12.74)	0.00619	Cellular Communication/Signal Transduction
BQ508186	AT4g01050 F2N1_31 (Arabidopsis thaliana)	2.216 (2.167 to 2.266)	0.0701	5.369 (5.118 to 5.621)	0.0114	Cellular Organization
BQ516782	protein epsilon subunit of mitochondrial F1-ATPase (imported) - Arabidopsis thaliana	2,904 (2.584 to 3.225)	0.3	12.38 (12.27 to 12.5)	0.0139	Cellular Organization
BQ508320	Nuclear transport factor 2 (NTF-2). (Mouse-ear cress) (Arabidopsis thaliana)	5.334 (5.054 to 5.615)	0.0338	12.29 (11.08 to 13.49)	0.00548	Cellular Transport and Transport Mechanism
BQ121865	vesicle transport v-SNARE (vesicle soluble NSF attachment protein receptor) protein	5.795 (5.787 to 5.804)	0.00263	17.91 (17.84 to 17.97)	0.000634	Cellular Transport and Transport Mechanism
BQ507309	alanyl-tRNA synthetase (Arabidopsis thaliana)	9.491 (9.488 to 9.493)	0.00536	10.2 (9.469 to 10.93)	0.00521	Cellular Transport and Transport Mechanisms
BQ510962	chloroplast outer envelope protein OEP86 precursor - garden pea	2.941 (2.672 to 3.210)	0.19	22.76 (20.21 to 25.32)	0.00433	Cellular Transport and Transport Mechanisms

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ512157	coatomer protein complex beta prime; beta -COP protein (Arabidopsis thaliana)	2.675 (2.585 to 2.765)	0.0219	2.817 (2.637 to 2.998)	0.0201	Cellular Transport and Transport Mechanisms
BQ518306	GTP-binding protein Rab7b - common tobacco; TC49504	2.654 (2.105 to 3.204)	0,565	7.911 (7.500 to 8.322)	0.0205	Cellular Transport and Transport Mechanisms
BQ506270	Probable 28 kDa Golgi SNARE protein (Golgi SNAP receptor complex member 1). (Mouse-ear cress)	2.704 (1.682 to 3.727)	0.256	13.89 (12.93 to 14.84)	0.00677	Cellular Transport and Transport Mechanisms
BQ120994	putative vacuolar proton ATPase subunit E (Lycopersicon esculentum)	5.908 (5.733 to 6.084)	0.00366	2.734 (2.647 to 2.822)	0.0206	Cellular Transport and Transport Mechanisms
BQ113310	SRP receptor homolog FtsY precursor chloroplast (validated) - Arabidopsis thaliana	7.409 (6.313 to 8.506)	0.00469	8.564 (8.438 to 8.689)	0.00143	Cellular Transport and Transport Mechanisms
BQ113941	SRP receptor homolog FtsY precursor chloroplast (validated) - Arabidopsis thaliana	8.017 (7.432 to 8.603)	0.00224	6,342 (6.279 to 6,406)	0.00221	Cellular Transport and Transport Mechanisms
BQ505638	vacuolar sorting protein 35 homolog - Arabidopsis thaliana	9,215 (3.857 to 14.57)	0.0395	10.79 (6.592 to 14.99)	0.0192	Cellular Transport and Transport Mechanisms
BQ117979	vesicle transport v-SNARE (vesicle soluble NSF attachment protein receptor) protein	9,782 (9.633 to 9,931)	0.00115	6.672 (6.643 to 6.702)	0.00209	Cellular Transport and Transport Mechanisms
BQ516467	AIM1 protein - Arabidopsis thaliana; TC53381	5.701 (3.519 to 7.884)	0,165	13.62 (9.33 to 17.91)	0.0149	Development
BQ111846	AT3g02110 F1C9_10 (Arabidopsis thaliana)	32.08 (31.99 to 32.17)	0.000368	3.692 (3.657 to 3.727)	0.00771	Development
BQ117338	auxin response factor 6 (ARF6) (imported) - Arabidopsis thaliana	11.86 (9.465 to 14.26)	0.0181	16.75 (15.36 to 18.14)	0.00767	Development

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ511502	auxin-induced protein IAA8 - tomato (fragment)	8.3 (7.339 to 9.260)	0.141	7.932 (5.900 to 9.964)	0.0193	Development
BQ121263	B12D protein (Ipomoea batatas)	3.058 (1.385 to 4.731)	0.361	12.09 (10.53 to 13.65)	0.005	Development
BQ119389	Cell elongation protein diminuto. (Garden pea) (Pisum sativum); TC55756	6.576 (5.851 to 7.301)	0.0188	6.715 (5.752 to 7.679)	0.0137	Development
BQ512285	homeobox 2 protein (Lycopersicon esculentum)	4.567 (2.656 to 6.478)	0.433	20.40 (19.84 to 20.97)	0.00827	Development
BQ516656	HUA enhancer 2 (Arabidopsis thaliana)	3.168 (2.475 to 3.862)	0.289	19.96 (19.06 to 20.86)	0.00391	Development
BQ115588	LEUNIG (Arabidopsis thaliana)	2.504 (1.826 to 3.183)	0.262	9.633 (7.752 to 11.51)	0.011	Development
BQ119668	brassinosteroid-insensitive protein BRI1 - Arabidopsis thaliana	3.672 (3.522 to 3.823)	0.241	7.527 (6.279 to 8.775)	0.0177	Development; Cellular Communication/Signal Transduction
BQ515554	ATP synthase alpha chain (EC 3.6.3.14). (Common tobacco) (Nicotiana tabacum)	2.322 (2.051 to 2.594)	0.0526	20.39 (18.87 to 21.92)	0.00252	Energy
BQ515387	cytochrome P450 (Arabidopsis thaliana)	4.513 (4.013 to 5.013)	0.0847	8.302 (8.038 to 8.565)	0.00737	Energy
BQ114047	electron transfer flavoprotein beta- subunit-like (Arabidopsis thaliana)	5.402 (5.050 to 5.755)	0.378	10.01 (9.888 to 10.13)	0.00816	Energy
BQ518982	NIFS-like protein CpNifsp precursor (Arabidopsis thaliana)	15.51 (14.55 to 16.47)	0.0103	12.13 (11.94 to 12.33)	0.00644	Energy

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ121095	probable cytochrome P450 F13O11.25 (imported) - Arabidopsis thaliana	3.653 (3.602 to 3.704)	0.0654	6.312 (6.153 to 6.472)	0.0198	Energy
BQ115950	peroxisomal multifunctional protein (Oryza sativa)	2.734 (2.150 to 3.318)	0.685	10.09 (8.179 to 12.00)	0.0159	Energy; Development;
BQ113843	Proteasome subunit beta type 1 (EC 3.4.25.1) (20S proteasome alpha subunit F)	8.428 (8.306 to 8.549)	0.0247	34.51 (31.8 to 37.22)	0.00355	Meabolism
BQ512336	3-dehydroquinate dehydratase (EC 4.2.1.10) shikimate 5-dehydrogenase (EC 1.1.1.25) - tomato	6.84 (6.055 to 7.625)	0.0163	4.113 (3.832 to 4.393)	0.0103	Metabolism
BQ514003	3-oxoacyl-(acyl-carrier-protein) synthase (Capsicum chinense)	2.01 (1.791 to 2.228)	0.753	54.64 (50.37 to 58.92)	0.0109	Metabolism
BQ121840	acetyl-CoA synthetase-like protein (Arabidopsis thaliana)	2.308 (2.239 to 2.376)	0.144	12.18 (12.11 to 12.25)	0.00278	Metabolism
BQ119634	ATP-dependent Clp protease regulatory subunit CLPX (Arabidopsis thaliana)	2.473 (1.213 to 3.733)	0.629	13.13 (12.44 to 13.83)	0.00614	Metabolism
BQ116302	Auxin-induced protein PCNT115. (Common tobacco) (Nicotiana tabacum)	27.77 (24.37 to 31.16)	0.0115	3.054 (3.026 to 3.082)	0.0138	Metabolism
BQ517075	beta Galactosidase-like protein - Arabidopsis thaliana	3.747 (3.120 to 4.373)	0.373	7.849 (6.431 to 9.267)	0.0172	Metabolism
BQ112288	cold-induced glucosyl transferase (Solanum sogarandinum)	43.67 (43.38 to 43.96)	0.0013	125.1 (124.5 to 125.6)	0.000219	Metabolism

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
		3,584 (3.204		18.03 (14.62		
BQ118537	CTP synthase (Arabidopsis thaliana)	to 3.963)	0.171	to 21.43)	0.00897	Metabolism
BQ518130	Cysteine desulfurase mitochondrial precursor (EC 4.4.1). (Mouse-ear cress) (Arabidopsis thaliana)	6,420 (5.612 to 7.229)	0.0148	11.88 (11.21 to 12.54)	0.00388	Metabolism
BQ118862	Cysteine desulfurase mitochondrial precursor (EC 4.4.1). (Mouse-ear cress) (Arabidopsis thaliana); TC42609	2.976 (2.656 to 3.297)	0.0422	18.10 (17.78 to 18.42)	0.00241	Metabolism
BQ517292	cytochrome P450 (EC 1.14) 81B1c - Jerusalem artichoke; TC54452	2.723 (2.591 to 2.856)	0.375	12.63 (11.33 to 13.94)	0.0113	Metabolism
BQ113430	FRO2-like protein; NADPH oxidase- like (Arabidopsis thaliana)	3.534 (3.494 to 3.575)	0.00863	2.811 (2.794 to 2.829)	0.0183	Metabolism
BQ510567	glucan 1 3-beta-glucosidase (EC 3.2.1.58) (imported) - common tobacco	3.496 (3.288 to 3.705)	0.05	5.667 (5.078 to 6.255)	0.0147	Metabolism
BQ116391	GMP synthase 61700-64653 (imported) - Arabidopsis thaliana; TC53227	3.102 (2.513 to 3.691)	0.596	17.71 (17.36 to 18.06)	0.0141	Metabolism
BQ512271	probable glucosyl transferase (imported) - Arabidopsis thaliana	12.97 (10.57 to 15.37)	0.0334	137.1 (134.4 to 139.9)	0.00184	Metabolism
BQ508885	probable glucosyl transferase (imported) - Arabidopsis thaliana	6.106 (3.723 to 8.49)	0.289	15.17 (14.84 to 15.51)	0.014	Metabolism
BQ120828	Probable glutathione S-transferase (EC 2.5.1.18) (Auxin-induced protein PGNT35 PCNT111).	3.632 (0.424 to 6.840)	0.352	4.435 (4.395 to 4.476)	0.00472	Metabolism

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ506914	probable phosphoglycerate dehydrogenase (EC 1.1.1.95) - Arabidopsis thaliana	3.015 (2.441 to 3.588)	0.111	12.74 (9.702 to 15.78)	0.00958	Metabolism
BQ117212	probable polygalacturonase (EC 3.2.1.15) 1 - tomato	8.951 (8.903 to 8.998)	0.00127	24.31 (24.31 to 24.31)	0.000485	Metabolism
BQ113221	putative S1 protein (Arabidopsis thaliana); TC54400	12.34 (11.98 to 12.7)	0.0155	6.997 (6.932 to 7.062)	0.00241	Metabolism
BQ117370	S-adenosyl-L-methionine	3.614 (3.31 to 3.918)	0.0212	25.63 (22.87 to 28.38)	0.00291	Metabolism
BQ508377	Zeatin O-xylosyltransferase (EC 2.4.1.204) (Zeatin O-beta-D- xylosyltransferase).	10.28 (8.783 to 11.77)	0.0559	15.39 (15.31 to 15.48)	0.0041	Metabolism
BQ507676	RAD23 protein (Lycopersicon esculentum)	5.861 (5.623 to 6.100)	0.0491	14.04 (12.12 to 15.96)	0.00854	Metabolism; Cell Growth, Cell Division and DNA Synthesis
BQ120185	3-hydroxy-3-methylglutaryl-coenzyme A reductase 2 (EC 1.1.1.34) (HMG- CoA reductase 2) (HMG2.2).	3 (2.788 to 3.211)	0.448	25.49 (23.16 to 27.82)	0.0126	Metabolism; Cell Rescue, Defense, Cell Death and Aging
BQ115026	cytochrome P450 (Arabidopsis thaliana)	9.365 (8.553 to 10.18)	0.0383	12.62 (10.34 to 14.9)	0.00408	Metabolism; Cell Rescue, Defense, Cell Death and Aging
BQ509879	probable cullin protein - tomato	2.485 (1.727 to 3.243)	0.475	4.852 (4.613 to 5.092)	0.0214	Metabolism; Cell Rescue, Defense, Cell Death and Aging
BQ113646	xanthine dehydrogenase homolog T11111.130 - Arabidopsis thaliana	2.419 (0.539 to 4.299)	0.578	44.88 (37.28 to 52.49)	0.00866	Metabolism; Cell Rescue, Defense, Cell Death and Aging

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ512781	26S proteasome regulatory particle non- ATPase subunit5 (Oryza sativa)	2.083 (2.043 to 2.123)	0.185	16.74 (16.41 to 17.07)	0.00151	Protein Destination
BQ116223	At1g12410 F5O11_7 (Arabidopsis thaliana)	2.471 (0.884 to 4.057)	0.448	9.542 (8.926 to 10.16)	0.00593	Protein Destination
BQ512511	At1g64230 F22C12_17 (Arabidopsis thaliana)	5.672 (5.491 to 5.853)	0.0798	4.917 (4.409 to 5.425)	0.0162	Protein Destination
BQ111622	Regulator of nonsense transcripts 1 homolog. (Mouse-ear cress) (Arabidopsis thaliana)	2.911 (2.576 to 3.245)	0.284	10.11 (10.08 to 10.15)	0.00816	Protein Destination
BQ119542	signal recognition particle 54K protein tomato (cv. Rentita)	3.468 (3.448 to 3.488)	0.425	7.482 (7.078 to 7.886)	0.0213	Protein Destination
BQ511894	syntaxin related protein AtVam3p (Arabidopsis thaliana)	3.165 (2.852 to 3.479)	0.282	6.482 (5.702 to 7.261)	0.0132	Protein Destination
BQ114231	transport protein particle component Bet3p-like protein (Arabidopsis thaliana)	3.652 (3.452 to 3.851)	0.192	5.013 (4.237 to 5.789)	0.0184	Protein Destination
BQ519244	ubiquinolcytochrome-c reductase (EC 1.10.2.2) 11K protein - potato	3.189 (2.679 to 3.699)	0.0902	13.06 (13.03 to 13.09)	0.00434	Protein Destination
BQ112099	ubiquitin activating enzyme 2 (Arabidopsis thaliana)	4.466 (2.446 to 6.486)	0.134	17.31 (15.22 to 19.40)	0.00237	Protein Destination
BQ513173	ubiquitin-conjugating enzyme-like protein (Arabidopsis thaliana)	2.077 (1.631 to 2.524)	0.502	5.448 (4.924 to 5.972)	0.0218	Protein Destination
BQ512785	zinc metalloprotease (insulinase family) (Arabidopsis thaliana)	2.694 (2.361 to 3.028)	0.059	2.783 (2.696 to 2.871)	0.0194	Protein Destination

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ515965	40S ribosomal protein S11. (Soybean) (Glycine max)	6.070 (5.217 to 6.923)	0.0252	31.52 (19.93 to 43.12)	0.00701	Protein Synthesis
BQ510858	40S ribosomal protein S6. (Garden asparagus) (Asparagus officinalis)	7.882 (5.158 to 10.61)	0.032	10.41 (9.728 to 11.09)	0.00471	Protein Synthesis
BQ512246	60S ribosomal protein L35 (Euphorbia esula)	3.709 (3.676 to 3.743)	0.0346	10.22 (10.2 to 10.24)	0.00442	Protein Synthesis
BQ513262	At1g07830 F24B9_7 (Arabidopsis thaliana)	6.519 (5.690 to 7.347)	0.0525	5.851 (5.567 to 6.134)	0.0149	Protein synthesis
BQ121217	eukaryotic initiation factor 3H1 subunit (Arabidopsis thaliana)	4.636 (3.874 to 5.399)	0.474	30.55 (30.31 to 30.79)	0.00932	Protein Synthesis
BQ515507	Eukaryotic translation initiation factor 3 subunit 10 (eIF-3 theta)	10.21 (10.07 to 10.34)	0.0131	5.972 (5.826 to 6.117)	0.00578	Protein synthesis
BQ116593	hypothetical protein AAF19747.1 (imported) - Arabidopsis thaliana	14.56 (11.61 to 17.50)	0.119	10.23 (7.928 to 12.53)	0.0149	Protein Synthesis
BQ514275	N2 N2-dimethylguanosine tRNA methyltransferases-like protein - Arabidopsis thaliana	2.884 (2.76 to 3.009)	0.114	3.494 (3.485 to 3.502)	0.0208	Protein Synthesis
BQ513623	plastid ribosomal protein S6 precursor (Spinacia oleracea)	2.873 (2.654 to 3.092)	0.11	15.84 (14.96 to 16.73)	0.00311	Protein Synthesis
BQ514749	Protein translation factor SUI1 homolog. (Japanese willow) (Salix bakko)	5.764 (5.73 to 5.798)	0.00267	9.547 (9.484 to 9.609)	0.0012	Protein Synthesis
BQ115876	putative cysteinyl-tRNA synthetase (Arabidopsis thaliana)	3.281 (2.856 to 3.705)	0.274	12.79 (12.50 to 13.08)	0.0106	Protein Synthesis

GenBank	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ507646	putative RNA-binding protein (Arabidopsis thaliana)	2.333 (2.167 to 2.5)	0.397	17 (13.45 to 20.54)	0.00666	Protein Synthesis
BQ518386	rna-binding protein (Schizosaccharomyces pombe)	2.209 (0.968 to 3.451)	0.832	13.24 (8.101 to 18.38)	0.015	Protein Synthesis
BQ506043	RPS6-like protein (Arabidopsis thaliana)	2.068 (1.786 to 2.351)	0.403	18.83 (17.83 to 19.83)	0.00405	Protein Synthesis
BQ112260	AT3g14110 MAG2_6 (Arabidopsis thaliana)	6.732 (6.673 to 6.79)	0.011	4.562 (4.528 to 4.597)	0.00631	Signal Transduction
BQ510794	contains similarity to guanylate binding protein~gene_id	9.95 (9.867 to 10.03)	0.0011	6.165 (5.765 to 6.565)	0.00324	Signal Transduction
BQ114948	contains similarity to kinase~gene_id	4.232 (3.645 to 4.82)	0.119	3.848 (3.73 to 3.967)	0.012	Signal Transduction
BQ507290	cyclophilin-40 (Arabidopsis thaliana)	5.255 (2.2 to 8.309)	0.204	32.39 (28.88 to 35.89)	0.0047	Signal Transduction
BQ515951	cyclophilin-40 (Arabidopsis thaliana)	4.922 (3.994 to 5.849)	0.468	22.99 (15.89 to 30.08)	0.0102	Signal Transduction
BQ114069	FKBP12 interacting protein (FIP37) - Arabidopsis thaliana	4.115 (3.606 to 4.624)	0.188	28.17 (26.62 to 29.73)	0.0102	Signal Transduction
BQ120931	phosphoprotein phosphatase (EC 3.1.3.16) catalytic beta chain - alfalfa	2.469 (1.849 to 3.09)	0.274	8.91 (7.803 to 10.02)	0.0158	Signal Transduction
BQ518562	At2g21320 F3K23.8 (Arabidopsis thaliana)	3.351 (1.396 to 5.307)	0.134	3.887 (3.519 to 4.255)	0.0156	Transcription

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ516498	At2g21320 F3K23.8 (Arabidopsis thaliana)	7.280 (1.509 to 13.05)	0.19	52.87 (48.12 to 57.61)	0.00506	Transcription
BQ514543	bZIP DNA-binding protein HBF-1 - soybean	2.522 (2.148 to 2.896)	0.286	14.26 (12.53 to 15.99)	0.00581	Transcription
BQ112534	H1flk (Arabidopsis thaliana)	4.637 (4.227 to 5.046)	0.00682	3.908 (3.822 to 3.994)	0.00681	Transcription
BQ512011	hypothetical protein AT4g07410 (imported) - Arabidopsis thaliana; TC52272	3.748 (3.207 to 4.29)	0.0848	12.81 (10.98 to 14.63)	0.0133	Transcription
BQ509021	hypothetical protein M4E13.100 - Arabidopsis thaliana	2.320 (1.789 to 2.852)	0.111	11.78 (8.632 to 14.93)	0.00989	Transcription
BQ507050	hypothetical protein T10K17.240 - Arabidopsis thaliana	2.091 (2.086 to 2.096)	0.267	9.323 (8.489 to 10.16)	0.0177	Transcription
BQ510191	polypyrimidine tract-binding RNA transport protein-like (Arabidopsis thaliana)	11.62 (10.87 to 12.38)	0.0556	9.736 (9.551 to 9.922)	0.00932	Transcription
BQ518440	probable DNA-binding protein - garden pea	3.395 (2.996 to 3.794)	0.359	16.41 (12.86 to 19.96)	0.0129	Transcription
BQ509651	probable zinc finger protein (imported) Arabidopsis thaliana	7.734 (6.750 to 8.718)	0.331	20.25 (19.53 to 20.98)	0.0054	Transcription
BQ117380	Putative splicing factor activator protein (Arabidopsis thaliana)	4.941 (4.329 to 5.553)	0.432	21.92 (17.8 to 26.05)	0.02	Transcription
BQ510333	putative zinc finger protein (Arabidopsis thaliana)	2.504 (1.519 to 3.489)	0.262	8.738 (7.790 to 9.687)	0.00531	Transcription

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ505018	spliceosomal-like protein - Arabidopsis thaliana	13.12 (1.967 to 24.27)	0.0599	48.36 (35.26 to 61.46)	0.00489	Transcription
BQ510182	splicing factor-like protein (Arabidopsis thaliana)	3.475 (3.377 to 3.573)	0.347	13.61 (12.11 to 15.11)	0.0157	Transcription
BQ113472	splicing factor-like protein (Arabidopsis thaliana)	2.474 (1.933 to 3.014)	0.253	17.89 (14.73 to 21.05)	0.00677	Transcription
BQ117367	Transcription initiation factor IIB (TFIIB). (Soybean) (Glycine max)	3.863 (3.345 to 4.380)	0.0928	6.595 (6.075 to 7.114)	0.0106	Transcription
BQ117445	U1 small nuclear ribonucleoprotein 70 kDa (U1 SNRNP 70 kDa) (snRNP70) (U1-70K). (Mouse-ear cress)	3.028 (1.936 to 4.119)	0.194	8.468 (6.432 to 10.50)	0.0179	Transcription
BQ118578	U1 small nuclear ribonucleoprotein 70 kDa (U1 SNRNP 70 kDa) (snRNP70) (U1-70K). (Mouse-ear cress)	3.151 (3.095 to 3.207)	0.0934	9.916 (9.315 to 10.52)	0.00925	Transcription
BQ116100	U3 snoRNP-associated-like protein (imported) - Arabidopsis thaliana; TC41546	3.744 (2.805 to 4.683)	0.0339	24.65 (21.73 to 27.56)	0.0013	Transcription
BQ513985	WRKY transcription factor 22 (Arabidopsis thaliana)	10.47 (8.683 to 12.25)	0.0228	29.91 (27.24 to 32.58)	0.0118	Transcription
BQ119928	ribosomal protein L27-like - Arabidopsis thaliana	4.407 (4.015 to 4.8)	0.0775	12.53 (9.720 to 15.34)	0.0163	Translation
BQ515130	CLC-Nt2 protein (Nicotiana tabacum)	2.559 (2.239 to 2.879)	0.14	6.718 (6.231 to 7.206)	0.00936	Transport Facilitation

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value	MIPS Classification
BQ117855	cytochrome c oxidase subunit 6b-1 (Oryza sativa)	5.767 (5.428 to 6.105)	0.301	65.46 (56.37 to 74.55)	0.00421	Transport Facilitation
BQ120630	glutathione-conjugate transporter AtMRP4 (imported) - Arabidopsis thaliana	5.613 (5.464 to 5.762)	0.363	36.71 (36.27 to 37.14)	0.0187	Transport Facilitation
BQ115067	nodulin-like protein (imported) - Arabidopsis thaliana	5.299 (5.271 to 5.327)	0.166	27.32 (27.15 to 27.5)	0.00492	Transport Facilitation
BQ510156	permease 1 (Arabidopsis thaliana)	8.702 (6.666 to 10.74)	0.0148	12.04 (10.78 to 13.3)	0.00744	Transport Facilitation
BQ508139	probable nitrate transporter (imported) Arabidopsis thaliana	5.790 (4.357 to 7.223)	0.0977	46.12 (41.56 to 50.67)	0.00917	Transport Facilitation

GenBank ID#	TIGR Gene Annotation 0677 and 0681 10 dpi	Sample crtB0677 normalized	Sample crtB0677 t-test p- value	Sample crtB0681 normalized	Sample crtB0681 t-test p- value
				2.141 (2.036 to	
BQ509967	beta-carotene hydroxylase (Lycopersicon esculentum)	6.031 (5.401 to 6.661)	0.0355	2.247)	0.123
BQ116393	beta-carotene hydroxylase (Lycopersicon esculentum)	4.338 (3.823 to 4.852)	0.279	5.488 (5.266 to 5.71)	0.395
				3.754 (2.377 to	
BQ112964	isopentenyl diphosphate isomerase 2 (Nicotiana tabacum); TC53575	4.124 (4.036 to 4.213)	0.0143	5.131)	0.201
	Phytoene dehydrogenase chloroplast precursor (EC 1.14.99)			2.632 (2.614 to	
BQ516016	(Phytoene desaturase). (Tomato)	4.607 (4.381 to 4.832)	0.0126	2.649)	0.0532
	Phytoene synthase 2 chloroplast precursor (EC 2.5.1) (Fragment).			2.135 (1.998 to	
BQ115584	(Tomato)	2.607 (1.593 to 3.62)	0.536	2.272)	0.388

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pB	AD (GFI	P)
GenBank	TIGR Annotation				Microa	rray Bar	Code #			
ID#		753	677	681	9733	9734	9735	9736	9737	5146
BQ112704	40S ribosomal protein SA (p40). (Carrot) (Daucus carota)	3.082 (2.851 to 3.314)	0.761 (0.753 to 0.768)	0.891 (0.886 to 0.895)	18.43 (16.38 to 20.47)	17.17 (15.19 to 19.15)	3.043 (2.738 to 3.347)	27.39 (22.96 to 31.81)	5.874 (3.288 to 8.461)	2.453 (2.415 to 2.491)
		33.06 (31.2 to				9.013 (7.684		9.493 (1.447	and the second second second second	
BQ116332	sylvestris)	34.93)	to 0.661)	to 1.108)	to 13.99)	to 10.34)	to 11.2)	to 17.54)	to 4.996)	to 3.341)
BQ116168	50S ribosomal protein L12 chloroplast precursor (CL12). (Wood tobacco) (Nicotiana sylvestris)	8.642 (7.657 to 9.627)	40.83 (34.19 to 47.48)	0.963 (0.951 to 0.975)	13.46 (12.71 to 14.2)	6.95 (6.637 to 7.263)	2.046 (1.878 to 2.214)	1.038 (1.025 to 1.051)	22.15 (21 to 23.3)	2.706 (2.179 to 3.233)
BQ119646	50S ribosomal protein L21 chloroplast precursor (CL21) (CS-L7). (Spinach) (Spinacia oleracea)		3.393 (3.365 to 3.42)	2.156 (2.148 to 2.163)	2.323 (2.054 to 2.591)	21.77 (19.89 to 23.64)	8.558 (8.209 to 8.907)	0.803 (0.68 to 0.926)	23.6 (20.4 to 26.8)	3.616 (3.361 to 3.871)
BQ112187	50S ribosomal protein L24 chloroplast precursor (CL24). (Common tobacco) (Nicotiana tabacum)	11.02 (10.49 to 11.56)	2.185 (2.183 to 2.187)	0.982 (0.978 to 0.987)	1.436 (1.423 to 1.449)	8.414 (6.641 to 10.19)	2.862 (2.81 to 2.914)	9.456 (8.658 to 10.25)	12.33 (11.34 to 13.32)	2.369 (2.241 to 2.496)
	60S ribosomal protein L35	2.497 (2.325	1.41 (1.407	10		12.54 (10.16				
BQ116353	(Euphorbia esula)	to 2.67)	to 1.413)	to 1.555)	to 10.29)	to 14.91)	to 16.13)	to 27.43)	to 25.36)	to 2.244)
	60S ribosomal protein L6 (YL16-like). (Common ice plant) (Mesembryanthemum	2.03 (1.79 to	0.644 (0.536	0.969 (0.968	33.62 (23.45	10.32 (9.131	4.653 (3.54	43.85 (32.2	25.08 (22.6	4,898 (4.596
BQ112991	crystallinum)	2.269)	to 0.752)	to 0.971)	to 43.8)	to 11.51)	to 5.765)	to 55.5)	to 27.55)	to 5.201)
BQ117113	60S ribosomal protein L7. (Mouse-ear cress) (Arabidopsis thaliana)	2.575 (2.378 to 2.772)	0.518 (0.49 to 0.545)	0.96 (0.957 to 0.962)	2.751 (2.217 to 3.285)	27.03 (25.16 to 28.9)	5.077 (4.919 to 5.235)	2.673 (2.576 to 2.769)	45.72 (35.95 to 55.5)	2.399 (1.989 to 2.81)
BQ115641	60S ribosomal protein L7. (Mouse-ear cress) (Arabidopsis thaliana)	8.11 (6.325 to 9.896)						3.271 (2.809 to 3.734)		2.504 (2.125 to 2.884)

fold or g	reater) at 10 days post on for 7 of 9 replicates	N	b TTU51	СТР-С	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFI	P)
GenBank	TIGR Annotation				the second se	rray Bar	Code #	H. Call		
ID#		753	677	681	9733	9734	9735	9736	9737	5146
BQ112351	60S ribosomal protein L7. (Mouse-ear cress) (Arabidopsis thaliana)	2.907 (2.552 to 3.261)	0.774 (0.656 to 0.893)	1.041 (0.833 to 1.248)	6.022 (5.427 to 6.616)	7.28 (4.539 to 10.02)	6.718 (4.822 to 8.613)	16.38 (0.55 to 32.2)	22.27 (18.4 to 26.15)	3.095 (2.821 to 3.369)
BQ508897	70 kDa peptidylprolyl isomerase (EC 5.2.1.8) (Peptidylprolyl cis-trans isomerase) (Cyclophilin)	3.32 (3.282 to 3.358)	13.37 (12.41 to 14.33)	1.479 (1.474 to 1.484)	30.36 (29.3 to 31.42)	25.65 (22.8 to 28.5)	8.002 (7.379 to 8.625)	31.83 (28 to 35.65)	18.37 (16.15 to 20.6)	
BQ115922	70 kDa peptidylprolyl isomerase (EC 5.2.1.8) (Peptidylprolyl cis-trans isomerase) (Cyclophilin); TC53461	3.359 (2.789 to 3.93)	5.07 (5.051 to 5.09)	1.105 (1.094 to 1.116)	18.93 (16.52 to 21.34)	1.644 (1.191 to 2.097)	15.5 (15.07 to 15.92)	40.15 (38.8 to 41.5)	5.93 (3.67 to 8.19)	2.328 (2.231 to 2.424)
DQIISTEE	A_IG002N01.18 gene	10 0.001	10 51077	10 1110)	10 2110 19	10 210717	(0 10.02)	10 11.57	10 0.17)	10 2,12 1
BQ120891	product (Arabidopsis thaliana)	7.616 (5.09 to 10.14)	0.813 (0.751 to 0.875)	0.742 (0.735 to 0.749)	12.3 (9.91 to 14.7)	17.35 (15.75 to 18.94)	3.492 (2.716 to 4.269)	3.104 (0.217 to 5,991)	15.06 (12.94 to 17.18)	2.848 (2.829 to 2.866)
BQ117718	alanine aminotransferase (Arabidopsis thaliana); TC49691	2.447 (2.119 to 2.775)	0.671 (0.417 to 0.924)	to 1.293)	to 4,026)	to 24.4)	to 22.35)	3.37 (2.966 to 3.774)	3.705	2.282 (2.096 to 2.468)
BQ506157	alpha-tubulin (Nicotiana tabacum)	3,136 (0.32 to 5.952)	13.45 (8.468 to 18.44)	10.61 (1.84 to 19.37)	24.7 (20.4 to 29)	15.28 (12.19 to 18.38)	3.801 (3.602 to 4.001)	24.37 (20.1 to 28.65)	1.469 (1.449 to 1.49)	1.128 (1.11 to 1.146)
BQ513537	AT3g01490 F4P13_4 (Arabidopsis thaliana)	2.459 (2.279 to 2.64)	2.151 (1.72 to 2.582)	12.06 (11.63 to 12.49)	8.483 (6.987 to 9.979)	32.43 (29.79 to 35.07)	0.598 (0.585 to 0.611)	2.859 (2.771 to 2.947)	3.803 (2.831 to 4.776)	1.202 (0.967 to 1.437)
BQ111846	AT3g02110 F1C9_10 (Arabidopsis thaliana)	15.06 (13.54 to 16.59)	32.08 (31.99 to 32.17)	3.692 (3.657 to 3.727)	0.84 (0.704 to 0.977)	1.638 (1.625 to 1.652)	3.449 (3.367 to 3.532)	2.78 (2.614 to 2.947)	4.665 (4.382 to 4.947)	3.661 (3.439 to 3.884)
BQ511382	AT3g16910 K14A17_3 (Arabidopsis thaliana)	4.037 (3.283 to 4.791)	2.044 (1.973 to 2.116)				6.75 (6.2 to 7.3)	10.72 (9.8 to 11.65)		
BQ511426	AT3g45260 F18N11_20 (Arabidopsis thaliana)	6.611 (4.552 to 8.67)					5.257 (4.922 to 5.592)			
BQ505231	AT3g52990 F8J2_160 (Arabidopsis thaliana)	4.988 (4.852 to 5.124)	0.611 (0.599 to 0.623)	1.484 (1.458 to 1.511)	7.095 (6.738 to 7.451)	9.321 (8.267 to 10.38)	30.07 (27.09 to 33.05)	21.51 (18.2 to 24.82)	36.05 (27.7 to 44.4)	2.931 (2.305 to 3.558)
BQ512875	AT3g53110 T4D2_40 (Arabidopsis thaliana)	1.953 (1.883 to 2.024)	0.567 (0.554 to 0.58)	2.129 (2.019 to 2.239)	18.6 (16.84 to 20.35)	32.94 (32.25 to 33.62)	36.63 (32.35 to 40.9)	4.834 (4.21 to 5.458)	2.264 (1.327 to 3.2)	2.462 (2.087 to 2.836)

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFI	P)		
GenBank	TIGR Annotation		Microarray BarCode #									
ID#	I ION AImotation	753	677	681	9733	9734	9735	9736	9737	5146		
	AT4g02530 T10P11_17	3.811 (1.717	2.538 (2.267	1.136 (0.86	10.19 (9.982	9.716 (9.026	12.35 (10.31	18.46 (18.19	5.373 (2.984	2.038 (2.013		
BQ120122	(Arabidopsis thaliana)	to 5.904)	to 2.809)	to 1.412)	to 10.39)	to 10.41)	to 14.39)	to 18.73)	to 7.762)	to 2.062)		
			0.842									
	AT5g14910 F2G14_30	2.634 (1.508	(0.0814 to	1.773 (0.412	3.861 (3.198	4.991 (3.935	5.598 (5.076	7.551 (5.565	7,024 (4.771	2.239 (1.828		
BQ112434	(Arabidopsis thaliana)	to 3.761)	1.603)	to 3.135)	to 4.524)	to 6.047)	to 6.119)	to 9.538)	to 9.278)	to 2.65)		
				0.292								
	AT5g28840 F7P1_20	5.336 (3.781	2.565 (2.564	(0.0299 to	5.295 (5.031	50.25 (42.53	7.083 (6.815	6.683 (6.514	6.763 (5.924	1.637 (0.916		
BQ114689	(Arabidopsis thaliana)	to 6.891)	to 2.565)	0.554)	to 5.559)	to 57.97)	to 7.35)	to 6.853)	to 7.601)	to 2.358)		
	auxin response factor 6											
	(ARF6) (imported) -	5.638 (3.996				31.57 (29.65						
BQ117338	Arabidopsis thaliana	to 7.28)	to 14.26)	to 18.14)	to 1.445)	to 33.5)	to 37.7)	to 7.092)	to 3.555)	to 2.315)		
10%	beta Galactosidase-like	2.388 (1.168	3.747 (3.12	C	10.12 (7.898	1.81 (1.311	2.827 (2.82	4.21 (3.895	5.587 (5.475	1.81 (1.486		
BQ517075	protein - Arabidopsis thaliana	to 3.607)	to 4.373)	to 9.267)	to 12.35)	to 2.309)	to 2.834)	to 4.524)	to 5.699)	to 2.134)		
										9.072		
	beta-carotene hydroxylase	0,121 (0.0975	and the second					4.131 (3.923		(0.0611 to		
BQ116393	(Lycopersicon esculentum)	to 0.145)	to 4.852)	to 5.71)	to 19.11)	to 5.369)	to 14.35)	to 4.338)	to 1.527)	18.08)		
	beta-mannosidase enzyme	4.618 (3.923	3.017 (2.192					3.009 (2.524				
BQ114643	(Lycopersicon esculentum)	to 5.314)	to 3.841)	to 4,484)	to 29.6)	to 21.25)	to 12.25)	to 3.494)	to 10.35)	1.874		
	biotin carboxyl carrier											
	protein subunit precursor	3.332 (2.564	8.293 (7.512			5,2 (4.984 to						
BQ511755	(Glycine max)	to 4.1)	to 9.073)	to 2.803)	to 1.318)	5.417)	68.8)	to 1.698)	to 2.722)	to 3.109)		
	Brassinosteroid-regulated											
	protein BRU1. (Soybean)	2.658 (2.464			5.0	3,723 (2.583						
BQ120158	(Glycine max)	to 2.851)	to 0.463)	to 1.248)	to 5.285)	to 4.863)	to 2.386)	to 5.471)	to 5.705)	to 2.41)		
	Cell division protein ftsH											
	homolog chloroplast											
	precursor (EC 3.4.24)											
	(Fragment). (Bell pepper);	3.224 (2.947	2.827 (2.635			5.274 (1.788			8			
BQ119360	TC41599	to 3.502)	to 3.019)	to 5.549)	to 3.39)	to 8.761)	to 1.154)	to 5.631)	to 3.589)	to 2.84)		
	Cell elongation protein					and the second second	0.914					
	diminuto. (Garden pea)	4.233 (3.607	6,576 (5.851			5.294 (5.179		2.454 (2.313				
BQ119389	(Pisum sativum); TC55756	to 4.86)	to 7.301)	to 7.679)	to 25.5)	to 5.41)	1.795)	to 2.596)	to 19.9)	to 3.693)		

fold or g	ized Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFF	P)
GenBank	TIGR Annotation	HE IN THE			Microa	rray Bar	Code #			
ID#		753	677	681	9733	9734	9735	9736	9737	5146
	chaperonin 21 precursor	2.271 (1.842	0.943 (0.907	1.056 (1.056	2.355 (2.178	3.197 (3.166	7.705 (6.683	3.2 (0.851 to	21.69 (19.65	6.203 (5.987
BQ119676	(Lycopersicon esculentum)	to 2.699)	to 0.979)	to 1.057)	to 2.532)	to 3.229)	to 8.727)	5.55)	to 23.74)	to 6.418)
	Chlorophyll A-B binding protein 7 chloroplast precursor (LHCI type II CAB	6.238 (5.129	0.59 (0.569	0.911 (0.856	13.53 (12.95	3.188 (3.071	2.085 (1.705	4.187 (3.448	3.982 (3.074	2.521 (2.225
BQ112312	7). (Tomato)	to 7.347)	to 0.61)	to 0.966)	to 14.12)	to 3.305)	to 2.465)	to 4.926)	to 4.889)	to 2.818)
	chloroplast 50S ribosomal			-						
	protein L15 (Arabidopsis	12.61 (10.54	2.64 (2.552	1.1 (1.091	39.59 (36.76	35.35 (33.66	15.01 (14.57	31.37 (29.32	2.864 (2.825	3.429 (3.28
BQ117504	thaliana)	to 14.68)	to 2.727)	to 1.109)	to 42.43)	to 37.04)	to 15.45)	to 33.41)	to 2.903)	to 3.578)
	Chloroplast 50S ribosomal									
	protein L16. (Common	8.015 (7.639	2.364 (2.314	1.462 (1.433	13.64 (9.366	70.34 (69.18	8.813 (8.711	4.506 (4.309	5.365 (4.109	2.661 (2.545
BQ117403	tobacco) (Nicotiana tabacum)	to 8.391)	to 2.415)	to 1.491)	to 17.91)	to 71.5)	to 8.915)	to 4.702)	to 6.622)	to 2.776)
	contains similarity to									
	phytocyanin early nodulin-	3.222 (3.021	0.252 (0.143					20.22 (16.52	3.187 (3.06	2.344 (1.899
BQ515209	like protein~gene_id	to 3.423)	to 0.362)	to 0.619)	to 11.76)	to 12.25)	to 16.39)	to 23.92)	to 3.313)	to 2.79)
										4.033
	CycD3;2 (Lycopersicon	1.028 (0.771	2,366 (1.886		2.9 (1.3 to	7.825 (0.85	2.4 (1.35 to	5.075 (2.05	7.525 (0.65	(0.0819 to
BQ519227	esculentum)	to 1.285)	to 2.846)	to 2.804)	4.5)	to 14.8)	3.45)	to 8.1)	to 14.4)	7.983)
	cyclin-dependent protein									
	kinase p34cdc2	1.866 (1.064						2,066 (2,019	5.85 (4 to	2.067 (1.94
BQ509702	(Lycopersicon esculentum)	to 2.668)	to 2.651)	to 2.595)	to 2,193)	to 1.692)	to 16.4)	to 2.114)	7.7)	to 2.195)
			1.387							
	diminuto (Arabidopsis	3.579 (0.314	(0.0217 to		12.35 (10.38	the second se	The second second second	17.99 (15.56		
BQ505800	thaliana)	to 6,844)	2.752)	to 2.446)	to 14.31)	to 4.216)	to 22.53)	to 20.43)	to 2.602)	to 2.867)
	ESTs AU069293(C53946) AU077613(E20660)									
	correspond to a region of the	3.005 (2.723	0.963 (0.603	2.292 (2.235	1.36 (0.826	13.64 (13.43	11.23 (11 to	2.023 (1.956	3.03 (2.832	4.702 (4.084
BQ117876	predicted gene.; Similar to	to 3.287)	to 1.323)	to 2.349)	to 1.894)	to 13.85)	11.45)	to 2.091)	to 3.229)	to 5.319)
	Eukaryotic translation									
	initiation factor 5 (eIF-5).									
	(Kidney bean French bean)	4.207 (3.599	1.079 (1.04			6.644 (5.527			19.65 (13.2	3.291 (3.239
BQ116416	(Phaseolus vulgaris)	to 4.816)	to 1.118)	to 1.348)	to 14.42)	to 7.762)	to 3.215)	to 3.225)	to 26.1)	to 3.343)

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	СТР-С	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFI	P)			
GenBank	TIGR Annotation		Microarray BarCode #										
ID#		753	677	681	9733	9734	9735	9736	9737	5146			
	F1N19.10 (Arabidopsis	2.022 (1.9 to	11.92 (10.03	12.54 (12.01	6,775 (0.75	14.83 (2.4 to	2.074 (1.847	2.69 (2.292	11.26 (10.48	2.071 (2.068			
BQ514908	thaliana)	2.143)	to 13.82)	to 13.06)	to 12.8)	27.25)	to 2.3)	to 3.088)	to 12.04)	to 2.074)			
	ferredoxinnitrite reductase												
_	(EC 1.7.7.1) - common	4,319 (4.231	0.37 (0.334	0.842 (0.824		11.88 (11.53	11.92 (11.8	2.292 (2.226	12.75 (12.2	2.805 (2.391			
BQ112396	tobacco (fragment); TC52992	to 4.408)	to 0.405)	to 0.861)	14.9)	to 12.22)	to 12.05)	to 2.358)	to 13.3)	to 3.219)			
	GDP dissociation inhibitor -	1 (0.956 to	7.571 (7.516	1.857 (1.824	2.968 (2.888	7.859 (7.288	3.436 (2.86	26.85 (25.27	6.845 (6.788	9.98 (8.355			
BQ118303	common tobacco	1.044)	to 7.627)	to 1.891)	to 3.047)	to 8.431)	to 4.011)	to 28.43)	to 6.903)	to 11.61)			
	homologue to PIR A05035 A05035 translation initiation factor IF 1 homolog - common												
	tobacco chloroplast												
	(fragment) (Nicotiana	3,175 (3.174	1.211 (1.2 to	0.996 (0.993	3.463 (2.961	7.104 (6.081	27.98 (24.73	3.861 (3.222	28 76 (28 14	2,679 (1,71			
BQ114627	tabacum; }, partial (60%)	to 3.177)	1.223)	to 0.998)	to 3.965)	to 8.128)	to 31.23)	to 4.499)	to 29.39)	to 3.647)			
2 Qui lour	homologue to UP Q7X9K1								10 271077	10 010 117			
	(Q7X9K1) Ribosomal Pr 117	2,438 (1.845	6.079 (2.4 to	5.418 (3.732	2.459 (2.379	12.62 (11 to	0.745 (0.557	2.063 (1.405	3.246 (1.947	1.211 (0.718			
BQ505226	(Fragment), partial (27%)	to 3.032)	9.759)	to 7.104)	to 2.539)	14.25)	to 0.933)	to 2.721)	to 4.544)	to 1.705)			
	hydroxyproline-rich												
	glycoprotein homolog	0.819 (0.78 to	2.653 (1.513	3.402 (3.006	11.75 (10.84	28.29 (26.31	3.365 (3.349	3.38 (3.188	15.47 (14.56	2.633 (2.376			
BQ118868	(Arabidopsis thaliana)	0.859)	to 3.794)	to 3.798)	to 12.66)	to 30.28)	to 3.38)	to 3.571)	to 16.39)	to 2.889)			
	hypothetical protein								(
	AAF27112.1 (imported) -	2.141 (1.723	1.211 (1.061	2.612 (2.364	30.58 (29.93	37.73 (35.5	4.189 (3.5 to	6.329 (4.915	5.31 (4.878	3,064 (2.833			
BQ511013	Arabidopsis thaliana	to 2.558)	to 1.361)	to 2.86)	to 31.23)	to 39.95)	4.878)	to 7.742)	to 5.743)	to 3.294)			
	hypothetical protein												
	AAF80647.1 (imported) -	0.703 (0.352	7.451 (0.328	2.502 (2.471	3.426 (2.229	15.1 (9.129	3.061 (1.98	36.95 (33.25	3.152 (3.05	1,658 (1.388			
BQ515625	Arabidopsis thaliana	to 1.054)	to 14.57)	to 2.533)	to 4.623)	to 21.07)	to 4.142)	to 40.65)	to 3.254)	to 1.929)			
	hypothetical protein												
	AT4g22120 - Arabidopsis	2.254 (1.61 to	1.769 (1.669	28.91 (13.71	8.183 (7.778	3.48 (0.7 to	25.25 (12.35	3.903 (3.496	1.292 (0.887	2.258 (1.913			
BQ111389	thaliana	2.899)	to 1.869)	to 44.12)	to 8.588)	6.261)	to 38.15)	to 4.309)	to 1.696)	to 2.603)			
	hypothetical protein M7J2.60	2,192 (1.166	1.866 (1.793	0.567 (0.443	7.25 (6.756	4.243 (3.543	7.161 (5.187	3.245 (2.765	4.232 (1.929				
BQ120353	- Arabidopsis thaliana	to 3.218)	to 1.939)	to 0.692)	to 7.745)	to 4.943)	to 9.135)	to 3.726)	to 6.536)	to 2.681)			

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T'	TOSA1	APE pBA	AD (GFH	P)			
GenBank	TIGR Annotation		Microarray BarCode #										
ID#	and the second sec	753	677	681	9733	9734	9735	9736	9737	5146			
	hypothetical protein T18N14.110 - Arabidopsis	2.15 (0.908 to	3.249 (3.024	2.083 (1.834	1.206 (0.955	9.996 (8.249	5.521 (5.036	8.08 (6.131	13.73 (11.5	1.933 (0.415			
BQ514005	thaliana	3.392)	to 3.474)	to 2,331)	to 1.457)	to 11.74)	to 6.006)	to 10.03)	to 15.95)	to 3.451)			
	hypothetical protein~similar to Arabidopsis thaliana hypothetical protein	3.68 (3.306 to	2.093 (1.719	10.07 (8.118	4.275 (2.75	2,655 (1.549	3,925 (3.45		1.726 (0.966				
BQ506826	F2009.120 (Oryza sativa)	4.053)	to 2.468)	to 12.03)	to 5.8)	to 3.761)	to 4.4)	to 2.6)	to 2.485)	to 1.419)			
200020	L3 Ribosomal protein							10 2107	10 11 100 1				
	(Medicago sativa subsp. x	2.024 (1.855	0.701 (0.678	1.042 (1.04	2.816 (2.381	7.246 (6.88	2,496 (2.418	27.73 (25.15	14.67 (13.95	8.724 (7.692			
BQ113795	varia)	to 2.193)	to 0.724)	to 1.044)	to 3.251)	to 7.612)	to 2.573)	to 30.3)	to 15.39)	to 9.755)			
	low density lipoprotein B-												
	like protein (Arabidopsis	4.44 (4.194 to	1.589 (0.93	4.434 (4.13	28.23 (24.62	11.96 (11.2	11.55 (10.84	4.651 (3.135	30.33 (29.35	2.691 (2.578			
BQ119650	thaliana)	4.685)	to 2.248)	to 4.737)	to 31.84)	to 12.72)	to 12.27)	to 6.166)	to 31.3)	to 2.804)			
	magnesium transporter	2.249 (2.209	2.284 (2.048	1.416 (1.309	2.195 (1.788	2,702 (2.172	3.745 (0.123	4.2 (0.3 to	9.6 (8.5 to	1.729 (1.568			
BQ507033	protein (Arabidopsis	to 2.289)	to 2.52)	to 1,524)	to 2.602)	to 3.231)	to 7.368)	8.1)	10.7)	to 1.891)			
	methionine synthase	2.756 (2.67 to	0.606 (0.475	1.015 (1.013	3.01 (2.942	6.555 (6.275	13.06 (12.54	2.091 (1.971	19.62 (19.6	4.356 (4.326			
BQ115799	(Solanum tuberosum)	2.842)	to 0.737)	to 1.018)	to 3.078)	to 6.834)	to 13.59)	to 2.211)	to 19.65)	to 4.385)			
	mRNA-binding protein												
	precursor (imported) - tomato	2.692 (2.139	0.718 (0.708	2,959 (2.944		6.01 (5.839	25.88 (24.75	1.844 (1.661	18.81 (16.45	2.811 (2.676			
BQ114043	(fragment)	to 3.246)	to 0.728)	to 2.975)	to 20.8)	to 6.182)	to 27)	to 2.027)	to 21.17)	to 2.946)			
	mRNA-binding protein												
	precursor (imported) - tomato	8,96 (8.142 to	0.568 (0.535	6.123 (5.467	5,686 (4.991	12.09 (11.34	21.45 (19.9	2.144 (1.824	18.04 (15.39	3.831 (3.586			
BQ111668	(fragment); TC53732	9.777)	to 0.601)	to 6.78)	to 6.382)	to 12,84)	to 23)	to 2.464)	to 20.69)	to 4.077)			
	NADPH-protochlorophyllide	13.86 (12.62			13.73 (10.15		10.65 (9.4 to	14.07 (13.38	10.65 (9.9	2.812 (2.77			
BQ116314	oxidoreductase (Vigna	to 15.1)	to 0.343)	to 0,439)	to 17.3)	to 27.75)	11.9)	to 14.76)	to 11.4)	to 2.854)			
	nascent polypeptide												
	associated complex alpha	2,327 (1.566	0.85 (0.752	0.9 (0.899		48.31 (47.63		51 (43.6 to	34.5 (33.4	2.892 (2.016			
BQ113765	chain (Pinus taeda)	to 3,089)	to 0.948)	to 0.901)	to 12.76)	to 49)	to 8.752)	58.4)	to 35.6)	to 3.767)			
		2.041 (1.973				12.24 (11.68		8.563 (8.15	15.07 (14.9	0.683 (0.152			
BQ514682	No annotation	to 2.11)	to 3.204)	to 5.444)	to 7.161)	to 12.79)	to 23.65)	to 8.976)	to 15.25)	to 1.214)			
		0.142 (0.0194				27.19 (25.66			28.15 (26.9	3.791 (3.432			
BQ517778	No annotation	to 0.265)	to 6.853)	to 2.657)	to 21.07)	to 28.71)	to 8.322)	to 35.52)	to 29.4)	to 4.151)			

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFI	P)
GenBank	TIGR Annotation					rray Bar	and the second se			
ID#		753	677	681	9733	9734	9735	9736	9737	5146
	oligouridylate binding									
	protein (Nicotiana	2.456 (0.665	4,906 (2.809				3,759 (3.547			
BQ116524	plumbaginifolia); TC53672	to 4.248)	to 7.003)	to 16.25)	to 2.885)	24.4)	to 3.972)	to 21.55)	to 3.257)	1.817)
	Ornithine									
	carbamoyltransferase	2.095 (2.064	2 149 (1 001	2 5 47 (0 160	1 924 (0 404	5 102 (5 210	4 700 (2 076	2 477 (2 20	0.005 (0.50)	1 (5((0 005
D0504045	chloroplast precursor (EC		2.148 (1.991							the second s
BQ504945	2.1.3.3) (OTCase); TC41428	to 2.106)	to 2.306)	to 6.926)	to 3.174)	to 5.527)	to 6.369)	to 4.664)	to 1.263)	to 9,088)
	Peptide methionine sulfoxide									
	reductase (EC 1.8.4.6)	2 (12 (0 722		12 50 (12 07	7 44 16 724	0 721 /7 444	15 00 (10 00	0.514 (0.050		
D.0.51 (000	(Protein- methionine-S-oxide						15.88 (13.08			
BQ516892	reductase)	to 4.553)	to 4.927)	to 14.11)	to 8.147)	to 10.02)	to 18.68)	to 9.756)	to 2.594)	to 1.341)
0.100100	peroxiredoxin (Phaseolus	0.107	0.815 (0.767	0.943 (0.94			8.005 (7.764	1		5.829 (5.459
BQ120178	vulgaris)	2,136	to 0.863)	to 0.947)	to 16.19)	to 13.72)	to 8.245)	21.89	to 10.29)	to 6.2)
	PEX14 (Arabidopsis	0.931 (0.715					12.23 (9.1 to		6.675 (1.5	2.58 (2.309
BQ112405	thaliana)	to 1.148)	to 1.872)	to 4.328)	to 26.41)	to 13.37)	15.35)	to 23.7)	to 11.85)	to 2.852)
	phosphate transport protein	2.824 (2.778	21.52 (20.39				16.36 (13.07	the second se		
BQ117614	G7 mitochondrial - soybean	to 2.87)	to 22.66)	to 0.809)	to 38.2)	to 2.374)	to 19.66)	to 8.416)	to 16.1)	to 2.664)
	Phosphoglycerate kinase									
	cytosolic (EC 2.7.2.3).									
	(Common tobacco)	6.041 (5.382		2.485 (2.481			2.603 (2.499			
BQ116188	(Nicotiana tabacum)	to 6.699)	to 1.952)	to 2.489)	to 22.83)	to 2.379)	to 2.707)	to 1.136)	to 17.59)	to 3.025)
	Phosphoglycerate kinase	4 °	n - 0				1 1			
	cytosolic (EC 2.7.2.3).									
	(Common tobacco)	2.011 (1.887		THE REPORT OF THE PARTY OF	and the second second second		15.18 (13.79			3.14 (3.044
BQ116142	(Nicotiana tabacum)	to 2.136)	to 1.46)	to 2.028)	to 2.581)	to 16,17)	to 16.56)	to 22.14)	to 4.548)	to 3.236)
	Plastidic ATP ADP-									
	transporter. (Potato)	1.722 (1.64 to	1999 A 1997				44.02 (40.65		16.3 (15.56	4.945 (4.23
BQ507192	(Solanum tuberosum)	1.804)	to 2.172)	to 10.81)	to 18.03)	to 2,416)	to 47.4)	to 3.766)	to 17.04)	to 5.66)
	polypyrimidine tract-binding									
	RNA transport protein-like	2.331 (2.328	1000	1 XV - 2			2.315 (0.975	2.661 (2.318	2.213 (1.774	2.144 (1.966
BQ510570	(Arabidopsis thaliana)	to 2.334)	to 2.192)	to 7.362)	to 3.126)	to 4.311)	to 3.656)	to 3.005)	to 2.652)	to 2.322)

fold or g	zed Gene Expression (2- greater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFF	?)			
GenBank	TIGR Annotation		Microarray BarCode #										
ID#		753	677	681	9733	9734	9735	9736	9737	5146			
	probable aminotransferase												
	101422-99564 (imported) -	10.92 (9.792	15	0.57		0.896 (0.795			2.026 (1.428	12.			
BQ116110	Arabidopsis thaliana	to 12.05)	to 4.519)	to 3.04)	to 5.614)	to 0.997)	to 13.1)	to 2.351)	to 2.624)	to 1.813)			
	Probable glutathione S-												
	transferase (EC 2.5.1.18)					1	territori territori antonio di sua si						
	(Auxin-induced protein		5.845 (4.269										
BQ518442	PGNT1 PCNT110).	to 4.453)	to 7.422)	to 13.65)	to 45.05)	to 24.83)	to 17.56)	to 4.874)	to 1.939)	1,422)			
	probable ribosomal protein	-											
	L34 (imported) - Arabidopsis	9.296 (7.536	1 m m			4.184 (3.375	11.61 (11.31	11.29 (5.98	29.56 (29.42	10.39 (5.648			
BQ114493	thaliana; TC45114	to 11.06)	to 0.348)	to 1.378)	to 5.223)	to 4.992)	to 11.91)	to 16.6)	to 29.69)	to 15.13)			
	Proteasome subunit alpha												
	type 4 (EC 3.4.25.1) (20S	1,881 (1.841	5.222 (5.202	2.291 (2.27	0.93 (0.758	2.187 (1.949	53.55 (49.2	13.01 (9.612	2.111 (1.963	2.624 (2.55			
BQ119527	proteasome alpha subunit C)	to 1.922)	to 5.242)	to 2.312)	to 1.103)	to 2.425)	to 57.9)	to 16.42)	to 2.259)	to 2.697)			
	protein kinase-like protein	4.027 (3.473	1.901 (1.101	3.753 (3.451	2.105 (2.084	28.87 (21.15	5.018 (0.809	3.283 (3.093	6.65 (6.25	0.948 (0.781			
BQ117181	(Arabidopsis thaliana)	to 4.58)	to 2.7)	to 4.056)	to 2.125)	to 36.6)	to 9.227)	to 3.474)	to 7.05)	to 1.114)			
	putative aquaporin TIP3												
	(Vitis berlandieri x Vitis	0.285 (0.138	5.446 (2.292	6.348 (5.82	8.262 (6.361	1.66 (1.466	42.57 (33.9	2.258 (2.069	2.443 (1.978	2.028 (1.598			
BQ512694	rupestris)	to 0.432)	to 8.6)	to 6.877)	to 10.16)	to 1.853)	to 51.25)	to 2.448)	to 2.908)	to 2.457)			
	putative heat-shock protein	1.314 (0.734	3.629 (3.54	2.086 (1.958	7.539 (6.683	39.28 (38.58	6.464 (5.864	3.988 (3.906	3.787 (2.607	1.495 (1.249			
BQ117343	(Arabidopsis thaliana)	to 1.894)	to 3.718)	to 2.214)	to 8.394)	to 39.98)	to 7.063)	to 4.07)	to 4.967)	to 1.742)			
	putative protein (Arabidopsis	1,607 (1.546	8.356 (7.537	3.467 (3.131	11.03 (9.95	21.17 (19.95	1.27 (1.254	4.01 (2.883	2.159 (0.887	2.672 (2.191			
BQ511792	thaliana)	to 1.669)	to 9.174)	to 3.804)	to 12.12)	to 22.4)	to 1.285)	to 5.137)	to 3.431)	to 3.154)			
	putative resistance protein	12.16 (11.92	16.89 (16.65	52.82 (52.23	1.82 (1.514	8.221 (8.016	5.079 (4.74	31.37 (29.35	4.608 (4.343	2.94 (2.401			
BQ510641	(Lycopersicon esculentum)	to 12.41)	to 17.12)	to 53.4)	to 2.125)	to 8.426)	to 5.417)	to 33.4)	to 4.872)	to 3.478)			
	putative ribosomal protein	5.434 (4.964	0.585 (0.548	1.028 (1.009	2.829 (2.755	52 (48.75 to	3.956 (3.734	3.085 (2.925	26.57 (21.55	3.433 (2.66			
BQ507672	L10 (Arabidopsis thaliana)	to 5.903)	to 0.621)	to 1.048)	to 2.902)	55.25)	to 4.178)	to 3.244)	to 31.6)	to 4.207)			
	ribosomal protein L10	2.181 (2.018	0.92 (0.896	1.962 (1.96	9.197 (8.447	4.761 (4.699	3.545 (3.361	32.1 (31.73	6.21 (5.795	3 212 (2.994			
BQ116132	chloroplast - common	to 2.344)	to 0.945)	to 1.965)	to 9.947)	to 4.823)	to 3.729)	to 32.48)	to 6.626)	to 3.43)			
	ribosomal protein L13	9.027 (8.863	2.414 (2.243	1.331 (1.315	2.379 (2.041	2.683 (2.306	1.207 (0.726	5.064 (4.757	2.781 (2.685				
BQ121684	(Arabidopsis thaliana)	to 9.191)	to 2,586)	to 1.348)	to 2.718)	to 3.059)	to 1.689)	to 5.37)	to 2.878)	to 3.679)			
	ribosomal protein L33	2,4 (2.203 to	0.58 (0.579	0.814 (0.81	5,694 (5.065	4.354 (4.331	8.86 (5.695	2.826 (2.794	18.35 (17.45				
BQ117085	(Castanea sativa)	2.598)	to 0.581)	to 0.819)	to 6.324)	to 4.376)	to 12.03)	to 2.858)	to 19.25)	to 2.713)			

fold or g	ized Gene Expression (2- greater) at 10 days post tion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T	TOSA1	APE pB	AD (GFI	P)	
GenBank	TIGR Annotation	Microarray BarCode #									
ID#	TION Announton	753	677	681	9733	9734	9735	9736	9737	5146	
	ribosomal protein S28	1.019 (0.13 to			9.714 (8.715			2.832 (2.411	20.92 (13.4	· · · · · · · · · · · · · · · · · · ·	
BQ505879	(Prunus persica)	1.908)	to 6.683)	to 2.816)	to 10.71)	8.361	to 17.65)	to 3.253)	to 28.45)	to 3.529)	
	ribosomal protein S5	2.812 (2.378	0.933 (0.922		6.844 (6.709						
BQ119087	(Spinacia oleracea)	to 3.245)	to 0.944)	to 0.895)	to 6.979)	to 3,335)	to 2.131)	to 3.791)	to 6.885)	to 3.82)	
	rna binding protein-like -			. Canada and an				a eest sie eest			
	Arabidopsis thaliana;	3.756 (3.413	0.826 (0.824		2.595 (1.562					2.127 (1.381	
BQ111660	TC45014	to 4.1)	to 0.827)	to 4.445)	to 3.629)	to 8.7)	5.45)	to 0.523)	4.2)	to 2.873)	
		6.16 (4.337 to									
BQ117361	RNA helicase (Vigna radiata)	7.982)	1.579)	to 1.91)	to 19.87)	to 38.97)	to 18.31)	to 5.581)	to 24.77)	to 3.554)	
	S-adenosylmethionine										
	decarboxylase; SAMDC	0.342 (0.217								1.781 (1.516	
BQ120064	(Solanum tuberosum)	to 0.467)	to 3.294)	to 5.452)	to 34.35)	to 4.659)	to 5.667)	to 12.62)	to 2.933)	to 2.046)	
	similar to UP Q7QH57										
	(Q7QH57) AgCP9225	9.266 (8.997		C. Set a state of the state	2,182 (2.115						
BQ511409	(Fragment), partial (3%)	to 9.536)	to 35.45)	to 29)	to 2.248)	0.95)	to 41.3)	to 1.037)	to 3.687)	to 2.401)	
	similar to UP Q93VK5										
	(Q93VK5)					Contractor Cale Marine	l				
	At1g31800/68069_m00159,	9.72 (9.24 to			8,286 (6.988	the second s	a state of the sta	6.975 (0.95	6.275 (5.3	1.261 (1.048	
BQ114539	partial (15%)	10.2)	to 6.098)	to 20.44)	to 9.584)	to 1.377)	to 11.1)	to 13)	to 7.25)	to 1.473)	
	similar to UP Q9AU08	and the second second		-		-			1		
	(Q9AU08) NADPH-						C				
	cytochrome P450								i		
	oxydoreductase isoform 1,	6.079 (5.94 to	9.747 (9.704		and the second sec		4.415 (3.711	3.125 (3.072	3.157 (3.094	2.87 (2.844	
BQ111885	partial (23%)	6.218)	to 9.791)	to 3.171)	to 23.72)	to 5.046)	to 5.118)	to 3,178)	to 3.219)	to 2.895)	
	similar to UP Q9LN01										
	(Q9LN01) T6D22.15, partial	7.708 (7.447	3.316 (3.306			3.226 (2.865	15.2 (13.25	8.75 (5 to	1.586 (1.463	1.321 (0.801	
BQ511601	(4%)	to 7.97)	to 3.327)	to 89.44)	to 11.85)	to 3.587)	to 17.15)	12.5)	to 1.708)	to 1.841)	
-	spliceosomal-like protein -	0.089 (0.0242	13.12 (1.967	48.36 (35.26	4.735 (4.183		4.359 (3.894			2,118 (1.9 to	
BQ505018	Arabidopsis thaliana	to 0.154)	to 24.27)	to 61.46)	to 5.286)	to 1.305)	to 4.824)	to 7.354)	to 2.804)	2.337)	
		6.004 (5.763	1.169 (1.12	1.202 (1.196			23.83 (19.65	2.967 (1.858	20.19 (17.92	2.773 (2.398	
BQ112317	sulfur (Nicotiana tabacum)	to 6,246)	to 1.217)	to 1.209)	to 31.33)	to 23.14)	to 28)	to 4.076)	to 22.46)	to 3.148)	

fold or g	ized Gene Expression (2- greater) at 10 days post tion for 7 of 9 replicates	N	b TTU51	CTP-C	rtB-RZ	vs. Nb T'	TOSA1	APE pBA	AD (GFI	P)	
GenBank	TIGR Annotation	Microarray BarCode #									
ID#		753	677	681	9733	9734	9735	9736	9737	5146	
BQ120129	thylakoid lumenal 17.4 kD protein chloroplast precursor (P17.4) (Arabidopsis thaliana)		2.108 (2.049 to 2.167)	3.104 (2.372 to 3.837)	3.764 (3.596 to 3.931)	2.079 (0.402 to 3.756)	16.27 (15.45 to 17.1)	23.87 (21.05 to 26.7)	0.733 (0.714 to 0.752)	1.754 (1.564 to 1.943)	
	thylakoid lumenal 17.4 kD protein chloroplast precursor (P17.4) (Arabidopsis	3.185 (2.542	3.236 (2.328	1.718 (1.668	2.27 (2.085	2.14 (0.471	13.13 (3.5 to	11.99 (10.27	3.04 (2.951	1,426 (1.387	
BQ120993	thaliana) U1 small nuclear ribonucleoprotein 70 kDa (U1 SNRNP 70 kDa)	to 3.827) 2.983 (2.015	to 4.144)	to 1.767) 8.468 (6.432	to 2.456)	to 3.808) 3.653 (3.322	22.75) 3.336 (2.473	to 13.72) 14.05 (13.95	to 3.129) 3.558 (3.049	to 1.465)	
BQ117445	(snRNP70) (U1-70K).	to 3.952)	to 4.119)	to 10.5)	to 2.507)	to 3.984)	to 4.199)	to 14.15)	to 4.066)	to 2.436)	
BQ517894	ubiquitin carrier protein 4 (Glycine max)	1.08 (1.073 to 1.087)	5.383 (1.764 to 9.002)	8.824 (6.333 to 11.31)	18.69 (16.93 to 20.45)	13.85 (12.9 to 14.79)	7.813 (3.317 to 12.31)	12.74 (12.54 to 12.95)	3.116 (2.649 to 3.583)	2.061 (1.892 to 2.23)	
BQ113088	unknown protein (Arabidopsis thaliana)	2.963 (2.663 to 3.263)	6.299 (6.254 to 6.344)	9.932 (9.87 to 9.993)	6.908 (4.341 to 9.476)	1.927 (1.734 to 2.12)	2.066 (1.625 to 2.506)	12.31 (9.817 to 14.81)	2.77 (2.22 to 3.319)	1.622 (1.295 to 1.949)	
BQ116425	unknown protein (Arabidopsis thaliana)	3.015 (2.992 to 3.038)	3.547 (3.114 to 3.98)	8.944 (7.462 to 10.43)	8.201 (7.664 to 8.738)	11.34 (10.59 to 12.08)	19.16 (12.41 to 25.91)	46.62 (45.05 to 48.2)	5.343 (4.366 to 6.32)	3.579 (3.129 to 4.029)	
BQ513123	Unknown protein (Arabidopsis thaliana)	1.294 (1.246 to 1.343)	4.293 (2.85 to 5.736)	21.35 (12.35 to 30.36)	7.744 (7.159 to 8.328)	7.58 (7.543 to 7.616)	5.442 (0.186 to 10.7)	7.359 (5.866 to 8.851)	2.033 (1.928 to 2.139)	0.841 (0.759 to 0.923)	
BQ112219	Unknown protein (Arabidopsis thaliana)	4.518 (3.585 to 5.45)	2.048 (1.95 to 2.147)	0.82 (0.188 to 1.452)	7.8 (4.6 to 11)	9.266 (7.625 to 10.91)	11.98 (10.25 to 13.7)	12.15 (10.34 to 13.97)			
BQ506690	unnamed protein product (Glycine max)	3.011 (2.665 to 3.357)	2.037 (1.608 to 2.467)	0.862 (0.819 to 0.905)	15.98 (15.24 to 16.72)	7.579 (6.916 to 8.243)	6 743 (3.821 to 9.664)	14.77 (12.25 to 17.28)		0.973 (0.936 to 1.01)	
BQ517311	UP Q9SVZ1 (Q9SVZ1) Protein kinase-like protein, partial (5%) weakly similar to	5.868 (4.673 to 7.064)				3.198 (2.949 to 3.447)					
BQ515181	UP AAR92349 (AAR92349) At1g32690, partial (35%)	2.621 (2.448 to 2.795)	1.054 (1.029 to 1.08)	2.422 (2.244 to 2.6)	5,401 (4.656 to 6,146)	29.87 (24.25 to 35.49)	5.753 (5.26 to 6.247)	4.26 (2.212 to 6.307)	3.455 (2.837 to 4.073)	1.379 (1.325 to 1.434)	

fold or g	zed Gene Expression (2- reater) at 10 days post ion for 7 of 9 replicates	N	b TTU51	СТР-С	rtB-RZ	vs. Nb T	TOSA1	APE pBA	AD (GFI	')	
GenBank	TIGR Annotation	Microarray BarCode #									
ID#		753	677	681	9733	9734	9735	9736	9737	5146	
BO508637	weakly similar to UP Q94A38 (Q94A38) AT5g46250/MPL12_3, partial (45%)	0.398 (0.377 to 0.418)	4.348 (2.915 to 5.781)	4.962 (4.96 to 4.965)	12.35 (11.25 to 13.45)	2.465 (2.143 to 2.787)	24 (22.7 to 25.3)	0.894 (0.683 to 1.105)	12.87 (9.65 to 16.1)	2.03 (1.724 to 2.335)	
BQ112914	Xylose isomerase (EC 5.3.1.5). (Mouse-ear cress) (Arabidopsis thaliana); TC54670	2.333 (2.164 to 2.502)	0.778 (0.743 to 0.812)	1.631 (1.601 to 1.661)	23.5 (20.35 to 26.65)	19.3 (14 to 24.6)		21.75 (19.3 to 24.2)			
BQ111387	Zeta-carotene desaturase chloroplast precursor (EC 1.14.99.30) (Carotene 7 8- desaturase). (Tomato); TC50983	2.321 (2.232 to 2.41)	1.216 (0.124 to 2.309)	0.939 (0.307 to 1.571)	24.77 (20.38 to 29.16)	2.081 (1.912 to 2.251)	5.914 (2.888 to 8.939)	3.206 (2.681 to 3.731)			

The second second	·····································	File Name	File Name	File Name	File Name	File Name	File Name
1.101.44		GSImportPD	GSImportPD	GSImportPD	GSImportPD	GSImportPDS	GSImportPD
GenBamk		SGFP9689.txt	SGFP9689.tx	SGFP9689.txt	SGFP9690.tx	GFP9690.txt	SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
	10 kDa chaperonin (Protein CPN10) (Protein	2.351 (1.692 to	18.14 (17.61 to	42.65 (30.7 to	2.39 (0.99 to	10 (9.944 to	
BQ516126	GROES). [Rape] {Brassica napus}	3.009)	18.68)	54.6)	3.79)	10.06)	23.9 (9.9 to 37.9)
	2-oxoglutarate-dependent dioxygenase	3.905 (2.28 to	10 (7.223 to	39.05 (22.8 to	67.32 (1.41 to	10 (9.617 to	673.2 (14.1 to
BQ113219	{Solanum chacoense}; TC57619	5.53)	12.78)	55.3)	133.2)	10.38)	1,332.3)
	3-hydroxyisobutyryl-coenzyme A hydrolase-	6.275 (0.75 to	10 (8.734 to	62.75 (7.5 to	23.59 (0.53 to	10 (9.823 to	236 (5.3 to
BQ113767	like protein {Arabidopsis thaliana}	11.8)	11.27)	118)	46.66)	10.18)	466.6)
	60S ribosomal protein L18. [Mouse-ear cress]	14.32 (1.811 to	10.27 (8.389 to	147.2 (18.6 to	4.729 (1.471 to	14.96 (13.01 to	70.75 (22 to
BQ119694	{Arabidopsis thaliana}	26.84)	12.16)	275.7)	7.988)	16.91)	119.5)
		3.79 (1.76 to	10 (7.589 to	37.9 (17.6 to	3.548 (2.317 to	33.36 (7.869 to	118.4 (77.3 to
BQ111892	Actin 97. [Potato] {Solanum tuberosum}	5.82)	12.41)	58.2)	4.778)	58.85)	159.4)
	Adenosylhomocysteinase (EC 3.3.1.1) (S-						
	adenosyl-L-homocysteine hydrolase)	8.21 (0.0125 to	191.9 (23.15 to	1,575.3 (2.4 to	2.782 (1.64 to	18.29 (6.237 to	
BQ117076	(AdoHcyase)	16.41)	360.6)	3,148.2)	3.925)	30.35)	50.9 (30 to 71.8)
	apospory-associated protein C {Arabidopsis	2.561 (1.152 to	10.5 (7.685 to	26.9 (12.1 to	2.24 (1.76 to	10 (9.946 to	22.4 (17.6 to
BQ111834	thaliana}; TC71404	3.97)	13.32)	41.7)	2.72)	10.05)	27.2)
	arabinogalactan-protein precursor {Nicotiana	3.495 (1.66 to	10 (6.31 to	34.95 (16.6 to	2.101 (2.028 to	10.35 (4.59 to	21.75 (21 to
BQ513849	alata}	5.33)	13.69)	53.3)	2.173)	16.12)	22.5)
	aspartate kinase (EC 2.7.2.4) / homoserine	17.32 (1.49 to	10 (9.71 to	173.1 (14.9 to	10.72 (1.41 to	10 (9.156 to	107.2 (14.1 to
BQ113729	dehydrogenase (EC 1.1.1.3) precursor -	33.14)	10.29)	331.4)	20.03)	10.84)	200.3)
		2.11 (1.91 to	10 (7.589 to	21.1 (19.1 to	46.11 (9.38 to	10 (8.716 to	461.1 (93.8 to
BQ507250	At1g08920/F7G19_20 {Arabidopsis thaliana}	2.31)	12.41)	23.1)	82.84)	11.28)	828.4)
		3.499 (1.04 to	20.87 (6.471 to	73 (21.7 to	460.7 (5.703 to	28.12 (24.24 to	12,955.25 (160.4
BQ121075	At1g09020/F7G19_11 {Arabidopsis thaliana}	5.957)	35.26)	124.3)	915.6)	32)	to 25,750.1)
		29.57 (0.727 to	13.89 (7.928 to	410.8 (10.1 to	2.331 (0.63 to	14.76 (10.7 to	
BQ120901	At1g54320/F20D21_50 {Arabidopsis thaliana}	58.42)	19.86)	811.6)	4.032)	18.82)	34.4 (9.3 to 59.5)
	AT3g16950/K14A17_7 {Arabidopsis	13.74 (0.0342 to	371.1 (11.49 to	5,099.8 (12.7 to	2.317 (0.866 to	15.82 (11.85 to	36.65 (13.7 to
BQ505137	thaliana}; TC68185	27.45)	730.8)	10,186.9)	3.767)	19.79)	59.6)
	AT3g54650/T5N23_10 {Arabidopsis thaliana};	2.354 (1.704 to	14.08 (11.99 to	33.15 (24 to	5.538 (1.046 to	10.13 (9.54 to	56.1 (10.6 to
BQ507093	TC61286	3.004)	16.18)	42.3)	10.03)	10.72)	101.6)
		46.58 (0.618 to	17.14 (9.162 to	798.4 (10.6 to	3.76 (0.409 to	19.3 (7.778 to	72.55 (7.9 to
BQ118264	AT4g17300/dl4685w {Arabidopsis thaliana}	92.54)	25.12)	1,586.2)	7.11)	30.82)	137.2)
	AT4g35230/F23E12_210 {Arabidopsis	13.22 (0.01 to	215.2 (11.69 to	2,843.5 (0.4 to	2.385 (0.798 to	10.9 (10.42 to	
BQ507569	thaliana }	26.43)	418.6)	5,686.7)	3.972)	11.38)	26 (8.7 to 43.3)

GenBamk		SGFP9689.txt	THE PARTY NEWSFROM THE PARTY	File Name GSImportPD SGFP9689.txt	SGFP9690.tx	File Name GSImportPDS GFP9690.txt	File Name GSImportPD SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
100	ATP phosphoribosyl transferase {Arabidopsis	23.61 (0.0423 to	333.3 (9.396 to	7,871.3 (14.1 to	2.31 (2.01 to	10 (8.481 to	23.1 (20.1 to
BQ113588	thaliana}; TC70793	47.19)	657.3)	15,728.4)	2.61)	11.52)	26.1)
	auxin response factor 1 [imported] -	2.945 (1.76 to	10 (8.716 to	29.45 (17.6 to	4.97 (2.49 to	10 (6.176 to	49.7 (24.9 to
BQ117738	Arabidopsis thaliana	4.13)	11.28)	41.3)	7.45)	13.82)	74.5)
	Chain A Semi-Reduced Inhibitor-Bound						
	Cyclic Nucleotide Phosphodiesterase From	2.341 (0.651 to	16.45 (10.43 to	38.5 (10.7 to	3.615 (0.42 to	10 (8.573 to	36.15 (4.2 to
BQ505921	Arabidopsis Thaliana	4.031)	22.47)	66.3)	6.81)	11.43)	68.1)
1.1.1	Chlorophyll A-B binding protein 1B						
	chloroplast precursor (LHCII type I CAB-1B)	3.669 (0.0885 to	496 (243.9 to	1,819.8 (43.9 to	2.321 (1.64 to	90.89 (36.11 to	210.9 (149.1 to
BQ516315	(LHCP). [Tomato]	7.249)	748.2)	3,595.6)	3.001)	145.7)	272.8)
		3.862 (1.328 to	15.59 (9.209 to	60.2 (20.7 to	16.79 (0.78 to	10 (9.792 to	167.9 (7.8 to
BQ121945	class IV endochitinase {Vitis vinifera}	6.396)	21.97)	99.7)	32.8)	10.21)	328)
	conserved hypothetical protein {Neurospora	152 (4.104 to	10.84 (10.01 to	1,648.5 (44.5 to	77.41 (0.555 to	34,94 (28.42 to	2,705.2 (19.4 to
BQ120916	crassa}	300)	11.68)	3,252.5)	154.3)	41.47)	5,391)
	contains ESTs D47173(S12339)	3.59 (0.85 to	10 (8.77 to	35.9 (8.5 to	6.775 (4.19 to		67.75 (41.9 to
BQ514465	AU096192(S12386)~unknown protein	6.33)	11.23)	63.3)	9.36)	10 (9.2 to 10.8)	93.6)
	contains similarity to transcription	2.175 (1.67 to	10 (6.513 to	21.75 (16.7 to	2.369 (0.278 to		
BO121975	factor~gene_id	2.68)	13.49)	26.8)	4.461)	21.68)	35 (4.1 to 65.9)
	contains similarity to unknown	27.68 (0.75 to	10 (5.738 to	276.8 (7.5 to	2.935 (0.873 to	11.57 (11 to	33.95 (10.1 to
BQ518783	protein~dbj BAA91048.1~gene_id	54.61)	14.26)	546.1)	4,997)	12.14)	57.8)
		8.788 (0.609 to	10.68 (6.459 to	93.85 (6.5 to	2.403 (1.116 to	18.37 (8.661 to	44.15 (20.5 to
BO115975	cyclin B-type - common tobacco	16.97)	14.9)	181.2)	3.69)	28.09)	67.8)
	Cytochrome P450 71D10 (EC 1.14).	4.055 (1.42 to	10 (7.968 to	40.55 (14.2 to	2.565 (1.81 to	10 (8.502 to	25.65 (18.1 to
BQ517650	[Soybean] {Glycine max}	6.69)	12.03)	66.9)	3.32)	11.5)	33.2)
	deacetylvindoline 4-O-acetyltransferase	2.687 (0.871 to	12.17 (11.82 to	32.7 (10.6 to	6.837 (1.035 to		70.05 (10.6 to
BQ114712	{Catharanthus roseus}	4.503)	12.53)	54.8)	12.64)	10.68)	129.5)
	dimethylaniline monooxygenase (N-oxide-	3.293 (1.223 to	10.8 (7.355 to	35.55 (13.2 to	35.53 (0.965 to		504.2 (13.7 to
BQ519018	forming)-like protein {Arabidopsis thaliana}	5.364)	14.24)	57.9)	70.09)	21.91)	994.6)
		2.27 (2.13 to	10 (5.913 to	22.7 (21.3 to	13.27 (10.75 to	10 (8.725 to	132.6 (107.5 to
BQ513618	dirigent protein {Forsythia x intermedia}	2.41)	14.09)	24.1)	15.78)	11.28)	157.8)
		134.1 (0.873 to	12.71 (9.255 to	1,704.15 (11.1	16.19 (0.515 to	12.24 (8.663 to	198.1 (6.3 to
BO111672	DNA repair protein-like {Arabidopsis thaliana}	267.3)	16.16)	to 3,397.2)	31.86)	15.82)	389.9)

		File Name GSImportPD	File Name GSImportPD	File Name GSImportPD	And the second s	File Name GSImportPDS	File Name GSImportPD
GenBamk		SGFP9689.txt	SGFP9689.tx	SGFP9689.txt	SGFP9690.tx	GFP9690.txt	SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
	Elicitor inducible gene product Nt-SubE80	2.826 (1.805 to	10.64 (9.779 to	30.05 (19.2 to	2.183 (0.01 to	279.8 (89.35 to	610.8 (-2.4 to
BQ513513	{Nicotiana tabacum}	3.846)	11.49)	40.9)	4.374)	470.3)	1,224.1)
	enoyl-[acyl-carrier-protein] reductase (NADH)						
	(EC 1.3.1.9) 2 precursor - common tobacco;	12.32 (0.688 to	37.07 (27.3 to	456.5 (25.5 to	62.13 (0.831 to	43.31 (36.63 to	2,691 (36 to
BQ119210	TC61049	23.94)	46.83)	887.6)	123.4)	49.99)	5,346)
	EST597358 mixed potato tissues Solanum					-	
	tuberosum cDNA clone STMCD06 5' end,	3.565 (0.81 to	10 (7.013 to	35.65 (8.1 to	3.07 (1.23 to	10 (7.601 to	30.7 (12.3 to
BQ111782	mRNA sequence.	6.32)	12.99)	63.2)	4.91)	12.4)	49.1)
	EST597798 mixed potato tissues Solanum						
	tuberosum cDNA clone STMCF87 5' end,	3.45 (1.84 to	10 (7.721 to	34.5 (18.4 to	6.48 (0.79 to	10 (9.574 to	64.8 (7.9 to
BQ112222	mRNA sequence.	5.06)	12.28)	50.6)	12.17)	10.43)	121.7)
	EST600125 mixed potato tissues Solanum						
	tuberosum cDNA clone STMCU77 5' end,	4.736 (1.325 to	10.57 (9.214 to	50.05 (14 to	2.47 (2.03 to	10 (7.584 to	24.7 (20.3 to
BQ114549	mRNA sequence.	8.147)	11.92)	86.1)	2.91)	12.42)	29.1)
	EST602964 mixed potato tissues Solanum		1,651.927				
	tuberosum cDNA clone STMDS35 5' end,	3.427 (0.01 to	(7.173 to	5,661.55 (13.8	19.19 (0.96 to	10 (9.127 to	191.9 (9.6 to
BQ117388	mRNA sequence.	6.846)	3,296.681)	to 11,309.3)	37.42)	10.87)	374.2)
	EST604696 mixed potato tissues Solanum						
	tuberosum cDNA clone STMEH39 5' end,	2.429 (1.603 to	10.73 (8.607 to	26.05 (17.2 to	3.67 (0.27 to	10 (9.411 to	
BQ119120	mRNA sequence.	3.254)	12.85)	34.9)	7.07)	10.59)	36.7 (2.7 to 70.7)
	EST614239 Generation of a set of potato						
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	3.575 (0.203 to	12.84 (8.702 to	45.9 (2.6 to	19.58 (8.85 to	10 (7.556 to	195.8 (88.5 to
BQ506824	STMGM65 5' end, mRNA sequence.	6.948)	16.97)	89.2)	30.32)	12.44)	303.2)
	EST619060 Generation of a set of potato						
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	12.23 (1.429 to	16.17 (7.961 to	197.6 (23.1 to	2.24 (0.59 to	10 (7.863 to	
BQ511645	STMHS88 5' end, mRNA sequence.	23.02)	24.37)	372.2)	3.89)	12.14)	22.4 (5.9 to 38.9)
	EST619877 Generation of a set of potato						
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	2.169 (0.944 to	12.61 (8.084 to	27.35 (11.9 to	5.765 (1.53 to	10 (9.637 to	57.65 (15.3 to
BQ512462	STMHY54 5' end, mRNA sequence.	3.394)	17.13)	42.8)	10)	10.36)	100)

GenBamk ID#	TIGR Annotation	File Name GSImportPD SGFP9689.txt normalized		File Name GSImportPD SGFP9689.txt raw		File Name GSImportPDS GFP9690.txt control	File Name GSImportPD SGFP9690.txt raw
Ш#	EST620958 Generation of a set of potato	normanzeu	t control	Iam	t normanzeu	control	Idw
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	10.29 (1.9 to	10.79 (8.75 to	110.9 (20.5 to	45.67 (0.106 to	35,86 (33.78 to	1,637.75 (3.8 to
BQ513543	STMIF81 5' end, mRNA sequence.	18.67)	12.82)	201.4)	91.23)	37.94)	3,271.7)
DQ313343	EST624921 Generation of a set of potato	10.077	12:02)	2011.1)	71.257	51.51)	5,271.79
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	6.67 (1.3 to	10 (7.572 to	66.7 (13 to	6.695 (4.23 to	10 (7.807 to	66.95 (42.3 to
BQ517506	STMJE13 5' end, mRNA sequence.	12.04)	12.43)	120.4)	9.16)	12.19)	91.6)
- 0	EST624940 Generation of a set of potato						
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	345.8 (0.614 to	14.66 (9.023 to	5,069.75 (9 to	2.065 (1.02 to	11.38 (6.38 to	23.5 (11.6 to
BQ517525	STMJE29 5' end, mRNA sequence.	690.9)	20.3)	10,130.5)	3.111)	16.38)	35.4)
	EST625328 Generation of a set of potato					í internetiente de la constante	
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	2.491 (1.684 to	10.16 (9.697 to	25.3 (17.1 to	7.49 (1.81 to	10 (7.695 to	74.9 (18.1 to
BQ517913	STMJG84 5' end, mRNA sequence.	3.299)	10.61)	33.5)	13.17)	12.31)	131.7)
	EST625601 Generation of a set of potato						
	cDNA clones for microarray analyses mixed						
	potato tissues Solanum tuberosum cDNA clone	4,208 (0.63 to	11.26 (7.619 to	47.4 (7.1 to	349.2 (0.772 to	13.72 (10.71 to	4,791.75 (10.6 to
BQ518186	STMJI60 5' end, mRNA sequence.	7.785)	14.91)	87.7)	697.5)	16.74)	9,572.9)
	EST626407 Generation of a set of potato						
	cDNA clones for microarray analyses mixed		1,277.959				
	potato tissues Solanum tuberosum cDNA clone	2.159 (0.0495 to	(15.88 to	2,758.85 (63.3	2.605 (1.475 to	17.49 (17.16 to	45.55 (25.8 to
BQ518992	STMJN29 5' end, mRNA sequence.	4.268)	2,540.04)	to 5,454.4)	3.734)	17.81)	65.3)
	Eukaryotic translation initiation factor 5 (eIF-						
	5). [Kidney bean French bean] {Phaseolus	3,07 (1.273 to	16.42 (10.57 to	50.4 (20.9 to	2.569 (0.486 to	15.63 (11.61 to	40.15 (7.6 to
BQ116482	vulgaris}	4.867)	22.26)	79.9)	4.651)	19.65)	72.7)
		2.37 (0.58 to	10 (9.867 to	23.7 (5.8 to	14.88 (1.66 to	10 (6.058 to	148.8 (16.6 to
BQ513020	Expressed protein {Arabidopsis thaliana}	4.16)	10.13)	41.6)	28.1)	13.94)	281)
	extensin homolog - potato (fragment);	2.165 (1.242 to	17.39 (15.62 to	37.65 (21.6 to	4.345 (0.88 to	10 (9.632 to	43,45 (8.8 to
BQ113979	TC66021	3.088)	19.16)	53.7)	7.81)	10.37)	78.1)
		17.9 (0.69 to	10 (9.969 to	179 (6.9 to	7.336 (0.635 to	27.87 (16.23 to	204.4 (17.7 to
BQ511506	F1N19.26 {Arabidopsis thaliana}	35.11)	10.03)	351.1)	14.04)	39.52)	391.2)

1	and the second	File Name	File Name	File Name	File Name	File Name	File Name
GenBamk		GSImportPD SGFP9689.txt		GSImportPD SGFP9689.txt		GSImportPDS GFP9690.txt	GSImportPD SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
		2.149 (0.718 to	11.56 (6.26 to	24.85 (8.3 to	19.04 (0.01 to		190.4 (-6.7 to
BQ518078	F20B17.13 {Arabidopsis thaliana}	3.581)	16.86)	41.4)	38.76)	10 (9.2 to 10.8)	387.6)
	ferredoxinnitrite reductase (EC 1.7.7.1) -	8.334 (0.0402 to	472.9 (12.21 to	3,941.3 (19 to	3.365 (1.27 to	10 (8.313 to	33.65 (12.7 to
BQ120711	common tobacco (fragment); TC65206	16.63)	933.6)	7,863.6)	5.46)	11.69)	54.6)
	galactonolactone dehydrogenase (EC 1.3.2.3) -	6.55 (0.89 to	10 (9.693 to	65.5 (8.9 to	6.102 (1.428 to	18.07 (10.88 to	110.2 (25.8 to
BQ509136	broccoli	12.21)	10.31)	122.1)	10.78)	25.26)	194.7)
		19.67 (1.86 to	11.4 (9.471 to	224.2 (21.2 to	12.01 (0.575 to	26.25 (21.52 to	315.3 (15.1 to
BQ506746	gamma tubulin {Nicotiana tabacum}; TC66286	37.48)	13.33)	427.3)	23.45)	30.98)	615.5)
		2.033 (0.835 to	12.69 (7.726 to		2.962 (1.575 to	13.59 (10.6 to	40.25 (21.4 to
BQ514335	gene_id	3.23)	17.66)	25.8 (10.6 to 41)	4,349)	16.58)	59.1)
		2.245 (0.151 to	36.39 (7.551 to	81.7 (5.5 to	65.98 (0.288 to	27.74 (12.54 to	1,830.5 (8 to
BQ120127	gene_id	4.339)	65.24)	157.9)	131.7)	42.95)	3,653)
		2.84 (0.72 to	10 (8.461 to	28.4 (7.2 to	3.017 (2.291 to	433.7 (27.13 to	1,308.4 (993.6 to
BQ114150	gene_id	4.96)	11.54)	49.6)	3.743)	840.3)	1,623.2)
		4.965 (1.11 to	10 (9.828 to	49.65 (11.1 to	8.555 (0.89 to	10 (6.357 to	85.55 (8.9 to
BQ111871	gene_id	8.82)	10.17)	88.2)	16.22)	13.64)	162.2)
	Heat shock cognate protein 80. [Tomato]	2.606 (2.163 to	14.1 (13.59 to	36.75 (30.5 to	2.21 (1.25 to	10 (9.413 to	22.1 (12.5 to
BQ118343	{Lycopersicon esculentum}	3.05)	14.6)	43)	3.17)	10.59)	31.7)
	Heat shock protein 83. [Violet Japanese	5.251 (1.687 to	17.85 (14.08 to	93.7 (30.1 to	4.489 (3.863 to	22.75 (21.99 to	102.2 (87.9 to
BQ511515	morning glory] {Pharbitis nil}	8,814)	21.61)	157.3)	5.116)	23.52)	116.4)
	highly similar to rice zinc finger protein	3.205 (2.05 to	10 (7.679 to	32.05 (20.5 to	60.54 (3.56 to	10 (8.112 to	605.4 (35.6 to
BQ517923	{Arabidopsis thaliana}	4.36)	12.32)	43.6)	117.5)	11.89)	1,175.2)
		3,528 (0.868 to	33.86 (25.42 to	119.5 (29.4 to	4.569 (2.104 to	48.15 (33.07 to	220 (101.3 to
BQ516869	histone H3 (variant H3R-21) - rice	6.187)	42.31)	209.5)	7.035)	63.23)	338.7)
		2.393 (1.387 to	33.74 (17.95 to	80.75 (46.8 to	6.107 (4.773 to	18.56 (15.37 to	113.3 (88.6 to
BQ514906	histone H4 - tomato	3,399)	49.54)	114.7)	7.44)	21.76)	138.1)
	hypothetical 122 kd avirulence protein in	3.155 (1.39 to	10 (7.877 to	31.55 (13.9 to	9.535 (0.47 to	10 (9.195 to	95.35 (4.7 to
BQ516317	avrbs3 region {Xanthomonas campestris}	4.92)	12.12)	49.2)	18.6)	10.8)	186)
		2.135 (1.324 to	12.76 (12.52 to	27.25 (16.9 to	2,537 (0.952 to	11.13 (9.376 to	28.25 (10.6 to
BQ511967	hypothetical protein {Arabidopsis thaliana}	2,946)	13.01)	37.6)	4.122)	12.89)	45.9)
		96.48 (0.695 to	10.22 (9.335 to	985.7 (7.1 to	2.69 (1.689 to	10.89 (6.239 to	29.3 (18.4 to
BQ113769	hypothetical protein {Citrus x paradisi}	192.3)	11.1)	1,964.3)	3.691)	15.55)	40.2)

		File Name	File Name	File Name	File Name	File Name	File Name
ALC: NOT	We with the state of the state of the	GSImportPD	GSImportPD	GSImportPD	GSImportPD	GSImportPDS	GSImportPD
GenBamk		SGFP9689.txt	SGFP9689.tx	SGFP9689.txt	SGFP9690.tx	GFP9690.txt	SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
	hypothetical protein {Oryza sativa (japonica	2.043 (1.582 to	11.06 (10.73 to	22.6 (17.5 to	566.3 (0.542 to	19.94 (16.41 to	11,292.9 (10.8 to
BQ507338	cultivar-group)}	2.504)	11.39)	27.7)	1,132.081)	23.47)	22,575)
	hypothetical protein {Plasmodium falciparum	50.34 (1.19 to	10 (7.236 to	503.3 (11.9 to	6.45 (0.79 to	10 (7.299 to	64.5 (7.9 to
BQ515450	3D7}	99.48)	12.76)	994.8)	12.11)	12.7)	121.1)
	hypothetical protein AAF34300.1 [imported] -	4.86 (1.15 to	10 (9.359 to	48.6 (11.5 to	37.64 (0.67 to	10 (6.492 to	376.5 (6.7 to
BQ121087	Arabidopsis thaliana	8.57)	10.64)	85.7)	74.62)	13.51)	746.2)
	hypothetical protein AAF98563.1 [imported] -	11.75 (0.91 to	10 (9.566 to	117.5 (9.1 to	2.52 (0.76 to	10 (8.644 to	
BQ119497	Arabidopsis thaliana	22.59)	10.43)	225.9)	4.28)	11.36)	25.2 (7.6 to 42.8)
	hypothetical protein AAG21619.1 [imported] -	2,223 (1.917 to	11.27 (9.917 to	25.05 (21.6 to	108.4 (0.16 to	105,4 (20.73 to	11,419.1 (16.9 to
BQ509662	Arabidopsis thaliana	2,529)	12.62)	28.5)	216.6)	190)	22,821.3)
	hypothetical protein At2g14170 [imported] -	133.4 (1.162 to	13.77 (13.42 to	1,837.85 (16 to	2.167 (1.039 to	19.06 (10.73 to	41.3 (19.8 to
BQ518394	Arabidopsis thaliana	265.7)	14.13)	3,659.7)	3.295)	27.38)	62.8)
	hypothetical protein F22K18.50 - Arabidopsis	5.95 (1.43 to	10 (9.889 to	59,5 (14.3 to	28.59 (0.836 to	16.38 (14.49 to	468.3 (13.7 to
BQ517259	thaliana	10.47)	10.11)	104.7)	56.34)	18.27)	922.9)
	hypothetical protein F25P22.8 [imported] -	547.4 (0.553 to	11.22 (9.814 to	6,139.9 (6.2 to	23.61 (1.09 to	10 (7.331 to	236.1 (10.9 to
BQ514213	Arabidopsis thaliana; TC63890	1,094.296)	12.62)	12,273.6)	46.13)	12.67)	461.3)
	hypothetical protein F33A8.3 - Caenorhabditis	2.654 (0.268 to	50.41 (10.17 to	133.8 (13.5 to	3.031 (1.334 to	26.84 (9.968 to	81.35 (35.8 to
BQ119042	elegans	5.041)	90.65)	254.1)	4.729)	43.7)	126.9)
	hypothetical protein F3L17.50 - Arabidopsis	359.4 (0.472 to	32,38 (26.88 to	11,639.6 (15.3	26.73 (0.179 to	48.64 (48.21 to	1,300.3 (8.7 to
BQ116570	thaliana; TC60825	718.4)	37.89)	to 23,263.9)	53.29)	49.07)	2,591.9)
	Hypothetical protein R03E9.3 {Caenorhabditis	6.044 (0.145 to	44,16 (7.027 to	266.9 (6.4 to	47.82 (0.49 to	15.7 (14.87 to	750.9 (7.7 to
BQ112551	elegans}; TC65748	11.94)	81.29)	527.4)	95.16)	16.53)	1,494.1)
	hypothetical protein T13J8.10 - Arabidopsis	2.387 (0.719 to	14.33 (13.98 to	34.2 (10.3 to	20.49 (1.84 to	12,23 (11.33 to	250.6 (22.5 to
BQ509654	thaliana	4.056)	14.67)	58.1)	39.14)	13.13)	478.6)
	hypothetical protein T19K4.120 - Arabidopsis	14.47 (0.45 to	10 (8.68 to	144.7 (4.5 to	5.71 (1.29 to	10 (4.975 to	57.1 (12.9 to
BQ507687	thaliana	28.49)	11.32)	284.9)	10.13)	15.02)	101.3)
	hypothetical protein T29A15.230 - Arabidopsis	2,651 (0.61 to	15.24 (15.08 to	40.4 (9.3 to	67.88 (0.0489 to	165.7 (16.89 to	11,249 (8.1 to
BQ510660	thaliana	4.692)	15.4)	71.5)	135.7)	314.6)	22,489.9)
	L-galactose dehydrogenase {Arabidopsis	29.8 (0.26 to	10 (9.926 to	298 (2.6 to	21.27 (1.69 to	10 (9.502 to	212.7 (16.9 to
BQ508839	thaliana}; TC61846	59.34)	10.07)	593.4)	40.84)	10.5)	408.4)
	Machado-Joseph disease MJD1a-like protein -	2.351 (1.821 to	13.02 (10.53 to	30.6 (23.7 to	4.067 (2.126 to	11.05 (9.554 to	44.95 (23.5 to
BQ509617	Arabidopsis thaliana	2.881)	15.5)	37.5)	6.008)	12.55)	66.4)

1715 J-172		File Name	File Name	File Name	File Name	File Name	File Name
GenBamk		GSImportPD SGFP9689.txt	GSImportPD SGFP9689.tx	GSImportPD SGFP9689.txt		GSImportPDS GFP9690.txt	GSImportPD SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
Lora		3.272 (0.554 to	20.23 (18.01 to	66.2 (11.2 to	5.139 (2.111 to	10.9 (10.76 to	
BQ506042	major intrinsic protein 2 {Solanum tuberosum}	5.99)	22.46)	121.2)	8.167)	11.03)	56 (23 to 89)
		26.75 (0.41 to	10 (9.875 to	267.5 (4.1 to	2,845 (1.199 to	14.76 (11.88 to	
BQ117274	malate dehydrogenase {Nicotiana tabacum}	53.1)	10.12)	531)	4,491)	17.64)	42 (17.7 to 66.3)
		2.332 (2.007 to	12.31 (8.604 to	28.7 (24.7 to	2.35 (0.74 to	10 (8.015 to	
BQ117127	NTGP4 {Nicotiana tabacum}	2.657)	16.01)	32.7)	3.96)	11.98)	23.5 (7.4 to 39.6)
		69.54 (0.153 to	110.6 (11.97 to	7,690.5 (16.9 to	67.47 (0.298 to	32.16 (11.96 to	2,170 (9.6 to
BQ114465	OSJNBa0033H08.5 {Oryza sativa}	138.9)	209.2)	15,364.1)	134.6)	52.37)	4,330.4)
	phloem calmodulin-like-domain protein kinase	5.675 (1.43 to	10 (9.347 to	56.75 (14.3 to	2.475 (2.38 to	10 (9.84 to	24.75 (23.8 to
BQ119808	PCPK1 {Cucurbita maxima}	9,92)	10.65)	99.2)	2.57)	10.16)	25.7)
	phosphomevalonate kinase {Hevea	3.255 (1.44 to	10 (8.08 to	32.55 (14.4 to	54.74 (0.67 to	10 (8.092 to	547.4 (6.7 to
BQ117933	brasiliensis}	5.07)	11.92)	50.7)	108.8)	11.91)	1,088.2)
							1,635.85
	Phytoene dehydrogenase chloroplast precursor	171.1 (119.2 to	10 (7.192 to	1,711 (1,192.2	151.7 (150.8 to	10.78 (9.882 to	(1,625.7 to
BQ516016	(EC 1.14.99) (Phytoene desaturase). [Tomato]	223)	12.81)	to 2,229.8)	152.7)	11.68)	1,646)
10.00	plastidic cysteine synthase 1 {Solanum	3.185 (1.39 to	51.64 (19.84 to	164.4 (71.8 to	3.261 (1.285 to	39.76 (23.2 to	129.6 (51.1 to
BQ516950	tuberosum}	4.979)	83.44)	257.1)	5.237)	56.32)	208.2)
		9,16 (0.53 to	10 (7.752 to	91.6 (5.3 to	2.15 (1.06 to	10 (8.452 to	21.5 (10.6 to
BQ117973	PLIC-2 {Mus musculus}	17.79)	12.25)	177.9)	3.24)	11.55)	32.4)
	probable acyl-CoA synthetase [imported] -	16.96 (1.17 to		169.6 (11.7 to	3.042 (2.379 to	12.06 (11.36 to	36,7 (28.7 to
BQ513893	Arabidopsis thaliana	32.75)	10 (7.3 to 12.7)		3.705)	12.77)	44.7)
	probable acyl-CoA synthetase [imported] -	3.301 (0.704 to	17.19 (3.811 to	56.75 (12.1 to	5.3 (2.14 to	10 (9.745 to	
BQ515205	Arabidopsis thaliana	5.897)	30.58)	101.4)	8.46)	10.25)	53 (21.4 to 84.6)
	probable ankyrin [imported] - Arabidopsis	3.109 (1.01 to	11.48 (8.405 to	35.7 (11.6 to	3.115 (2.42 to	10 (9.68 to	31.15 (24.2 to
BQ507959	thaliana	5.208)	14.56)	59.8)	3.81)	10.32)	38.1)
	probable dna repair/transcription protein -	87.88 (1.29 to	10 (8.895 to	878.8 (12.9 to	2,433 (0.72 to	12.64 (11.65 to	30.75 (9.1 to
BQ505857	fission yeast (Schizosaccharomyces pombe)	174.5)	11.11)	1,744.6)	4.147)	13.62)	52.4)
	probable flavonol 3-O-glucosyltransferase	2.441 (0.691 to	14.32 (13.13 to		256,7 (0.762 to	24.42 (21.24 to	6,269.3 (18.6 to
BQ519088	[imported] - Arabidopsis thaliana	4.19)	15.51)	34.95 (9.9 to 60)	512.6)	27.61)	12,520)
	probable glucosyltransferase [imported] -	7.38 (0.81 to	10 (9.451 to	73.8 (8.1 to	110.9 (0.897 to	10.03 (6.3 to	1,112.3 (9 to
BQ112205	Arabidopsis thaliana; TC69112	13.95)	10.55)	139.5)	220.9)	13.76)	2,215.6)
	probable replication factor F16M19.6	9.668 (0.555 to	23.23 (22.92 to	224.6 (12.9 to	48.83 (43.82 to	38.7 (29.94 to	1,889.8 (1,695.9
BQ510874	[imported] - Arabidopsis thaliana	18.78)	23.54)	436.3)	53.84)	47.47)	to 2,083.7)

Land La		File Name	File Name	File Name	File Name	File Name	File Name
GenBamk		GSImportPD SGFP9689.txt	GSImportPD SGFP9689.tx	GSImportPD SGFP9689.txt		GSImportPDS GFP9690.txt	GSImportPD SGFP9690.txt
Genbank ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
H	probable RING zinc finger protein T23K23.8	5.466 (0.674 to	21.22 (12.16 to	116 (14.3 to	126.1 (1.033 to	23.13 (22.52 to	2,916.15 (23.9 to
BQ507586	[imported] - Arabidopsis thaliana	10.26)	30.29)	217.7)	251.1)	23.74)	5,808.4)
	probable sugar transporter [imported] -	2,568 (0.729 to	11.39 (11.03 to	29.25 (8.3 to	61.17 (6.775 to	12.25 (9.869 to	749.4 (83 to
BQ518325	Arabidopsis thaliana	4.408)	11.75)	50.2)	115.6)	14.63)	1,415.8)
	probable WRKY-type DNA binding protein	12.72 (1.011 to	11.18 (8.559 to	142.2 (11.3 to	3.899 (1.362 to	12.34 (7.585 to	48.1 (16.8 to
BQ511358	[imported] - Arabidopsis thaliana	24.43)	13.79)	273)	6.436)	17.09)	79.4)
	protein F14D16.25 [imported] - Arabidopsis	5.675 (0.63 to	10 (4.562 to	56.75 (6.3 to	2.995 (0.52 to	10 (9.032 to	29.95 (5.2 to
BQ112305	thaliana	10.72)	15.44)	107.2)	5.47)	10.97)	54.7)
-	protein kinase Ck2 regulatory subunit 2	4.222 (0.692 to	10.84 (10.62 to		2.55 (0.97 to	10 (8.345 to	
BQ517122	{Nicotiana tabacum}	7.751)	11.06)	45.75 (7.5 to 84)	4.13)	11.65)	25.5 (9.7 to 41.3)
	Putative activator-like transposable element						
	{Oryza sativa (japonica cultivar-group)};	11.84 (4.66 to	10 (5.024 to	118.4 (46.6 to	6.008 (4.463 to	25.25 (14.02 to	151.7 (112.7 to
BQ509754	TC57651	19.02)	14.98)	190.2)	7.552)	36,48)	190,7)
	putative AMP-binding protein {Arabidopsis	2.345 (2.21 to	10 (5.481 to	23.45 (22.1 to	670.8 (1.016 to	17.02 (10 to	11,415.95 (17.3
BQ511484	thaliana}	2.48)	14.52)	24.8)	1,340.504)	24.04)	to 22,814.6)
	putative formin binding protein {Oryza sativa	2,835 (1.32 to	10 (8.143 to	28.35 (13.2 to	2,78 (1.36 to	10 (8.547 to	
BQ506561	(japonica cultivar-group)}	4.35)	11.86)	43.5)	4,2)	11.45)	27.8 (13.6 to 42)
	putative GTP-binding protein; 106556-109264	3.342 (1.628 to	12.16 (10.59 to	40.65 (19.8 to	11.85 (9.08 to	12.24 (9.984 to	144.9 (111.1 to
BQ511591	{Arabidopsis thaliana}	5.056)	13.74)	61.5)	14.61)	14.49)	178.8)
	putative HesB-like protein {Arabidopsis	2.072 (0.793 to	12.11 (6.434 to	25.1 (9.6 to	2.458 (0.652 to	10.43 (5.537 to	25.65 (6.8 to
BQ120822	thaliana}	3.352)	17.79)	40.6)	4.265)	15.33)	44.5)
	putative kinesin light chain gene {Oryza sativa	12.8 (0.0242 to	218.7 (15.99 to	2,798.7 (5.3 to	3.136 (1.074 to	12.95 (11.64 to	40.6 (13.9 to
BQ513588	(japonica cultivar-group)}	25.57)	421.3)	5,592)	5.198)	14.25)	67.3)
	putative merR-family transcriptional regulator	8.96 (1.61 to	10 (8.765 to	89.6 (16.1 to	8.16 (1.55 to	10 (9.237 to	81.6 (15.5 to
BQ517520	{Streptomyces coelicolor A3(2)}	16.31)	11.23)	163.1)	14.77)	10.76)	147.7)
	putative mitogen-activated protein kinase	10.77 (0.331 to	30.79 (16.4 to	331.6 (10.2 to	5.019 (0.823 to	11.55 (9.872 to	57.95 (9.5 to
BQ118922	MAPK {Prunus armeniaca}; TC68334	21.21)	45.17)	653.1)	9.215)	13.22)	106.4)
	putative phosphatidate phosphohydrolase	2,295 (2.05 to	10 (8.756 to	22.95 (20,5 to	2.845 (1.35 to	10 (8.555 to	28.45 (13.5 to
BQ111972	{Arabidopsis thaliana}; TC60158	2.54)	11.24)	25.4)	4.34)	11.45)	43.4)
	putative polyprotein (aspartic proteinase	5.48 (1.94 to	10 (8.02 to	54.8 (19.4 to	4.373 (1.302 to	25.12 (19.46 to	109.8 (32.7 to
BQ511260	reverse transcriptase ribonuclease H)	9.02)	11.98)	90.2)	7.445)	30.77)	187)
	putative protein {Arabidopsis thaliana};	2.132 (1.025 to	12.1 (9.656 to	25,8 (12.4 to	2,502 (0.837 to	14.93 (12.44 to	37.35 (12.5 to
BQ510095	TC66219	3.239)	14.55)	39.2)	4.167)	17.42)	62.2)

1.14 - 1.14		File Name	File Name	File Name	File Name	File Name	File Name
GenBamk		GSImportPD SGFP9689.txt		GSImportPD SGFP9689.txt		GSImportPDS GFP9690.txt	GSImportPD SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
	putative resistance protein {Lycopersicon	4.998 (1.302 to	12.59 (9.009 to	62.95 (16.4 to	7.942 (0.4 to	34.53 (7.849 to	274.2 (13.8 to
BQ510641	esculentum}	8.694)	16.18)	109.5)	15.48)	61.2)	534.6)
		8.915 (4.16 to	10 (8.445 to	89.15 (41.6 to	11.62 (0.01 to	975.6 (7.522 to	11,333.099 (7.3
BQ115797	putative sugar transporter {Oryza sativa}	13.67)	11.55)	136.7)	23.22)	1,943.732)	to 22,658.898)
	putative vesicle transport protein {Arabidopsis	5.55 (0.89 to	10 (8.239 to	55.5 (8.9 to	5.89 (1.17 to	10 (9.121 to	58.9 (11.7 to
BQ512566	thaliana}	10.21)	11.76)	102.1)	10.61)	10.88)	106.1)
	putative WD-40 repeat protein MSI2	3.866 (0.804 to	11.2 (9.456 to		3.534 (1.074 to	10.43 (10.07 to	36.85 (11.2 to
BQ113397	{Arabidopsis thaliana}	6.928)	12.95)	43.3 (9 to 77.6)	5.993)	10.79)	62.5)
		2.836 (0.247 to	51.48 (39.44 to	146 (12.7 to	6.319 (0.177 to	62.65 (46.08 to	395.9 (11.1 to
BQ117403	ribosomal protein L16 {Atropa belladonna}	5.425)	63.52)	279.3)	12.46)	79.22)	780.6)
	S-adenosylmethionine synthetase 3 (EC	46.1 (0.173 to	17.32 (5.875 to	798.2 (3 to	4.893 (4.732 to	19.31 (17.86 to	94.5 (91.4 to
BQ113965	2.5.1.6) (Methionine adenosyltransferase 3)	92.02)	28.76)	1,593.4)	5.053)	20.77)	97.6)
	Similar to putative transcription factor						
	(AF062890) {Oryza sativa (japonica cultivar-	8.124 (0.804 to	26.26 (16.33 to	213.3 (21.1 to	2.01 (1.814 to	12.24 (12.03 to	
BQ514457	group)}	15.44)	36.18)	405.5)	2.206)	12.45)	24.6 (22.2 to 27)
		2.355 (1.96 to	10 (8.728 to	23.55 (19.6 to	13.79 (0.323 to	78.05 (64.57 to	1,076.15 (25.2 to
BQ112020	sulfur {Nicotiana tabacum}	2.75)	11.27)	27.5)	27.25)	91.52)	2,127.1)
		2.114 (1.345 to	10.41 (6.894 to		5.009 (3.748 to	10.03 (9.663 to	50.25 (37.6 to
BQ513463	T32G6.22/T32G6.22 {Arabidopsis thaliana}	2.882)	13.92)	22 (14 to 30)	6.271)	10.4)	62.9)
		4,6 (1.45 to	10 (7.114 to		10.34 (0.55 to	10 (8.654 to	103.4 (5.5 to
BQ509737	T7N9.23 {Arabidopsis thaliana}	7.75)	12.89)	46 (14.5 to 77.5)	20.14)	11.35)	201.4)
		4.403 (1.046 to	10.32 (5.189 to	45.45 (10.8 to	2.44 (1.19 to	10 (7.545 to	24.4 (11.9 to
BQ111911	tetratricoredoxin {Nicotiana tabacum}	7.76)	15.45)	80.1)	3.69)	12.45)	36.9)
	TMV response-related gene product {Nicotiana	2.285 (1.524 to	10.44 (9.977 to	23.85 (15.9 to		10 (8.76 to	
BQ515762	tabacum}	3.047)	10.9)	31.8)	4.15 (1 to 7.3)	11.24)	41.5 (10 to 73)
	tospovirus resistance protein B {Lycopersicon	6.301 (0.169 to	37.22 (10.37 to	234.5 (6.3 to	2.095 (0.539 to	98.23 (17.32 to	205.8 (52.9 to
BQ120917	esculentum}	12.43)	64.08)	462.8)	3.651)	179.1)	358.7)
	Transcribed sequence with weak similarity to						
1.0	protein ref:NP_568521.1 (A.thaliana) putative	2.869 (1.144 to	11.54 (9.992 to		9.885 (0.69 to	10 (9.157 to	98.85 (6.9 to
BQ121776	protein [Arabidopsis thaliana]	4.593)	13.09)	33.1 (13.2 to 53)	19.08)	10.84)	190.8)
		8.285 (0.95 to	10 (8.188 to	82.85 (9.5 to	2.69 (0.61 to	10 (7.857 to	
BQ505323	Transcribed sequences	15.62)	11.81)	156.2)	4.77)		26.9 (6.1 to 47.7)

202

i e

ID#		SGFP9689.txt		GSImportPD SGFP9689.txt	GSImportPD SGFP9690.tx	GSImportPDS GFP9690.txt	GSImportPD SGFP9690.txt
	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
		9.046 (0.389 to	16.97 (3.59 to	153.5 (6.6 to	2.385 (0.958 to	10.34 (6.287 to	24.65 (9.9 to
BQ517108	Transcribed sequences	17.7)	30.35)	300.4)	3,812)	14.39)	39.4)
	UDP-glucose 6-dehydrogenase (EC 1.1.1.22) (UDP-Glc dehydrogenase) (UDP-GlcDH)	5.093 (0.988 to	15.99 (7.427 to	81.45 (15.8 to	3,428 (2.918 to	11.96 (9.778 to	
BQ117244	(UDPGDH). [Soybean]	9,197)	24.56)	147.1)	3.938)	14.15)	41 (34.9 to 47.1)
DQ11/244	(ODFODH). [Soybean]	1,036.9 (0.562 to		12,182.75 (6.6	2.025 (1.25 to	10 (6.008 to	20.25 (12.5 to
BQ512283	unknown {Arabidopsis thaliana}	2,073.246)	13.19)	to 24,358.9)	2.8)	13.99)	28)
DQ312203	unknown (Maoidopsis manana)	2,407 (1.724 to	11.42 (10 to	27.5 (19.7 to	2.7 (1.88 to	10 (9.786 to	20)
BQ509651	unknown {Arabidopsis thaliana}	3.09)	12.84)	35.3)	3.52)	10.21)	27 (18.8 to 35.2)
0000001		5.935 (1.17 to	10 (8.727 to		4.301 (0.0651 to		534.8 (8.1 to
BQ112625	unknown {Arabidopsis thaliana}	10.7)	11.27)	107)	8.537)	230.5)	1,061.5)
-2	unknown protein [imported] - Arabidopsis	4.177 (1.648 to	12.2 (11.73 to	50.95 (20.1 to	184.7 (53.35 to	18.04 (14.79 to	3,332.95 (962.5
BQ115451	thaliana	6.706)	12.66)	81.8)	316.1)	21.3)	to 5,703.4)
	I I I	107.4 (1.09 to	10 (9.956 to	1,074.45 (10.9	52.63 (0.29 to	10 (9.709 to	526.3 (2.9 to
BQ508798	unknown protein {Arabidopsis thaliana}	213.8)	10.04)	to 2,138)	105)	10.29)	1,049.7)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.195 (2.13 to	10 (9.121 to	21.95 (21.3 to	2.329 (1.263 to	11.16 (9.249 to	
BQ519217	unknown protein {Arabidopsis thaliana}	2.26)	10.88)	22.6)	3.395)	13.08)	26 (14.1 to 37.9)
		2.223 (1.598 to	15.77 (8.691 to	35.05 (25.2 to	25.81 (23.36 to	71.07 (13.36 to	1,834.3 (1,660.4
BQ508609	unknown protein {Arabidopsis thaliana}	2.848)	22.84)	44.9)	28.26)	128.8)	to 2,008.3)
		2.242 (2.168 to	17.48 (16.54 to	39.2 (37.9 to	95.14 (0.529 to	15.89 (12.53 to	1,511.8 (8.4 to
BQ511156	unknown protein {Arabidopsis thaliana}	2.317)	18.42)	40.5)	189.7)	19.25)	3,015.2)
		2.935 (1.04 to	10 (7.192 to	29,35 (10,4 to	2.223 (0.75 to	11.07 (10.11 to	
BQ505377	Unknown protein {Arabidopsis thaliana}	4.83)	12.81)	48.3)	3.696)		24.6 (8.3 to 40.9)
		2.953 (0.716 to			2.293 (1.432 to	12.36 (6.839 to	28.35 (17.7 to
BQ116573	Unknown protein {Arabidopsis thaliana}	5.189)	12.57	37.1 (9 to 65.2)	3,155)	17.89)	39)
		3.571 (1.335 to	11.38 (11.27 to	40.65 (15.2 to	15.69 (1.66 to	10 (9.736 to	156.9 (16.6 to
BQ511947	Unknown protein {Arabidopsis thaliana}	5.806)	11.5)	66,1)	29.71)	10.26)	297.1)
		3.892 (3.367 to	13.51 (9.942 to	52.6 (45.5 to	2.336 (0.727 to	13.08 (9.963 to	30.55 (9.5 to
BQ116951	Unknown protein {Arabidopsis thaliana}	4.418)	17.09)	59.7)	3.946)	16.19)	51.6)
		38.16 (0.29 to	40.74 (17.72 to	1,555 (11.8 to	16.78 (0.377 to	12.2 (11 to	204.6 (4.6 to
BQ517193	unknown protein {Arabidopsis thaliana}	76.04)	63.77)	3,098.2)	33.18)	13.39)	404.7)
BQ509801	unknown protein {Arabidopsis thaliana}	6.59 (0.0516 to 13.13)	215.3 (4.198 to 426.3)	1,418.5 (11.1 to 2,825.8)	2.455 (0.82 to 4.09)	10 (9.786 to 10.21)	24.55 (8.2 to 40.9)

A4. Microarray Experiment: TTO1 PDS/TTOSA1 APE pBAD (GFP) Normalized Upregulated Gene Expression Ratios, 2-fold or Greater

1		File Name					
1.200		GSImportPD	GSImportPD	GSImportPD	GSImportPD	GSImportPDS	GSImportPD
GenBamk		SGFP9689.txt	SGFP9689.tx	SGFP9689.txt	SGFP9690.tx	GFP9690.txt	SGFP9690.txt
ID#	TIGR Annotation	normalized	t control	raw	t normalized	control	raw
		604.8 (1.092 to	14.65 (12.97 to	8,860.45 (16 to	6.94 (2.03 to	10 (9.461 to	69.4 (20.3 to
BQ513098	unknown protein {Arabidopsis thaliana}	1,208.507)	16.33)	17,704.9)	11.85)	10.54)	118.5)
		63.02 (0.914 to	14.33 (8.58 to	903.4 (13.1 to	9.305 (6.62 to	10 (8.716 to	93.05 (66.2 to
BQ121803	Unknown protein {Arabidopsis thaliana}	125.1)	20.09)	1,793.8)	11.99)	11.28)	119.9)
		61.86 (6.06 to	10 (9.931 to	618.5 (60.6 to	2.194 (0.854 to	11.12 (10.85 to	
BQ112843	vitellogenin {Anolis pulchellus}	117.6)	10.07)	1,176.5)	3.534)	11.39)	24.4 (9.5 to 39.3)
	Wound-induced aspartate proteinase CDI						
	inhibitor precursor. [Potato] {Solanum	2.538 (0.656 to	10.52 (9.877 to	26.7 (6.9 to	2.335 (1.57 to	10 (8.981 to	23.35 (15.7 to
BQ113896	tuberosum}	4.421)	11.16)	46.5)	3.1)	11.02)	31)
	WRKY transcription factor 50 {Arabidopsis	2.295 (1.715 to	11.13 (10.24 to	25.55 (19.1 to	27.05 (1.49 to	10 (6.592 to	270.5 (14.9 to
BQ515839	thaliana}	2.874)	12.03)	32)	52.6)	13.41)	526)
		2.044 (1.179 to	11.96 (9.036 to	24.45 (14.1 to	2.052 (1.574 to	10.35 (9.394 to	21.25 (16.3 to
BQ515883	wsv319 {shrimp white spot syndrome virus}	2.909)	14.89)	34.8)	2.53)	11.32)	26.2)

A4. Microarray Experiment: TTO1 PDS/ITTOSA1 APE pBAD (GFP) Normalized Upregulated Gene Expression Ratios, 2-fold or Greater

	r, p-value ≤ 0.05) at 4 days	4 days p inoculat		8 days p inoculat		12 days inocula	-	16 days inoculat	2	20 days inoculat	-
post inoc	ulation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
DOCOTODA	AT3g52990/F8J2_160	2.926 (2.121	0.0070	1.268 (0.289	0.000	1.109 (0.81	0.5/0	1.056 (0.176	0.040	1.084 (0.666	0.005
BQ505231	{Arabidopsis thaliana}	to 3.518)	0.0272	to 1.991)	0.602	to 1.256)	0.762	to 3.537)	0.948	to 1.818)	0.895
	ATP synthase beta subunit	2.588 (1.758		3.339 (3.21 to		10.62 (8.387		13.62 (10.98		3.779 (1.615	
BQ515350	{Lycopersicon esculentum}	to 3.428)	0.0135	3.544)	0.0028	to 12.7)	0.00021	to 16.94)	0.00182	to 8.122)	0.283
	chlorophyll a/b-binding protein	0 415 (0.000		2 114 (0 479		1 752 (1 02		1 126 (0 724		0.000 (0.104	
DO111700	type I precursor - tomato;	2.415 (2.023	0.0014	3.114 (0.478	0.046	1.752 (1.22	0.146	1.136 (0.734	0.700	0.289 (0.104	0.00
BQ111722	TC57676	to 2.82)	0.0214	to 6.879)	0.246	to 2.83)	0.146	to 1.444)	0.709	to 0.594)	0.26
DO11/007	DNA segment KIST 6~data	4.655 (2.62 to	International Property in the	0.835 (0.441	0.700	1.284 (0.958		2.364 (1.283	0.105	16.93 (1.034	0.446
BQ116285	source EST612914 Generation of a set	6.281)	0.0239	to 1.253)	0.736	to 1.524)	0.494	to 5.86)	0.195	to 414.7)	0.446
	of potato cDNA clones for microarray analyses mixed potato tissues Solanum										
BQ505499	tuberosum cDNA clone STMGE48 5' end, mRNA sequence.	3.568 (2.926 to 4.088)	0.0276	1.192 (0.491 to 1.709)	0.665	1.21 (0.773 to 1.792)	0.619	1.671 (0.865 to 2.104)	0.268	2.797 (1.693 to 4.858)	0.141
	Hypothetical 65.0 kDa protein ycf82 (ORF519). [Euglenophycean alga] {Astasia	3.435 (2.771		0.891 (0.616		1.01 (0.812		1.32 (0.01 to		0.797 (0.36 to	
BQ518663	longa}	to 4.502)	0.0354	to 1.561)	0.775	to 1.407)	0.979	4.036)	0.651	1.33)	0.756
54010005	hypothetical protein	8.154 (6.399	010001	0.674 (0.35 to		0.917 (0.536		1.991 (0.777	0.051	1.772 (0.857	0,750
BQ509850	{Arabidopsis thaliana}	to 11.39)	0.0133	1.102)	0.476	to 1.4)	0.845	to 4.606)	0.448	to 3.457)	0.464
2 2007000	hypothetical protein T15C9.70 -	3.981 (2.408		1.395 (0.516		1.725 (0.805		0.759 (0.384	01110	1.257 (1.028	0.101
BQ508413	Arabidopsis thaliana; TC67087	to 6.093)	0.0261	to 2.011)	0.457	to 5.116)	0.529	to 1.112)	0.677	to 1.704)	0.698
2000110	mRNA-binding protein		Contraction of								0.070
	precursor [imported] - tomato	3.271 (2.617		2.065 (1.337		1.266 (0.494		0.981 (0.662		0.309 (0.251	
BQ115464	(fragment)	to 3.604)	0.0121	to 2.652)	0.0656	and the second s	0.541	to 1.502)	0.956	to 0.417)	0.29
	nucleoside triphosphatase	2.574 (2.082		1.351 (0.7 to		0.65 (0.216		0.988 (0.457		0.937 (0.503	01.007
BO121659	putative {Arabidopsis thaliana}	to 3.308)	0.0371	2.506)	0.595	to 1.236)	0.533	to 1.542)	0.979	to 1.74)	0.924

	zed Gene Expression (2-fold r, p-value <u><</u> 0.05) at 4 days	4 days p inoculat		8 days p inoculat		12 days inocula	-	16 days inoculat	•	20 days inoculat	
post inoc	culation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
BQ114946	peptidylprolyl isomerase (EC 5.2.1.8) ROF1 - Arabidopsis thaliana	2.275 (2.136 to 2.408)	0.041	1.15 (0.939 to 1.604)	0.623	1.415 (1.019 to 1.93)	0.343	1.867 (0.688 to 3.761)	0.251	1.835 (1.148 to 2.195)	0.229
BQ121461	probable alanine aminotransferase F5A18.24 - Arabidopsis thaliana	2.15 (1.601 to 2.626)	0.0541	1.126 (0.906 to 1.469)	0.594	0.94 (0.821 to 1.222)	0.863	0.858 (0.288 to 1.991)	0.782	0.637 (0.374 to 1.073)	0.565
BQ112325	probable alanineglyoxylate transaminase (EC 2.6.1.44) [imported] - Arabidopsis thaliana	2.876 (1.582 to 3.746)	0.037	1.441 (0.461 to 2.43)	0.425	0.676 (0.01 to 1.589)	0.647	1.964 (0.738 to 3.893)	0.243	0.482 (0.268 to 0.633)	0.421
BQ116628	putative mitogen-activated protein kinase {Arabidopsis thaliana}; TC66313	2.846 (2.151 to 3.769)	0.0214	0.87 (0.37 to 1.489)	0.742	0.554 (0.463 to 0.757)	0.329	0.788 (0.15 to 1.673)	0.654	0.806 (0.665 to 0.956)	0.755
BQ111587	ribosomal protein L1 [imported] - spinach		0.0234	0.867 (0.466 to 1.313)	0.671	0.562 (0.213 to 0.902)		0.97 (0.557 to 1.256)	1 // . A. C. C. C.	0.497 (0.2 to 1.353)	0.445
BQ116332	ribosomal protein L12-1a {Nicotiana tabacum}	4.697 (3.827 to 6.081)	0.0165	3.139 (2.146 to 5.437)	0.0467	0.595 (0.0783 to 1.887)	0.654	1.217 (0.739 to 1.613)	0.687	1.062 (0.611 to 1.391)	0.926
BQ517273	serine/threonine protein kinase- like protein {Arabidopsis thaliana}	2.963 (2.333 to 4.452)	0.0352	1.672 (0.688 to 2.698)	0.228	0.912 (0.682 to 1.26)	0.809	0.53 (0.01 to 1.994)	0.466	0.56 (0.261 to 1.178)	0.515
BQ509988	superoxide dismutase (EC 1.15.1.1) (Fe) - curled-leaved tobacco	2.301 (2.076 to 2.66)	0.0331	1.992 (0.677 to 3.342)	0.156	1.255 (0.594 to 3.062)		1.959 (1.064 to 4.428)	0.203	0.384 (0.316 to 0.523)	0.318
BQ508853	Transcribed sequence with weak similarity to protein pir:T10205 (A.thaliana) T10205 hypothetical protein F25G13.120 - Arabidopsis thaliana		0.0218	1.022 (0.374 to 1.801)	0.965	0.474 (0.111 to 1.044)	0.376	0.997 (0.235 to 2.686)	0.996	0.919 (0.756 to 0.999)	0.902

	ed Gene Expression (2-fold r, p-value <u><</u> 0.05) at 4 days	a construction of the second	1.000101	8 days p inoculat		12 days inocula	-	16 days j inoculat		20 days inoculat	
post inoc	ulation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank	TIGR Annotation	Gene	t-test	Gene	t-test	Gene	t-test	Gene	t-test	Gene	t-test
ID#	HGK Annotation	Expression	p-value	Expression	p-value	Expression	p-value	Expression	p-value	Expression	p-value
		2.479 (2.14 to	Part I	1.417 (0.721		2.773 (1.163		5.227 (1.818		0.349 (0.0402	
BQ515412	Transcribed sequences	2.881)	0.0255	to 1.904)	0.324	to 4.26)	0.0387	to 11.14)	0.147	to 2.748)	0.674
	unknown {Arabidopsis	4 (1.13 to		0.936 (0.554		0.741 (0.538		0.908 (0.483		1.123 (0.967	
BQ519208	thaliana}	5.938)	0.0384	to 1.215)	0.848	to 0.913)	0.517	to 1.325)	0.83	to 1.23)	0.853
	unknown protein {Arabidopsis	3.214 (2.374	310 940 M	1.286 (1.071		1.404 (1.048	1.000	1.539 (0.714		0.692 (0.426	
BQ115852	thaliana}; TC57794	to 4.309)	0.0198	to 1.616)	0.389	to 1.835)	0.368	to 2.125)	0.347	to 0.802)	0.631

	zed Gene Expression (2-fold r, p-value ≤ 0.05) at 8 days	4 days j inocula		8 days p inoculat		12 days inoculat	-	16 days inocula	-	20 days inocula	-
	culation compared to other time points	Normalized		Normalized	8	Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	50S ribosomal protein L24 chloroplast precursor (CL24). [Common tobacco] {Nicotiana	2.665 (1.592		3.304 (1.974		2.86 (0.01 to		0.558 (0.179		0.417 (0.229	
BQ112187	tabacum}	to 4.846)	0.106	to 4.314)	0.0238	8.71)	0.191	to 1.045)	0.37	to 0.746)	0.337
BQ515145	actin-like protein {Arabidopsis thaliana}	1.134 (0.519 to 2.131)	0.77	3.153 (1.205 to 4.028)	0.0427	3.558 (0.397 to 5.73)	0.0691	1.916 (0.01 to 11.75)	0.425	0.505 (0.227 to 0.999)	0.405
BQ512403	ADP-ribosylation factor [imported] - rice	10.21 (3.832 to 25.64)	0.232	13.48 (9.091 to 21.38)	0.0023	127.9 (52.63 to 264.3)	0.067	91.83 (30.49 to 339.7)	0.0545	4.904 (0.0278 to 156.1)	0.711
	aspartate carbamoyltransferase	0.299 (0.013		5.232 (3.263 to 7.978)		2.284 (0.844 to 6.138)	0.147	0.724 (0.0764 to 1.368)	0.622	6.346 (1.221	
BQ117369	{Solanum tuberosum} AT5g14910/F2G14_30	to 5.327)	0.009	2.247 (1.627	0.0206	0.937 (0.747	0.147	0.885 (0.632		to 23.15)	0.338
BQ112434	{Arabidopsis thaliana}	1.956 (0.861 to 4.988)	0.492	to 2.917)	0.0181	to 1.223)	0.864	to 1.336)	0.745	0.673 (0.472 to 1.045)	0.595
DQ112404	ATP synthase beta subunit	2.588 (1.758	and the second second	3.339 (3.21	0.0101	10.62 (8.387	0.804	13.62 (10.98		3.779 (1.615	0.393
BQ515350	{Lycopersicon esculentum}	to 3.428)	0.0135	to 3.544)	0.0028	to 12.7)	0.0002	to 16.94)	0.00182	to 8.122)	0.283
BQ514939	ATP synthase beta subunit {Primula gaubaeana}	2.283 (1.396 to 3.2)		2.963 (1.895 to 3.934)	0.034	46.83 (0.01 to 334.2)	0.0705	29.28 (0.01 to 220)	0.192	3.91 (0.578 to 23.1)	0.542
DQ314939	ATP synthase C chain (EC 3.6.3.14) (Lipid-binding protein)	1.728 (1.513		2.231 (1.378		6.591 (5.219		13.84 (5.711	0,192	0.709 (0.0205 to	0.342
BQ112460		to 1.973)	0.0939	to 3.147)	0.0484	to 7.709)	0.0021	to 23.32)	0.0353	14.9)	0.903
BQ112730		1.487 (1.213 to 1.888)	0,198	2.609 (2.336 to 2.997)	0.003	1.674 (1.383 to 2.156)	0.117	0.505 (0.06 to 1.315)	0.311	0.086 (0.042 to 0.118)	0.151
BQ113365	chlorophyll a/b-binding protein (cab-11) - tomato	1.808 (1.132 to 3.202)	0.265	3.86 (3.358 to 4.487)	0.0009	0.859 (0.429 to 1.597)	0.777	0.24 (0.0674 to 0.44)	0.156	0.159 (0.126 to 0.255)	0.188
	Chlorophyll A-B binding protein 1B chloroplast precursor (LHCII type I CAB-1B) (LHCP).	1.361 (0.908		3.068 (2.239		1.808 (1.299		0.906 (0.379		0.235 (0.0972 to	
BQ115145	[Tomato]	to 2.059)	0.532	to 4.036)	0.0201	to 2.412)	0.0995	to 1.63)	0.863	0.545)	0.228
BO113442	Chlorophyll A-B binding protein 4 chloroplast precursor (LHCII type I CAB-4) (LHCP). [Tomato]	1.074 (0.691 to 1.716)	0.847	3.836 (2.374 to 5.245)	0.02	1.764 (1.028 to 3.345)	0.223	0.371 (0.01 to 0.596)	0.203	0.0995 (0.0687 to 0.123)	0.159

or greate	zed Gene Expression (2-fold r, p-value \leq 0.05) at 8 days	4 days p inoculat		8 days p inoculat		12 days inoculat	-	16 days inocula	-	20 days inocula	-
post inoc GenBank	culation compared to other time points	Normalized	t-test	Normalized Gene	t-test	Normalized Gene	4 44	Normalized	4.44	Normalized	
ID#	TIGR Annotation	Gene Expression	t-test p-value	Expression	p-value		t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	Chlorophyll A-B binding protein							0.123			-
BQ112935	7 chloroplast precursor (LHCI type II CAB-7). [Tomato]	0.903 (0.581 to 1.142)	0.792	6.01 (3.96 to 7.703)	0.0106	0.0867 (0.01 to 0.805)	0.396	(0.0504 to 0.194)	0.13	0.223 (0.122 to 0.338)	0.222
		0.949 (0.738		2.34 (2.008		1.03 (0.445		1.101 (0.0901 to		0.112 (0.0727 to	
BQ516559	(CAB- 10A) (LHCP). [Tomato]	to 1.539)	0.88	to 2.945)	0.0166	to 1.848)	0.951	13.09)	0.972	0.14)	0.166
	CycD3;2 {Lycopersicon	2.932 (1.309		2.364 (1.566		1.342 (0.932		0.488 (0.122		0.769 (0.5 to	
BQ519227	esculentum}	to 5.596)	0.0827	to 2.862)	0.0498		0.388	to 1.021)	0.411	0.955)	0.723
	cysteine proteinase inhibitor -	2.091 (1.369		3.029 (2.217	0.0000	0.869 (0.353		2.232 (0.01		0.0397 (0.01	
BQ111934	potato; TC65971	to 3.166)	0.0898	to 3.491)	0.0039	to 1.595)	0.781	to 7.55)	0.209	to 0.174)	0.11
BQ112981	cytochrome p450 {Arabidopsis thaliana}	1.201 (0.735 to 2.769)	0.735	2.534 (1.814 to 3.429)	0.048	0.969 (0.619 to 1.946)	0.946	1.341 (0.01 to 5.434)	0.688	0.756 (0.391 to 1.07)	0.722
	Enolase (EC 4.2.1.11) (2- phosphoglycerate dehydratase) (2 phospho-D- glycerate hydro-	1.482 (0.707		2.283 (1.814		1.258 (0.895		0.785 (0.436		0.973 (0.75	
BQ119679	lyase).	to 2.212)	0.376	to 3.025)	0.0387	_to 1.711)	0.504	to 2.029)	0.69	to 1.147)	0.964
BQ113225	EST598801 mixed potato tissues Solanum tuberosum cDNA clone STMCM16 5' end, mRNA sequence.	5.997 (0.442 to 31.93)	0.364	2.556 (1.875 to 3.018)	0.0215	4.651 (1.659 to 12.3)	0.277	0.861 (0.01 to 6.443)	0.919	3.379 (1.446 to 12.24)	0.239
BQ511788		1.461 (0.108 to 2.733)	0.595	5.628 (2.736 to 8.063)	0.0175	2.39 (1.191 to 5.419)	0.0831	1.127 (0.537 to 2.543)	0.84	0.4 (0.129 to 0.576)	0.315
BQ513478	EST620893 Generation of a set of potato cDNA clones for microarray analyses mixed potato tissues Solanum tuberosum cDNA clone STMIF40 5' end, mRNA sequence.	1.283 (0.505 to 2.619)	0.588	2.819 (1.983 to 3.864)	0.0365	2.858 (1.129 to 5.967)	0.346	1.083 (0.539 to 2.103)	0.834	0.247 (0.0779 to 0.666)	0.235
00010470	Eukaryotic translation initiation	2.332 (1.431	0.300	1.997 (1.719	0.0505	0.493 (0.249	0,040	1.412 (1.177	0.034	0.000)	0.233
3Q505804		to 3.736)	0.123	to 2.44)	0.0369	to 1.067)	0.345	to 1.698)	0.335	to 1.393)	0.754

or greate	zed Gene Expression (2-fold r, p-value ≤ 0.05) at 8 days	4 days p inoculat		8 days p inoculat		12 days inocula	-	16 days inocula		20 days inocula	-
	culation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	Fe-superoxide dismutase	1.27 (0.322		2.023 (1.673		2.85 (1.808		1.181 (1.094		0.979 (0.783	
BQ118260	precursor {Medicago sativa}	to 2.985)	0.687	to 2.506)	0.0452	to 3.905)	0.051	to 1.245)	0.729	to 1.279)	0.97
BQ516600	gene id	1.414 (0.617 to 2.827)	0.559	2.725 (1.642 to 3.963)	0.037	3.78 (2.864 to 4.26)	0.008	1.743 (0.28 to 10.37)	0.799	0.106 (0.0576 to 0.159)	0.163
	Heat shock cognate protein 80. [Tomato] {Lycopersicon	1.631 (1.162		2,209 (1.676		1.18 (0.322		1.341 (0.01		1.124 (0.311	
BQ510594	esculentum}	to 1.957)	0.142	to 2.665)	0.0442	to 2.168)	0.784	to 5.085)	0.835	to 3.485)	0.924
BQ113137	hypothetical protein {Oenothera elata subsp. hookeri}; TC58083	8,271 (2.268 to 35.09)	0.334	2.438 (1.57 to 2.828)	0.0305	1.253 (0.974 to 1.777)	0.43	0.522 (0.316 to 0.761)	0.211	0.0394 (0.01 to 0.175)	0.11
Darioron	hypothetical protein At2g43500	0.987 (0.491	0.554	2.932 (1.748		10.66 (3.008		5.085 (3.32	0,211	0.922 (0.119	0.11
BQ514870	[imported] - Arabidopsis thaliana	to 1.477)	0.978	to 4.86)	0.0268	to 14.63)	0.0138	to 7.721)	0.0381	to 7.87)	0.97
	Hypothetical protein F27E11.3a										
	{Caenorhabditis elegans};	1.787 (1.251		2.135 (1.727	18 311	2.951 (0.01		11.65 (0.971		0.875 (0.144	
BQ508800	TC61599	to 2.742)	0.124	to 2.822)	0.0343	to 5.887)	0.142	to 41.09)	0.273	to 1.404)	0.815
BQ117149	homologue to UP Q8LSZ3 (Q8LSZ3) NADPH:protochlorophyllide oxidoreductase	1.297 (0.334 to 2.486)	0.557	2.318 (1.861 to 2.607)	0.0251	0.707 (0.01 to 1.191)	0.541	1.493 (0.866 to 2.482)	0.318	0.507 (0.24 to 0.904)	0.429
	Oxygen-evolving enhancer protein 2 chloroplast precursor	1.009 (0.73		2.665 (1.938		1.457 (1.004		1.198 (0.976	undefine	0.107 (0.0787 to	
BQ117281	(OEE2)	to 1.384)	0.977	to 4.066)	0.034	to 1.963)	0.301	to 1,421)	d	0.159)	0.163
BQ513774	periaxin-like protein - Arabidopsis thaliana	1.484 (0.598 to 2.655)	0.574	2.158 (1.272 to 2.718)	0.0392	1.146 (0.318 to 4.276)	0.868	0.39 (0.0174 to 0.805)	0.261	0.223 (0.148 to 0.375)	0.22
BQ113573	Photosystem I reaction center subunit XI chloroplast precursor (PSI-L) (PSI subunit V).		0.244	3.204 (1.965 to 4.928)	0.0303	0.785 (0.385 to 1.252)		0.24 (0.01 to 0.568)	0.197	0.138 (0.0946 to 0.202)	0.181
BQ511753	predicted protein {Methanosarcina acetivorans str. C2A} [Methanosarcina acetivorans C2A]	1.34 (0.0153 to 2.495)	0.636	2.327 (1.807 to 2.79)	0.0503	1.199 (0.437 to 2.542)	0.763	1.371 (1.233 to 1.564)	0.376	0.841 (0.475 to 1.451)	0.813
BQ117328	Probable 26S proteasome non- ATPase regulatory subunit 3 (26S proteasome subunit S3)	4.059 (0.01 to 9.425)	0.0695	3.034 (2.582 to 3.507)	0.009	5.477 (2.84 to 6.615)	0.0129	14.98 (0.01 to 173.1)	0.325	1.582 (0.118 to 13.09)	0.849

	zed Gene Expression (2-fold r, p-value <u>< 0.05</u>) at 8 days	4 days j inocula		8 days p inoculat		12 days inoculat	-	16 days inocula	-	20 days inocula	-
	culation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
BQ506989	probable shaggy-like protein kinase dzeta [imported] - Arabidopsis thaliana	11.55 (4.474 to 33.25)	0.232	12.84 (9.648 to 18.34)	0.0076	24.05 (16.5 to 34.67)	0.0035	116.7 (26.4 to 557.3)	0.183	17.34 (0.343 to 173.3)	0.415
BQ117401	ribosomal protein L16 {Atropa belladonna}	2.936 (1.903 to 4.062)	0.126	2.561 (1.712 to 3.145)	0.0219	8.291 (6.359 to 9.997)	0.0016	7.623 (3.194 to 11.8)	0.00792	1.743 (0.151 to 11.79)	0.806
BQ512920	T12C24.27 {Arabidopsis thaliana}	1.225 (0.243 to 1.853)		3.992 (3.063 to 5.357)	TR	1.768 (0.537 to 3.729)	0.266	0.787 (0.533 to 1.374)		0.178 (0.0923 to 0.472)	0.2
BQ516229	Transcribed sequence with moderate similarity to protein ref:NP_192772.1 (A.thaliana) chlorophyll a/b-binding protein - like [Arabidopsis thaliana]	0.871 (0.386 to 1.794)	0.785	4.68 (3.729 to 6.273)	0.0054	0.366 (0.0912 to 1.447)	0.355	0.772 (0.639 to 0.905)	undefine d	0.269 (0.154 to 0.427)	0.255
	Transcribed sequence with moderate similarity to protein ref:NP_565717.1 (A.thaliana) putative cysteinyl-tRNA synthetase [Arabidopsis thaliana]	0.732 (0.555 to 0.978)	0.55	2.448 (1.881 to 3.341)	0.0344	0.57 (0.01 to 1.005)		3.11 (0.904 to 8.985)	0.295	1,463 (0.8 to 2.526)	0.522
BQ115289	Transcribed sequence with weak similarity to protein ref:NP_177714.1 (A.thaliana) unknown protein [Arabidopsis thaliana]	1,228 (0.911 to 1.766)	0.537	2.372 (1.714 to 2.988)	0.0324	0.885 (0.42 to 1.298)	0.778	0,484 (0.272 to 1.386)	0.322	1.029 (0.72 to 1.285)	0.966
BQ509009	Transcribed sequences	4.249 (0.556 to 23.08)	0.512	4.635 (2.315 to 6.361)	0.0217	10.48 (2.159 to 45.64)	0.278	1.225 (0.01 to 3.176)	0.837	7.966 (1.013 to 50.3)	0.438
BQ516620	Type I (26 kD) CP29 polypeptide {Lycopersicon esculentum}; TC57676	1.287 (0.608 to 3.176)		2.764 (1.636 to 3.437)		1.145 (0.611 to 1.52)	0.695	0.901 (0.01 to 1.787)	0.85	0.222 (0.0553 to 0.612)	0.22
BQ112776	unknown protein {Arabidopsis	0.897 (0.208 to 2.888)	0.876	3.513 (2.794 to 4.448)		2.597 (0.01 to 10.8)	0.232	2.468 (0.828 to 5.35)	0.85	0.938 (0.616 to 1.467)	0.926

or greate	zed Gene Expression (2-fold r, p-value \leq 0.05) at 12 days	4 days j inocula	-	8 days p inoculat		12 days inocula	7	16 days inoculat	-	20 days inocula	-
post inocul	lation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation		t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	60S ribosomal protein L13a-4.	2.413					Fue				
	[Mouse-ear cress] {Arabidopsis	(0.502 to		1.59 (0.928		2.148 (1.695	112 20	0.729 (0.448		1.387 (0.7 to	
BQ114260	thaliana}	14.25)	0.617	to 2.602)	0.317	to 2.404)	0.0559	to 1.515)	0.524	4.077)	0.652
1.00		14.66		15.64							
	ADP-ribosylation factor {Oryza	(5.922 to		(9.706 to		62.73 (47.34	T. Aller	301.2 (168.6		47.84 (6.561	
BQ508962	sativa (japonica cultivar-group)}	37.26)	0,171	20.21)	0.0098	to 86.17)	0.0005	to 534)	0.0534	to 343.7)	0.285
		1.084		1.358							
	apocytochrome b6 {Oryza sativa	(0.527 to		(0.862 to		3.001 (2.534	- m = 17	3.291 (1.874		0.12 (0.01 to	
BQ512525	(japonica cultivar-group)}	1.928)	0.845	1.912)	0.306	to 4.298)	0.0069	to 5.444)	0,0256	1,521)	0.51
		2.588	4			·何·	ED TO THE				
	ATP synthase beta subunit	(1.758 to		3.339 (3.21		10.62 (8.387	1	13.62 (10.98		3.779 (1.615	
BQ515350	{Lycopersicon esculentum}	3.428)	0.0135	to 3.544)	0.0028	to 12.7)	0.0002	to 16,94)	0.0018	to 8.122)	0.283
	ATP synthase C chain (EC	1.728		2.231						0.709	
	3.6.3.14) (Lipid-binding protein)	(1.513 to		(1.378 to		6.591 (5.219	- L	13.84 (5.711		(0.0205 to	
BQ112460	(Subunit III).; TC65117	1.973)	0.0939	3.147)	0.0484	to 7.709)	0.0021	to 23.32)	0.0353	14.9)	0.903
				1.232						0.656	
	ATPase alpha subunit {Atropa	1.533 (1.21		(0.866 to		4.49 (2.371		11.49 (9.311		(0.0429 to	
BQ515554	belladonna}	to 1.882)	0.197	1.722)	0.586	to 5.765)	0.0094	to 13.58)	0.0092	7.832)	0.884
		1.308									
	beta-glucosidase homolog F8K4.3	(0.298 to		2.591 (0.17		14.26 (9.685		14.4 (0.681		2.594 (0.25	
BQ112557	- Arabidopsis thaliana	4.69)	0.756	to 4.155)	0.118	to 21.89)	0.006	to 35.18)	0.0676	to 28.81)	0.701
		0.816		0.387							
	copper homeostasis factor	(0.376 to		(0.243 to		2.655 (2.037		1.187 (0.825		0.619 (0.38	
BQ114952		1.895)	0.809	0.674)	0.155	to 3.337)	0.0132	to 1.792)	0.565	to 0.972)	0.465
		0.518		0.781		and the second	-	-			
	copper homeostasis factor	(0.254 to		(0.454 to		3.32 (2.271		1.235 (0.368		0.399 (0.286	
BO512294	[imported] - Arabidopsis thaliana	0.956)	0.308	1.382)	0.668	to 3.984)	0.0185	to 1.955)	0.596	to 0.503)	0.32
	· · · ·	1.821					Concellant I			10 0.000)	0,02
		(0.272 to		0.514 (0.35		2.128 (1.63	31.53	12.52 (0.378		1.025 (0.386	
BO112071	dnaJ protein homolog - potato	2.997)	0.254	to 0.95)	0.213	to 2.69)	0.0543	to 202)	0.431	to 2.265)	0.974

or greate	zed Gene Expression (2-fold r, p-value <u><</u> 0.05) at 12 days	4 days inocula		8 days j inocula		12 days inoculat		16 days inocula	-	20 days inocula	-
	ation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	EST614987 Generation of a set of										
	potato cDNA clones for										
	microarray analyses mixed potato										1
	tissues Solanum tuberosum cDNA	3.294		1.196							
	clone STMGR20 5' end, mRNA	(0.781 to		(0.569 to		2.521 (2.303	Wildy"	4.251 (1.171		34.71 (3.589	
BQ507584	sequence.	15.98)	0.441	2.749)	0.783	to 2.846)	0.0216	to 16.17)	0.376	to 291.5)	0.337
		1.414		2.725		beliete	Ren Li sa			0.106	
		(0.617 to		(1.642 to		3.78 (2.864	100	1.743 (0.28		(0.0576 to	
BQ516600	gene_id	2.827)	0.559	3.963)	0.037	to 4.26)	0.008	to 10.37)	0.799	0.159)	0.163
		0.987		2.932			1.2				
	hypothetical protein At2g43500	(0.491 to		(1.748 to		10.66 (3.008	in the second	5.085 (3.32		0.922 (0.119	
BQ514870	[imported] - Arabidopsis thaliana	1.477)	0.978	4.86)	0.0268	to 14.63)	0.0138	to 7.721)	0.0381	to 7.87)	0.97
		0.822		1.911		11.1.6 1.5		0.456			-
	hypothetical protein F28P22.5	(0.232 to		(0.895 to		2.463 (1.953	11.22	(0.0243 to		2,308 (0.853	
BQ505670	[imported] - Arabidopsis thaliana	2.537)	0.828	2.296)	0.108	to 2.996)	0.0149	1.351)	0.535	to 10.32)	0.448
	Photosystem I reaction center	0.931		2.082							- I.
	subunit VIII (PSI-I). [Common	(0.712 to		(0.971 to		2.867 (2.218	1.4.4	4.606 (0.868		0.595 (0.102	
BQ113751	tobacco] {Nicotiana tabacum}	1.419)	0.846	3.949)	0.126	to 4.359)	0.0177	to 20.82)	0.488	to 2.937)	0.782
-	Probable 26S proteasome non-			3.034			12 - 10				
	ATPase regulatory subunit 3 (26S	4.059 (0.01		(2.582 to		5.477 (2.84		14.98 (0.01		1.582 (0.118	
BQ117328	proteasome subunit S3)	to 9.425)	0.0695	3.507)	0.009	to 6.615)	0.0129	to 173.1)	0.325	to 13.09)	0.849
	probable ABC transporter	0.73 (0.43	undefine	1.56 (1.06		2.455 (2.041	14.51	2.134 (1.376		0.621 (0.375	
BQ515072	[imported] - Arabidopsis thaliana	to 1.029)	d	to 2.482)	0.37	to 2.989)	0.0293	to 4.058)	0,115	to 1.171)	0.559
	Probable protease inhibitor P322	3.442									
	precursor. [Potato] {Solanum	(0.586 to		0,788 (0.27		6.534 (4.062	The later	0.547 (0.01		2.175 (0.288	
BQ113207	tuberosum}	10.63)	0.105	to 1.14)	0.583	to 9.175)	0.0022	to 31.75)	0.902	to 20.83)	0,743
	probable shaggy-like protein	11.55		12.84							
	kinase dzeta [imported] -	(4.474 to		(9.648 to		24.05 (16.5		116.7 (26.4		17.34 (0.343	
BQ506989	Arabidopsis thaliana	33.25)	0.232	18.34)	0.0076		0.0035	to 557.3)	0,183	to 173.3)	0.415
		2.936		2.561							
	ribosomal protein L16 {Atropa	(1.903 to		(1.712 to		8.291 (6.359	TUN -	7.623 (3.194		1.743 (0.151	
BQ117401	belladonna}	4.062)	0.126	3.145)	0.0219		0.0016	to 11.8)	0.0079	to 11.79)	0.806

or greater	zed Gene Expression (2-fold r, p-value <u><</u> 0.05) at 12 days	4 days j inocula		8 days p inocula		12 days inoculat		16 days inoculat	-	20 days inocula	
post inocul	ation compared to other time points	Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
	Design of the second se			2.381			2 Second			1.173	
	ribosomal protein L16 {Atropa	2.7 (0.347		(0.479 to		15.25 (11.37		13.49 (1.925		(0.0928 to	
BQ117403	belladonna}	to 5.154)	0.119	6.6)	0.129	to 22.75)	0.0032	to 31.27)	0.0247	9.724)	0.948
	translation initiation factor IF-1	1.907		1.297		1.000 1000	12-14			0.795	
	homolog - common tobacco	(0.797 to		(1.107 to		4.625 (3.937		3.7 (3.168 to	1 1	(0.0879 to	
BQ114627	chloroplast (fragment)	3.566)	0.386	1.469)	0.243	to 5.944)	0.0124	4.198)	0.0007	6.681)	0.92
								0.413			
		1 (0.407 to		1.669 (1.1		2.56 (1.954	THE R	(0.0926 to		0.571 (0.453	
BQ519261	unknown {Arabidopsis thaliana}	2.715)	0.999	to 2.323)	0.12	to 3.503)	0.0186	0.874)	0.314	to 0.722)	0.456
		1.679	2	3.083		0	a l'asse				
	unknown protein {Arabidopsis	(0.841 to		(0.632 to		2.436 (1.918		0.718 (0.273		1.611 (0.967	
BQ505483	thaliana}	2.379)	0.241	24.42)	0.551	to 3.004)	0.06	to 1.31)	0.623	to 2.172)	0.468

Normalized Gene Expression (2-fold or greater, p-value < 0.05) at 16 days post inoculation compared to other time points		. and b poss		8 days p inoculati		12 days post inoculation		16 days post inoculation		20 days post inoculation	
		Normalized		Normalized		Normalized		Normalized		Normalized	
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value	Gene Expression	t-test p-value
10.0	ATP synthase beta subunit	2.588 (1.758		3.339 (3.21 to		10.62 (8.387	1	13.62 (10.98		3.779 (1.615	
BO515350	{Lycopersicon esculentum}	to 3.428)	0.0135	3.544)	0.0028	to 12.7)	0.00021	to 16.94)	0.0018	to 8.122)	0.283
										0.656	
1.0	ATPase alpha subunit {Atropa	1.533 (1.21		1.232 (0.866		4.49 (2.371 to		11.49 (9.311	1.1	(0.0429 to	
BQ515554	belladonna}	to 1.882)	0.197	to 1.722)	0.586	5.765)	0.00936		0.0092	7.832)	0.884
	chitinase-like protein 1									0.204	
	{Arabidopsis thaliana};	1.58 (0.485		1.732 (0.918		1.649 (0.605		3.17 (2.258		(0.0228 to	
BQ511025	TC65808	to 2.693)	0.336	to 3.33)	0.21	to 4.289)	0.301	to 3.867)	0.0053	1.365)	0.496
	Cytochrome P450 71B5 (EC								1-1-1-L		
	1.14). [Mouse-ear cress]	1.886 (0.66		0.831 (0.522		1.526 (1.116		12.74 (8.4 to	1	1.485 (0.996	
BQ512208	{Arabidopsis thaliana}	to 4.583)	0.535	to 1.228)	0.643	to 2.382)	0.248	18,72)	0.012	to 2.825)	0.519
	dehydration-induced protein								150 heat		
	ERD15 {Lycopersicon	2.251 (0.378		1.139 (0.536		1.613 (1.393		2.834 (2.472	1	0.555 (0.189	
BQ514087	esculentum}; TC66339	to 9.88)	0,444	to 1.75)	0.696	to 1.914)	0.193	to 3.268)	0.0344	to 1.83)	0.57
	Eukaryotic translation initiation								T	·	
	factor 3 subunit 7 (eIF-3 zeta)	1.528 (0.515		1.722 (0.983		0.856 (0.37 to		5.117 (3.597		0.882 (0.425	
BQ116074	(eIF3d) (p66). [Mouse-ear cress]	to 3.331)	0.518	to 2.269)	0.132	1.203)	0.74	to 7.694)	0.0238	to 1.417)	0.857
	F5I14.2 gene product	3.814 (1.276		9.067 (3.511		10.52 (2.222		26.26 (17.35		9.828 (0.922	and the second se
BQ519023	{Arabidopsis thaliana}	to 8.664)	0.311	to 15.37)	0.01	to 21.5)	0.0163	to 37.85)	0.0004	to 80.76)	0.45
	Glutamatecysteine ligase										
	chloroplast precursor (EC							- 198.01			
	6.3.2.2) (Gamma-	4.035 (2.04		0.795 (0.319		2.194 (1.179		3.637 (3.044		0.711 (0.339	
BQ113636	glutamylcysteine synthetase)	to 6.592)	0.134	to 2.36)	0.797	to 5.584)	0.262	to 4.39)	0.0265	to 1.055)	0.669
	glycine										
	hydroxymethyltransferase (EC							DEP and the			
	2.1.2.1) - Arabidopsis thaliana;	1,472 (0.359		0,868 (0.41 to		0.734 (0.189		4.578 (3.939	188 - 1	1,166 (0.757	
BQ117868	TC57765	to 6.028)	0.665	2.033)	0.856	to 2.249)	0,751	to 5.081)	0.0237	to 1.36)	0.804
	putative DNA damage repair										
	protein (Oryza sativa (japonica	0.482 (0.171		1.139 (0.748		1.116 (0.973	Ĩ.	3,163 (2.382		1.004 (0.86	
BQ510509	cultivar-group)}	to 1.244)	0.481	to 1.688)	0.642	to 1.311)	0.748	to 4.823)	0.0303	to 1.079)	0.995
	S							C. Station - Mail			
DOE14005	·····	0.704 (0.01	0.71	1.07 (0.849 to	0.005	1.077 (0.93 to	0.045	11.58 (9.318	0.0040	2,225 (1.449	the second second
BQ514005	putative protein {Vitis riparia}	to 1.726)	0.71	1.406)	0.825	1.424)	0.845	to 15.85)	0.0048	to 4.008)	0.243

Normalized Gene Expression (2-fold or greater, p-value ≤ 0.05) at 16 days post inoculation compared to other time points				8 days p inoculati				16 days post inoculation		20 days post inoculation	
		Normalized		Normalized		Normalized		Normalized	t-test	Normalized Gene Expression	t-test
GenBank ID#	TIGR Annotation	Gene Expression	t-test p-value			Gene Expression	t-test p-value	Gene Expression			
	S-adenosylmethionine			-				Design and the	10782.5	· · · · · · · · · · · · · · · · · · ·	
	decarboxylase proenzyme (EC							Sector La	1 TEN		
	4.1.1.50) (AdoMetDC)	1.155 (0.403		0.71 (0.477 to		0.75 (0.418 to		12.58 (10.01		1.059 (0.234	
BQ116177	(SamDC)	to 3.359)	0.903	0.902)	0.356	1.368)	0.606	to 16.11)	0.0039	to 4.873)	0.973
	translation initiation factor IF-1							A CONTRACTOR		0.795	
	homolog - common tobacco	1.907 (0.797		1.297 (1.107		4.625 (3.937		3.7 (3.168 to	12.1	(0.0879 to	
BQ114627	chloroplast (fragment)	to 3.566)	0.386	to 1.469)	0.243	to 5.944)	0.0124	4.198)	0.0007	6.681)	0.92
	unknown protein {Arabidopsis	0.583 (0.322		1.178 (0.521		1.097 (0.635		4.838 (3.46	1 Log I	1.1 (0.947	
BQ512292	thaliana}	to 1.099)	0.437	to 1.709)	0.73	to 2.026)	0.84	to 5.649)	0.0193	to 1.169)	0.884

Normalized Gene Expression (2-fold or greater, p-value < 0.05) at 20 days post inoculation compared to other time points		4 days post inoculation		8 days p inoculat			-		-	20 days post inoculation	
		Normalized		Normalized		Normalized		Normalized		Normalized	t-test
GenBank	TICD Amentation	Gene	t-test	Gene	t-test	Gene	t-test	Gene	t-test	Gene	p-
ID#	TIGR Annotation	Expression	p-value	Expression	p-value	Expression	p-value	Expression	p-value	Expression	value
1	8							1.662			
	hypothetical protein L5515.04	1.129 (0.259		1.242 (1.024		0.87 (0.554		(0.646 to		3.194 (2.114	2010
BQ517497	{Leishmania major}	to 3.391)	0.896	to 1.445)	0.471	to 1.489)	0.738	3.797)	0.468	to 3.946)	0.0324
		0.541						1.482			
	B2 protein. [Carrot] {Daucus	(0.0289 to		0.72 (0.601		0.949 (0.307		(0.114 to		3.725 (2.63 to	
BQ517330	carota}	1.481)	0.539	to 0.811)	0.393	to 1.827)	0.909	3.018)	0.458	4.744)	0.0369

GenBank		Normalized Gene	t-test p	Normalized Gene	t-test
ID#	TIGR Gene Annotation	Expression 16 dpi	value	Expression 20 dpi	p-value
BQ113521	50S ribosomal protein L29 {Arabidopsis thaliana}	1.23 (0.423 to 1.961)	0.697	0.282 (0.243 to 0.3)	0.251
BQ111936	60S ribosomal protein L12. [Apricot] {Prunus armeniaca}	2.893 (0.347 to 15.64)	0.629	0.277 (0.186 to 0.47)	0.254
BQ115111	acyl CoA reductase-like protein - Arabidopsis thaliana	2.548 (1.561 to 4.996)	0.161	0.159 (0.128 to 0.199)	0.19
BQ516739	AT5g58960/k19m22_160 {Arabidopsis thaliana}	1.536 (1.128 to 2.097)	0.241	0.398 (0.345 to 0.493)	0.327
BQ117156	AT5g64840/MXK3_6 {Arabidopsis thaliana}	1.675 (1.049 to 3.003)	0.287	0.45 (0.304 to 0.607)	0.378
BQ119414	bactinecin 11 {Ovis aries}; TC66043	8.26 (3.61 to 17.21)	0.178	0.484 (0.257 to 0.849)	0.419
BQ507216	beta-fructofuranosidase {Cichorium intybus}; TC69144	1.311 (0.83 to 2.382)	0.52	0.0811 (0.01 to 0.814)	0.355
	Biotin carboxyl carrier protein of acetyl-CoA carboxylase chloroplast				
BQ511755	precursor (BCCP). [Soybean]	1.436 (0.844 to 2.17)	0.385	0.278 (0.116 to 1.024)	0.265
BQ114084	BURP domain-containing protein (Bruguiera gymnorrhiza)	1.358 (0.45 to 5.496)	0.82	0.274 (0.218 to 0.326)	0.248
	Catalase isozyme 2 (EC 1.11.1.6). [Tomato] {Lycopersicon				
BQ113195	esculentum}	2.045 (0.01 to 8.978)	0.631	0.208 (0.121 to 0.293)	0.212
BQ505882	CDH1-D {Gallus gallus}	1.809 (0.427 to 6.643)	0.597	0.199 (0.0324 to 0.833)	0.229
	Chlorophyll A-B binding protein 13 chloroplast precursor (LHCII type				
BQ113359	III CAB-13). [Tomato]	1.255 (0.242 to 6.488)	0.883	0.0957 (0.0784 to 0.131)	0.157
	Chlorophyll A-B binding protein 1B chloroplast precursor (LHCII				· · · · · · · · · · · · · · · · · · ·
BQ112723	type I CAB-1B) (LHCP). [Tomato]; TC66080	1.51 (0.0246 to 6.571)	0.652	0.105 (0.0226 to 0.593)	0.178
BQ111934	cysteine proteinase inhibitor - potato; TC65971	2.232 (0.01 to 7.55)	0.209	0.0397 (0.01 to 0.174)	0.11
BQ114680	endo-xyloglucan transferase-like protein {Arabidopsis thaliana}	2.314 (1.077 to 3.687)	0.174	0.441 (0.265 to 0.537)	0.395
	EST598335 mixed potato tissues Solanum tuberosum cDNA clone				
BQ112759	STMCJ28 5' end, mRNA sequence.	1.571 (0.211 to 2.733)	0.416	0.177 (0.122 to 0.236)	0.196
	EST605500 mixed potato tissues Solanum tuberosum cDNA clone				
BQ119924	STMEN55 5' end, mRNA sequence.	2.035 (1.296 to 2.494)	0.0952	0.475 (0.317 to 0.652)	0.42
1	EST605795 mixed potato tissues Solanum tuberosum cDNA clone				
BQ120219	STMEP43 5' end, mRNA sequence.	3.245 (1.89 to 6.698)	0.0883	0.26 (0.01 to 0.823)	0.291
	EST620180 Generation of a set of potato cDNA clones for				
	microarray analyses mixed potato tissues Solanum tuberosum cDNA				
BQ512765	clone STMIA48 5' end, mRNA sequence.	4.325 (1.078 to 23.19)	0.409	0.423 (0.208 to 0.681)	0.359
	EST620889 Generation of a set of potato cDNA clones for				
	microarray analyses mixed potato tissues Solanum tuberosum cDNA				
BQ513474	clone STMIF38 5' end, mRNA sequence.	2.214 (0.733 to 6.575)	0.577	0.149 (0.108 to 0.231)	0.184
	ferredoxinnitrite reductase (EC 1.7.7.1) - common tobacco				
BQ120711	(fragment); TC65206	1.449 (0.736 to 2.15)	0.416	0.263 (0.128 to 0.539)	0.243
BQ514721	ferritin {Nicotiana tabacum}	3.794 (0.906 to 23.33)	0.508	0.434 (0.243 to 0.822)	0.35
BQ510850	Fructose-1 6-bisphosphatase cytosolic (EC 3.1.3.11); TC58300	1.527 (0.842 to 2.376)	0.367	0.419 (0.288 to 0.537)	0.378

A6. Microarray Experiment: 740AT#120 (antisense ARF-1)/TTOSA1 APE pBAD Downregulated Normalized Gene Expression 2-fold or lower, Cluster Set 5, 20 dpi

GenBank		Normalized Gene	t-test p	The second	t-test
ID#	TIGR Gene Annotation	Expression 16 dpi	value	Expression 20 dpi	p-value
BQ113039	fructose-1 6-bisphosphatase precursor {Solanum tuberosum}	1.442 (0.204 to 5.846)	0.753	0.307 (0.192 to 0.399)	0.269
2010 I.I.	Glycerol-3-phosphate dehydrogenase [NAD(P)+] (EC 1.1.1.94)				
BQ114077	(NAD(P)H- dependent glycerol-3-phosphate	15.63 (3.647 to 105.8)	0.289	0.263 (0.105 to 0.622)	0.245
		2.413 (0.0378 to			
BQ113095	H-Protein precursor {Flaveria pringlei}	20.52)	0.665	0.134 (0.102 to 0.174)	0.176
BQ511606	hypothetical protein {Arabidopsis thaliana}	2.024 (1.159 to 2.771)	0.141	0.225 (0.0645 to 0.713)	0.265
	hypothetical protein AAF98579.1 [imported] - Arabidopsis thaliana;		1		
BQ113422	TC66766	1.373 (0.969 to 2.062)	0.386	0.272 (0.189 to 0.407)	0.241
BQ112662	hypothetical protein F8J2.180 - Arabidopsis thaliana; TC58551	1.486 (0.768 to 2.381)	0.347	0.411 (0.0784 to 0.667)	0.378
BQ505418	importin alpha 2 {Capsicum annuum}	2.4 (0.512 to 3.703)	0.142	0.0903 (0.01 to 0.836)	0.399
BQ514469	Ire1 homolog-2 {Arabidopsis thaliana}	1.817 (0.732 to 3.535)	0.272	0.47 (0.318 to 0.747)	0.417
BQ517971	laccase (EC 1.10.3.2) - common tobacco (fragment)	1.295 (0.357 to 3.913)	0.766	0.267 (0.0854 to 0.351)	0.245
BQ114043	mRNA-binding protein precursor [imported] - tomato (fragment)	3.017 (0.97 to 6.045)	0.0985	0.413 (0.12 to 0.574)	0.349
BQ118924	oligouridylate binding protein {Nicotiana plumbaginifolia}; TC58199	1.835 (0.286 to 3.139)	0.242	0.255 (0.0944 to 0.707)	0.243
BQ516737	Photosystem II 10 kDa polypeptide chloroplast precursor	2.513 (0.188 to 18.04)	0.712	0.223 (0.0639 to 0.642)	0.248
	Photosystem II P680 chlorophyll A apoprotein (CP-47 protein).				
BQ512815	[Common tobacco] {Nicotiana tabacum}	1.89 (1.276 to 3.59)	0.123	0.0746 (0.01 to 0.573)	0.329
BQ114609	photosystem II protein D1 precursor - soybean chloroplast	2.34 (0.812 to 5.595)	0.48	0.0504 (0.01 to 0.269)	0.167
BQ515352	photosystem II protein X precursor - Arabidopsis thaliana	2.049 (0.383 to 9.66)	0.712	0.207 (0.161 to 0.247)	0.213
BQ119584	plasma membrane intrinsic protein PIP2 {Solanum chacoense}	1.837 (1.038 to 3.194)	0.276	0.413 (0.275 to 0.474)	0.355
		1.757 (0.0785 to			
BQ120118	probable alanine aminotransferase F5A18.24 - Arabidopsis thaliana	4.363)	0.287	0.159 (0.0944 to 0.225)	0.188
	probable alanineglyoxylate transaminase (EC 2.6.1.44) [imported] -				
BQ112325	Arabidopsis thaliana	1.964 (0.738 to 3.893)	0.243	0.482 (0.268 to 0.633)	0.421
	probable AT-hook DNA-binding protein [imported] - Arabidopsis				
BQ518440	thaliana	8.43 (0.938 to 122.9)	0.483	0.37 (0.0679 to 0.659)	0.302
	probable chaperonin 60 beta chain precursor chloroplast (clone				
BQ113272	potbchap1) - potato	2.124 (0.611 to 3.564)	0.206	0.33 (0.219 to 0.516)	0.301
	Probable vacuolar ATP synthase subunit H (EC 3.6.3.14) (V-				
BQ119371	ATPase H subunit)	1.492 (0.624 to 3.135)	0.417	0.316 (0.0388 to 0.745)	0.274
	Probable WRKY transcription factor 7 (WRKY DNA-binding protein				
BQ510618	7). [Mouse-ear cress]	2.211 (1.765 to 3.008)	0.0701	0.456 (0.236 to 0.927)	0.403
BQ118527	protein F5O11.2 [imported] - Arabidopsis thaliana	1.332 (0.807 to 2.304)	0.632	0.0895 (0.012 to 0.677)	0.295
BQ117672	protein T6D22.2 [imported] - Arabidopsis thaliana	1.352 (0.129 to 3.567)		0.478 (0.31 to 0.648)	0.404

A6. Microarray Experiment: 740AT#120 (antisense ARF-1)/TTOSA1 APE pBAD Downregulated Normalized Gene Expression 2-fold or lower, Cluster Set 5, 20 dpi

GenBank		Normalized Gene	t-test p	Normalized Gene	t-test
ID#	TIGR Gene Annotation	Expression 16 dpi	value	Expression 20 dpi	p-value
	putative 40S ribosomal protein S12 {Oryza sativa (japonica cultivar-				
BQ111607	group)}	2.432 (1.505 to 4.533)	0.117	0.327 (0.0905 to 0.737)	0.323
	putative 60S RIBOSOMAL PROTEIN L36 {Oryza sativa (japonica				
BQ515383	cultivar-group)}	1.715 (0.629 to 4.814)	0.661	0.327 (0.148 to 0.99)	0.29
BQ507212	putative histidyl tRNA synthetase {Arabidopsis thaliana}	5.004 (3.277 to 9.044)	0.0849	0.0971 (0.01 to 0.952)	0.433
BQ112211	putative protein {Arabidopsis thaliana}	1.846 (0.681 to 2.819)	0.213	0.339 (0.149 to 0.834)	0.327
BQ113949	ribosomal protein L11-like {Nicotiana tabacum}	1.173 (0.741 to 1.411)	0.666	0.49 (0.338 to 0.611)	0.416
	Ribulose bisphosphate carboxylase/oxygenase activase chloroplast				
BQ120697	precursor (RuBisCO activase) (RA).	1.938 (0.733 to 2.78)	0.369	0.11 (0.0712 to 0.129)	0.166
BQ120761	SKIP5-like protein {Lycopersicon esculentum}	1.59 (1.135 to 2.055)	0.323	0.158 (0.0204 to 0.906)	0.394
BQ509988	superoxide dismutase (EC 1.15.1.1) (Fe) - curled-leaved tobacco	1.959 (1.064 to 4.428)	0.203	0.384 (0.316 to 0.523)	0.318
	tomato fruit ripening specific URF {Lycopersicon esculentum};				
BQ121904	TC64124	0.996 (0.138 to 1.8)	0.993	0.344 (0.193 to 0.473)	0.282
BQ119177	transcription regulator SWI1 - yeast (Saccharomyces cerevisiae)	1.201 (0.01 to 3.861)	0.73	0.237 (0.183 to 0.279)	0.232
BQ516774	ubiquitin / ribosomal protein CEP52 - wood tobacco	3.039 (0.504 to 14.5)	0.561	0.425 (0.0635 to 1.37)	0.367
BQ120783	unknown {Arabidopsis thaliana}; TC65789	1.695 (0.522 to 2.387)	0.277	0.159 (0.108 to 0.208)	0.19
			19-10-10	0.0566 (0.0313 to	
BQ516804	unknown {Arabidopsis thaliana}; TC66030	10.33 (0.573 to 175.4)	0.539	0.0905)	0.134
BQ511175	unknown {Zea mays}	1.715 (0.951 to 2.99)	0.278	0.487 (0.46 to 0.549)	0.422
-			undefin		
BQ111999	unknown protein {Arabidopsis thaliana}	3.61 (2.052 to 5.168)	ed	0.229 (0.0567 to 0.796)	0.241
BQ113829	unknown protein {Arabidopsis thaliana}	1.649 (1.246 to 2.164)	0.174	0.317 (0.283 to 0.364)	0.3
BQ115182	unknown protein {Arabidopsis thaliana}	1.387 (0.66 to 3.629)	0.536	0.282 (0.164 to 0.452)	0.254
		1.658 (0.0158 to			
BQ518392	unknown protein {Arabidopsis thaliana}	5.548)	0.665	0.295 (0.102 to 0.761)	0.283
BQ519173	unknown protein {Arabidopsis thaliana}	2.586 (0.177 to 15.22)	0.649	0.308 (0.249 to 0.437)	0.278
	Uroporphyrinogen decarboxylase chloroplast precursor (EC				
BQ113938	4.1.1.37) (UPD). [Common tobacco]	1.94 (0.392 to 4.484)	0.275	0.382 (0.292 to 0.516)	0.343

APPENDIX II

HPLC data are provided in this appendix for *Nicotiana benthamiana* plants transfected with various constructs, as compared to wild type controls. HPLC data show a reduction in the total measured carotenoids (nmol/g) of a GFP-transfected *N*. *benthamiana* plant compared to that of non-infected plants. An atypical result shows the accumulation of zeaxanthin in *crtB*-transfected plants at 12 and 14-days post-inoculation.

TMV Vector	Neoxanthin	Violaxanthin	Anther- axanthin	Lutein	Zeaxanthin	chlb	chla	be-car	bb-car	Total chlorophylls	Total Carotenoids	Chlorophyl to Carotenoid Ratio
	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	nmol/g	
crtB 4 dpi	58.4	59.2	0.32	108.6	0	456.5	1383.6	4.7	97.3	1840.1	328.6	5.6
crtB 6 dpi	38.6	46.3	3.7	110.2	0	251.9	729.7	4.3	91.7	981.6	294.9	3.3
crtB 8 dpi	24.7	30.4	3	72.8	0	168.6	484.2	9.3	45.9	652.8	186.2	3.5
crtB10 dpi	11.8	17.5	0.94	57	0	73.8	181.3	8.1	61.3	255.2	156.8	1.6
crtB12 dpi	11.9	18.7	2.2	32.6	0.9	73.4	224.7	4.6	24.5	298	95.4	3.1
crtB14 dpi	19.1	18.4	2	62.1	0.3	104	287.6	7.15	41.1	391.6	150.2	2.6
pds a/s 7 dpi	58.4	62.8	2.4	99.1	0	337.5	1045.7	5.16	19.1	1383.2	246.8	5.6
ADP ribosylation factor-1 a/s	34.6	37	1.6	64.4	0	211.8	692.7	12.1	55	904.4	204.7	4.4
GFP over- expression	55	60.2	2	96	0	346.7	987.9	15.6	69.2	1334.5	298.1	4.5
		Mary I Have	-30 Stan 181	H. H.						hard the "	1 H	A REAL
Wild Type 'A'		68.2	0.78	121.1	0	429.6	1347.3	27.2	162	1776.9	430.9	4.1
Wild Type 'B'	47.4	53.6	14.2	87.4	0	312.2	972.8	18.2	99.9	1285	320.8	4

Carotenoid and chlorophyll compositions of virally-transfected Nicotiana benthamiana