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Abstract 

 

Forcing mechanisms of water circulation over a shore-attached, 400 m wide, fringing reef 

at Ipan, Guam with a deep (30 m), narrow (30 m) cross-reef channel are examined using current 

and bottom pressure measurements and a numerical model. The reef flat is shallow (0.5 m) and 

mostly exposed at low tide. During a 6-week deployment, the reef experienced moderate onshore 

winds, with an average magnitude of 2 m/s. The significant wave height measured on the fore 

reef ranged from 0.5 m to 2.2 m at the peak of a remotely generated wave event. Hourly mean 

currents on the reef flat during mid and high tides (~0.2 m/s) are directed towards the reef 

channel in the alongshore direction, independent of wave and wind conditions. Maximum current 

speeds on the reef flat reach 0.58 m/s during the wave event measured in this study. The channel 

flow, which is depth intensified, is always directed offshore, reaching a depth-averaged 

maximum of 0.72 m/s during the peak of the wave event measured in this study. Low frequency 

modulation of the alongshore current on the reef is significantly correlated with the alongshore 

sea surface height gradient. The wind stress does not play a significant role in forcing the 

circulation. Circulation over the reef appears to be primarily forced by wave-driven setup, 

modulated by the tide, which creates a sea surface height gradient between the reef flat and 

channel, where waves do not break and setup is low. The presence of the channel affects reef flat 

circulation as far away as two kilometers, a significant distance given the size of the channel and 

the fact that this reef lacks a back lagoon.  

The numerical model suite Delft3D was used to simulate waves and circulation over the 

reef for comparison with the field observations. Observed tide, wind, and wave conditions for 

two weeks surrounding the main wave event are used to specify model boundary conditions. 

Model runs confirm that wind and tidal forcing results in weak flows that do not reproduce the 

circulation patterns observed on the reef. Runs that include waves replicate the observations 

made on the reef relatively well. The low frequency variability caused by changing significant 

wave height is captured well in the model output. The model does a poorer job replicating high 

frequency variability caused by tidal modulation, however. Overall, our results from both the 

model and observations support the hypothesis that the alongshore current on the reef flat is 

forced primarily by the alongshore-varying wave-driven setup between the reef flat and channel. 
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1. Introduction 
 

 Fringing and barrier reefs are common morphological features on many tropical 

coastlines. Typical geometry of these reefs consists of a sloping fore-reef where waves break in a 

narrow surf zone, which transitions to a shallow reef flat inshore of the surf zone. This reef flat 

often gives way to a back lagoon, which can vary in size and shape. The lagoon empties into one 

or more deep channels that cut through the reef flat, allowing water exchange between the lagoon 

and open ocean. Fringing reef currents are widely recognized to be significant for the transport of 

sediment, larvae, and nutrients on a variety of spatial scales, all of which can play an important 

role in the reef ecosystem [Hearn et al., 2001; Kraines et al., 1998; Presto et al., 2006]. The 

diversity and abundance of coral and fish species make fringing reefs and their lagoons important 

sites for fisherfolk and tourists alike. Strong currents over the reef and through the channels can 

be dangerous, however, and in Guam have resulted in a large number of drownings on the 

fringing reefs there [Lucas and Lincoln, 2010].  

 Reef circulation can be forced by wind [e.g. Symonds et al., 2011], waves, tides [e.g. 

Angwenyi and Rydberg, 2005; Taebi et al., 2011], and buoyancy effects [e.g. Hench et al., 2008]. 

The relative importance of these forcing mechanisms varies depending on a number of factors, 

but depth-limited wave breaking is generally recognized as the most important forcing 

mechanism for fringing reef circulation [Hench et al., 2008; Lowe et al., 2009b; Monismith, 

2007; Taebi et al., 2011]. The depth-averaged, steady momentum and mass balance in the cross-

shore (x) direction for wave driven flow over shallow reefs is given by 

 
 

where the total water depth is hr = (h + !), ! is the sea surface elevation, h is the mean water 

depth, ui is the water velocity vector, and " is the water density.  Advection of momentum and 

rotation are neglected. The mean (wave-averaged) bed stress and the surface wind stress are 

represented by !B
j   and !S

j, respectively. Invoking a quadratic friction law for the bed stress gives 

!B
j  = Cr|u|uj, where Cr is a dimensionless drag coefficient. The value of Cr is typically determined 
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from observations [Monismith, 2007].  The surface wind stress is given by !S
j  = ("a Cw|uw|uw

j)/", 

where uw
j is the wind velocity vector, the wind drag coefficient Cw = 1.3 x 10-3, and air density "a 

= 1.2 kg m-3. Sij  is the radiation stress tensor. The cross-shore component of radiation stress, S11 

is given by  

 
where k is the wavenumber, and the wave energy density, Ew = 1/8"gH2, is computed from the 

wave height, H. Strong cross-shore gradients in radiation stress are generated in the surf zone 

due to the breaking of waves, assuming frictional losses are small. These gradients are balanced 

by a wave-driven setup, which increases with the incident wave height [Longuet-Higgins and 

Stewart, 1964].  

 Analytic solutions to these equations using the case of a wide, shallow reef flat with a steep 

fore-reef have been attempted to examine the cross-shore currents on the reef [Gourlay and 

Colleter, 2005; Hearn, 1999; Symonds et al., 1995]. These solutions consider a one-dimensional 

(1-D) reef flat with a sloping fore-reef that ends in a back lagoon where the mean water level is 

equal to that of the offshore water level. These solutions demonstrate that, assuming bottom 

friction and advection in the surf zone are not significant, the cross-shore radiation stress 

gradient generated by breaking waves creates a sea surface set-up in the surf zone, resulting in a 

pressure gradient across the reef towards the lagoon, where setup is zero. This pressure gradient 

between the surf zone and lagoon is balanced by the bottom stress term, resulting in a mean flow 

across the reef flat into the lagoon. Due to the relationship between H and S11, the magnitude of 

the current over the reef flat therefore varies positively with offshore significant wave height 

[Gourlay and Colleter, 2005; Hearn, 1999; Symonds et al., 1995]. 

 By assuming that waves do not break on the reef flat, and that wind stress is small, 

equation (1), rewritten in vector notation, can be reduced to   

 
 

This balance between the pressure gradient force and friction term describes 1-D cross shore 

flow over a reef flat into a lagoon quite well, and has been utilized at French Polynesia [Hench et 

al., 2008], Kaneohe Bay [Lowe et al., 2009b], and Ningaloo, Australia [Taebi et al., 2011] . 

Changes in the pressure gradient are caused by changes in wave setup, which is positively 
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correlated with offshore wave height.  

 Depending on the morphology of the reef, the water depth can affect the current in one of 

two competing ways. When the total water depth, hr, is relatively small, currents over the reef 

increase as hr increases due to the pressure gradient force increasing relative to the frictional 

force. It follows from this that as hr goes to zero, so will the velocity. In contrast, if hr is 

relatively large, an increase in hr will cause diminished wave breaking, therefore decreasing the 

water velocity [Hearn, 1999]. These predictions of varying current speed with local water depth 

have been observed on several fringing reefs. Kaneohe Bay has a depth-limited breaking 

condition so that at high tides, waves do not break over the reef and the current speed diminishes 

[Lowe et al., 2009b]. Ningaloo reef, a much shallower reef flat with a steeper fore-reef than 

Kaneohe, is in the opposite regime, where the current speed overall increases with local water 

depth [Taebi et al., 2011]. Typically, a linear relationship between water depth and mean current 

is observed [Lowe et al., 2009b; Taebi et al., 2011]. However, at Ningaloo, a quadratic 

relationship between tidal height and current speeds was observed, and is attributed to the 

competing influences of depth-limited wave breaking and the pressure gradient term [Taebi et 

al., 2011], a phenomenon which is also predicted in the theory [Hearn, 1999; Symonds et al., 

1995]. In most fringing reefs, variation in water level is tidally dominated, so the flow is often 

highly tidally modulated, with episodic wave events that increase setup, and therefore water 

level, over the reef, which modulates flow on a lower frequency.  

 Numerical modeling studies have be made for several fringing reefs, including Kaneohe 

Bay [Lowe et al., 2009a]  and Ningaloo [Taebi et al., 2012; Van Dongeren et al., 2013]. The 

Kaneohe Bay experiment utilized the Delft3D coupled wave and flow model to set up a 2D 

simulation of circulation within the bay [Lowe et al., 2009a]. Hindcast results from this 

experiment showed good agreement between the observations [Lowe et al., 2009b] and model 

output for both the overall circulation patterns and wave setup on the reef [Lowe et al., 2009a]. 

The most recent numerical model set up at Ningaloo utilized XBeach for both 1D and 2D 

simulations for the wave and circulation dynamics on the reef [Van Dongeren et al., 2013], and 

was able to replicate the observations described by Taebi et al. [2011] accurately [Van Dongeren 

et al., 2013]. The results from Van Dongeren et al. [2013] show some alongshore variability, and 

an alongshore component of the current, which dominates in the lagoon and towards the 

shoreward side of the reef flat. The primary focus of these two numerical models, however, as in 

their corresponding observational papers, is the cross-shore balance between gradients in setup 



!

! *+!

and the bed stress.  

 The numerical and observational studies at French Polynesia, Kaneohe Bay, and 

Ningaloo reefs illustrate the forcing mechanisms behind wave-driven circulation over fringing 

reefs. However, each of these study sites has a back lagoon, and focuses primarily on 1D cross-

shore dynamics over the shallow reef flat. In this paper, we present a different case where the 

fringing reef does not have a back lagoon; rather, the reef flat is directly attached to shore. This 

introduces a second dimension into the problem, so the force balances described previously must 

be modified. At Pago Bay, just north of the study site presented here, the importance of 2D 

dynamics is apparent with the measurement of both alongshore and cross-shore flows were 

measured using dye experiments [Marsh, 1982]. Alongshore flows have also been measured 

using dye at Kapaa reef, on the island of Kaua’i in the Hawaiian Islands, and were hypothesized 

to be primarily wave driven [Inman et al., 1963; Kohn and Helfrich, 1957]. Kapaa reef, like Pago 

Bay and the Ipan reef discussed here, is a shallow, shore-attached fringing reef with a cross reef 

channel. Here, we are able to expand on this analysis and look more quantitatively at the forces 

behind alongshore variability on these reef dynamics. 

 On a fringing reef with no back lagoon, we hypothesize the setup can vary in the 

alongshore direction between the reef flat and the channel. This alongshore gradient in sea 

surface height occurs because the channel mouth is deep enough (~30m) that waves do not break 

there. The alongshore pressure gradient term is balanced by bottom stress. 

 
We hypothesize that this is the primary force balance that drives flow on the reef flat. Because 

there is no back lagoon, a pressure gradient in the cross-shore direction is not expected to be a 

major factor in the force balance on the reef. Although cross shore gradients in momentum stress 

tensor can drive alongshore currents in the surf zone [Feddersen et al., 1998; Longuet-Higgins, 

1970], here the surf zone is narrow and these gradients are likely not an important part of the 

force balance on the reef flat. Finally, we will show that the surface wind stress is small, and can 

be ignored in the momentum balance.  

 Figure 1 shows a simplified schematic of the hypothesized circulation over a shore-

attached fringing reef. Breaking waves over the fore reef create a gradient in cross-shore 

radiation stress, which is balanced by wave setup that varies little in the cross-shore direction. 

Instead, the setup varies alongshore towards a deep channel. The balance of the pressure gradient 
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force and bottom stress drives alongshore current over the reef flat and into the channel, where 

the flux is balanced by a return flow to sea.  

 In this study, both observational and numerical techniques are utilized to examine the 

dynamics of the circulation of a shallow reef flat at Ipan, Guam. We first present the study site, 

and outline the observational techniques that we employed at the site. The numerical model is 

discussed, including a description of the basic governing equations of the model, in addition to 

the domain and boundary conditions used. The results section of this paper is divided into two 

parts-observational experiments and numerical experiments. In the observational experiments 

results, the current and pressure data in the context of wave driven currents are discussed. The 

results of numerical simulations are then discussed in a qualitative sense in comparison to 

observations. Finally, the two portions of the experiment are synthesized in a final summary. 
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Figure 1 a) 2-D schematic of shore-attached fringing reef circulation with velocity vectors. b) 
1D alongshore section of reef circulation showing alongshore reef flat current (v), offshore 
channel current (u), setup (!), and mean reef flat depth (h). Note that the vertical scale is 
exaggerated. 

reef flat fore reefshore

channel

surf zone
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2 Methodology 
2.1 Study site 

 The reef in this study is on the southeast coast of Guam (Figure 2.1a). The northern reef 

flat (north of the reef channel) is approximately 400 m wide, and spans approximately 2 km from 

the channel to a small peninsula that separates it from another reef just to the north (Figure 2.1b). 

To the south of the channel is a reef of roughly the same dimensions. The reef flat is shallow, 

and has an average depth of approximately 0.5 m, with a tidal amplitude between 0.1 m and 0.25 

m. During low tides, much of the reef flat is exposed. The reef flat is relatively smooth, and 

composed mostly of algae covered coral, which is generally flat and featureless, but does have 

some coherent ridge-like structures, which are ~25 cm tall. Sandy areas and sea grass beds are 

interspersed amongst the coral, particularly in areas closer to shore. The reef flat directly attaches 

to the shoreline, which is mostly rocky with some areas of narrow sandy beach. The fore reef is 

steep, with a slope of ~4°, and is characterized by a rugged spur and groove topography. At the 

reef rim, in the surf zone, the reef is slightly shallower than the reef flat, about 0.3 m, and is also 

very rugged, with both protruding rocks and deep holes in the surf zone. The channel is 

approximately 400 m long, spanning the entire distance between the surf zone and shore. At its 

deepest point, the channel is 30 m deep. It is roughly wedge shaped, ending in very shallow 

water near shore. The channel has a sandy bottom and very steep sides, which can overhang and 

occasionally collapse, resulting in the deposition of scattered large boulders. The channel is a 

drowned river, and the Togcha River continues to flow into it today. The Togcha river drains a 

small watershed (5.72 km2), and is bordered by a much larger watershed, the Ylig watershed, 

which drains a large amount of the rainfall in the area [Luo and Khosrowpanah, 2012]. 

 

2.2 Instrumentation 

 Between August 2005 and February 2012, bottom-mounted pressure sensors (Seabird 

SBE26plus) and acoustic velocimeters with pressure sensors (Nortek Aquadopp and AWAC) 

were deployed in numerous sampling configurations across the reef flat, fore reef, and in the 

channel. This study focused on the time period from December 2011 to February 2012, when 

sensors were deployed in both a cross-shore and alongshore array, including an acoustic 

velocimeter (Nortek AWAC) in the reef channel. Sampling was conducted in either 1 Hz bursts 
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over one depth cell, or as 2-minute averages with an average interval of 1 minute over a number 

of depth cells. Full detail regarding sampling schemes is found in Table 1. The study site and 

sensor locations are shown in Figure 2.1b.  

 Velocity on the reef flat was measured using the acoustic velocimeters. Velocity 

measurements taken when the water level dropped below the blanking distance for the 

instrument are removed from the dataset according to a pressure threshold and an acoustic 

backscatter threshold. The pressure threshold was set to when the reef flat water level was less 

than 0.45 m. Offshore wave height is calculated from bottom pressure measurements at sensor 7 

at a depth of 8.3 m, where four times the standard deviation of the bottom pressure over a 3-hour 

burst with 1 Hz resolution is equal to the significant wave height, Hs, on the fore reef. Wave 

breaking inshore of sensor 7 reduces Hs by an order of magnitude [Vetter et al., 2010], and the 

location of this wave breaking is consistent except for the largest of wave events occurring 

during typhoons [Péquignet et al., 2011; Vetter et al., 2010]. Wave direction is calculated from 

velocity component measurements at this location-again over 3 hour bursts with 1 Hz resolution. 

To calculate wave period, T, an energy density spectral analysis was done on each 1 Hz pressure 

burst from sensor 7. The frequency with the maximum energy density was used to calculate the 

dominant wave period. Local velocity is depth averaged unless otherwise noted, and block 

averaged over periods of 1 hr. Local water level, hr, is calculated from 1 hr block averages of 

local pressure, and converted to meters. Tidal analysis is done using the t_tide toolbox for 

MATLAB [Pawlowicz et al., 2002]. Meteorological data are taken from the National 

Oceanographic and Atmospheric Administration (NOAA) weather station at Pago Bay, located 

approximately 3 km north of the channel. All wind and water velocity data follow the North/East 

positive convention for the u and v components, respectively. Wave direction is measured with 

0° corresponding to waves traveling from the north. 

 

2.3 Setup Calculations  

 Wave setup, !, is computed by referencing the water level on the reef flat to the water level 

measured on the fore reef at a depth of 8.5 m (sensor 7, Figure 2.1b). De-trended (overall mean 

removed) pressure on the fore reef (sensor 7) is subtracted from de-trended pressure on the reef 

flat, and linearly regressed against the incident wave height so that with no waves, setup equals 

zero. There is a small amount of set-down (< 0.1 m for waves less than 3 m) on the fore reef 

[Vetter et al., 2010], which we do not include in our calculations. This will introduce a small 
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amount of error into calculations of setup on the reef, but since our primary focus in this paper is 

on alongshore variation in water level, excluding set down from our calculations will not 

significantly alter the results. Similarly, alongshore sea surface height gradients, d!/dy, are 

computed by subtracting the de-trended water level closest to the channel (Sensor 5, Figure 2.1b) 

from the de-trended water level on the northern end of the reef (Sensor 2, Figure 2.1b) and 

linearly regressing the difference against incident wave height, H. Because both of these sensors 

are on the reef flat as opposed to the fore-reef, the previous error regarding set down is not a 

factor here. Clock drift between the two sensors is less than 10 seconds, and is not thought to be 

a significant source of error in setup calculations. 

 

2.4 Numerical Model 

A numerical model of the Ipan, Guam reef area was set up to gain additional insight into 

the observational results. The model was developed utilizing Delft3D, a finite-difference 

hydrodynamic model, coupled to SWAN, a third-generation wave model. A similar approach 

was used by Lowe et al. [2009a]. Delft3D FLOW uses the horizontal momentum equations 

 

 

 

 

 

where Fx and Fy are horizontal Reynold’s stresses and Mx and My are contributions of external 

sources or sinks of momentum, in this case from wave stresses. A full explanation of the 

development and validation of the Delft3D model and its equations can be found in G R Lesser 

et al. [2004]. The wave stress is expressed by 

 

 

This formulation represents wave forcing due to breaking, where M is the forcing due to 

radiation stress gradients, D is the dissipation due to wave breaking, # is the angular wave 

frequency, and k is the wavenumber [G R Lesser et al., 2004]. 

 The SWAN model incorporates several different processes, including wave propagation, 

refraction, wind generation, dissipation, and non-linear wave-wave interactions. The dissipation 

term consists of contributions from white capping, bottom friction, and depth-induced breaking 
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[Booij et al., 1999].The Battjes and Janssen [1978] model is used to express the energy 

dissipation rate for wave breaking, where  

 

 

 

Here, Qb is the fraction of wave breaking, $ is the mean frequency, % = 1, and Hmax is the 

maximum wave height that can exist at a certain depth. Hmax = &h, where & is the breaking 

parameter and h is the local water depth. Values of the breaking parameter & have been found to 

range between 0.55 to 1.33, with higher values corresponding to steep slopes [Nelson, 1987; 

1994; 1997]. For this experiment, we used a value of & = 1.28, based on observational data from 

Vetter et al. [2010]. Although this is much higher than the default value of 0.73 used in the 

model, the fore-reef at Ipan is very steep, so our value of 1.28 is reasonable [Booij et al., 1999; 

Nelson, 1987; 1994; 1997]. 

The coupled model was developed over a two-dimensional Cartesian grid with a 

resolution of 25 m. The model domain is shown in Figure 2.2 and covers a spatial extent of 

approximately 4x3 km. The model domain bathymetry is based on a high-resolution aerial 

LIDAR survey of the area [Chamberlin, 2008]. The bathymetry was adjusted up 0.4 m to match 

water level observations during the time of the experiment. The model was run using a time step 

of 1 min over a period of approximately 2 weeks for both the wave and flow modules. The flow 

module communicated with the wave module every hour, and results were stored every hour. 

Wave forcing was done using a JONSWAP type spectrum with a peak enhancement factor of 3.3 

and a cosine power directional spreading scheme for wave direction. 

FLOW and SWAN were computed on the same grid. SWAN utilized the FLOW module 

output of water level, currents, bathymetry, and wind after each communication between 

modules. Water level and wave forcing were incorporated into the FLOW and SWAN modules, 

respectively, along the seaward boundary of the domain. Uniform wind forcing based on 

observations from the NOAA Pago Bay weather station was also incorporated across the entire 

domain in the FLOW module. Figure 2.3 shows the detailed forcing conditions. The conditions 

used in the model replicate conditions experienced during the deployment described in the 

observations portion of this paper.  

To compare our observations with the model output, we select the grid cell in the domain 

that is closest to the actual location of the sensor in question. More details on the sensor types, 
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sampling schemes, and locations can be found in the observations methods section of this paper. 

The model was tested using spatially uniform roughness coefficients, Cr, ranging from 0.002 to 

0.025. To test how well the model replicated observations, the root mean square error (RMSE) 

was calculated between the model and the observations for the alongshore pressure gradient and 

the channel velocity. Correlation coefficients were also calculated between the observed and 

modeled channel velocities and alongshore pressure gradients. 
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Figure 2.1 a. Map of Guam showing study 
site location b. Study site bathymetry and 
sensor locations. Contours are plotted at 5 m 
intervals. Bold contour is 0 m.  
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Instrument Aquadopp SBE26plus AWAC 

Location 
(Depth) 

1 (0.4m), 3 
(0.4m), 4 (0.4m) 

7 (8.3m) 2 (0.5m), 5 
(0.7m) 

6 (19.8 m) 

Velocity Profile 20 cm blanking 
distance with 10, 
10 cm cells 

50 cm 
blanking 
distance with 
1, 1 m cell 

-- 40 cm blanking 
distance with 20, 1 m 
cells 

Sampling 
Scheme 

1 Hz sampling for 
60 s every 120 s 

1 Hz sampling 
for 2.5 hrs 
every 3 hrs 

1 Hz sampling, 
continuous 

Hz sampling for 60 s 
every 120 s 

 

Table 1 Instrument sampling setups for sensors shown in Figure 2.1b. 
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Figure 2.2 Computational grid used in the Delft3D model. Depth scaling is cut-off at 50m. 
White contours are plotted every 50m. 
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Figure 2.3 Forcing conditions for the Delft3D model run. From top to bottom, significant wave 
height (H), wave period (T), wave direction, tidal height, and wind velocity. 
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3. Observations 
3.1 Waves, currents, and water level 

 General conditions during the deployment were typical for this region and are shown in 

Figure 3.1. During the deployment, the area experienced moderate, relatively short period (~10 s) 

swell with an average significant wave height of around 1 m. Around January 7, a moderate 

swell event began, with the largest significant wave height reaching just over 2 m at its peak on 

January 11. The wave direction is predominately from the East, owing to the fact that the 

majority of swell that reaches Guam is trade-wind swell. Moderate and consistent trade winds 

blew at around 2 m/s from the east/northeast for the entire deployment. A mixed diurnal- 

semidiurnal tide was observed with a range around 0.5 m, and three spring-neap cycles were 

captured in the dataset. Satellite altimetry data did not show significant eddy activity in the 

Guam vicinity during the deployment period. The altimeter products were produced 

by Ssalto/Duacs and distributed by Aviso, with support from Cnes 

(http://www.aviso.oceanobs.com/duacs/). 

 Mean currents over the reef are predominantly south/southwest, towards the reef channel 

(Figure 3.2). Measurements from the two northern ADCPs (sensors 1 and 3) show a slightly 

stronger onshore component of the flow, while the flow at sensor 4 is predominately alongshore. 

Depth and time averaged currents for the length of the deployment (6 weeks) over the reef are 

~0.25 m/s. At low tides, measurements on the reef flat are not reliable because the sensor head is 

often in water less than 20 cm, the blanking distance of the instrument. During the early January 

wave event, water velocity at sensor 4 was consistently around 0.45 m/s, with a maximum value 

of 0.58 m/s. Velocity profiles of currents over the reef show a roughly uniform flow with depth 

outside of the sensor blanking distance (Figure 3.3.a). On the fore reef, hourly averaged currents 

are weak, on the order of 0.01 m/s. The depth averaged, time averaged reef channel current is 

0.15 m/s (Figure 3.2), however, velocity in the channel is zero or close to zero at low tides. 

During mid and high tides, velocities in the channel are around 0.4 m/s. During the wave event, 

the maximum depth averaged channel velocity was 0.74 m/s. The measured channel velocities 

are always offshore, and never reverse to an onshore direction. Even during strong wave events, 

velocity profiles for the reef channel show a bottom-intensified flow (Figure 3.3.b). The 

difference between the near surface and near bottom flow in the channel ranges from 0 m/s to 0.2 
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m/s. The depth intensification is consistent with diver observations during deployment and 

recovery of the channel instrument.  

 Wave setup at over the reef in the cross-shore direction, measured at sensor 2, is 

significantly correlated with the offshore significant wave height (r = 0.85) with a regression 

coefficient of 0.39. These results are comparable to those described in Vetter et al [2010], who 

use similar methods as those described here. Vetter et al [2010] found a stronger correlation of 

setup with incident wave height, but their observation period had larger wave events relative to 

the observation period in this study. Here, very little change in setup across the reef flat is 

observed between sensors 1 and 2, which agrees with the Vetter et al [2010] analysis of setup 

difference in a cross-shore line of sensors located near sensor 4. 

Although wave-generated setup does not appear to vary in the cross-shore direction, sea 

surface height decreases in the alongshore direction moving towards the channel. The mean 

difference in sea level between sensor 2 and the channel is 0.2 m, but during the large wave 

event this increased to a maximum of 0.71 m. The alongshore sea surface height difference (d!) 

between the reef flat and the channel is also positively significantly correlated with wave height 

(Figure 3.4, r = 0.65). The wave generated cross-shore setup and alongshore d! show a very 

strong positive correlation (r = 0.93). Alongshore d! is also related to the tidal height, the highest 

values of d! occur during low tides (Figure 3.4). This result is similar to results from analysis of 

wave driven setup and significant wave height, and agrees with results that indicate waves on the 

reef break more efficiently in shallower water [Vetter et al., 2010].  

 

3.2 Current forcing mechanisms 

As mentioned previously, reef circulation can be forced by wind [e.g. Symonds et al., 

2011], waves [Hench et al., 2008; Lowe et al., 2009b; Taebi et al., 2011], and tides [e.g. Taebi et 

al., 2011]. The hypothesized primary force balance is that of equation (5). The alongshore 

pressure gradient term is balanced by the bottom stress term which results in an alongshore 

current towards the reef channel. To test this hypothesis, |u|v at sensors 3 and 4 was plotted 

against g(!+h)d!/dy, where ! + h is the local water depth, and d!/dy is estimated by taking the 

difference between the de-trended pressure data at sensor 2 and sensor 5 divided by 2000 m, or 

the approximate distance between those two sensors (Figure 3.5). For the reasons discussed in 

the methods section of this paper, data at low tides (mean water level below 0.45 m) were 
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removed from the dataset for this analysis. The correlations between the alongshore bed stress 

and pressure gradient were significant, with r3 = 0.70 and r4 = 0.79 (Figure 3.5).  

To determine an approximate friction coefficient, Cr, in this balance, a linear orthogonal 

regression is used since there is error associated with the variables on both axes. This regression 

finds the coefficients in the form Y = aX + b so that sum of the squared distances between the 

line and data points [Xi  Yi] is minimized. Using this model, the slope of the regression line is the 

friction coefficient. The friction coefficients calculated by this method for these sensors are Cr3  = 

0.0035 ± 0.0002, Cr4  = 0.0054 ± 0.0002 (Figure 3.5). 

Possible wind forcing of the alongshore current was analyzed by calculating the surface 

wind stress term as in equation (1), but in the alongshore direction, and compared it to the value 

of the alongshore bed stress, as in equation (5). Wind velocities during the deployment were 

typically about 2 m/s from the northeast (Figure 3.1e). Compared to the values of the bed stress 

and the pressure gradient terms, the surface wind stress is negligible (Figure 3.6).  

Tides can influence currents on the reef flat either by generating currents via the ebb-

flood movement of the tides, or by tidal modulation of the wave-driven currents [Hearn, 1999; 

Symonds et al., 1995; Taebi et al., 2011]. Because these processes occur at similar frequencies, 

however, it can be difficult to distinguish between the two when performing time series analysis. 

Taebi et al [2011] were able to distinguish these two modes using an EOF analysis. The reef flat 

at Guam, however, is so shallow that it becomes nearly dry at low tide, resulting in a lack of data 

on the reef flat during low tides due to instruments being out of the water. Because of this, the 

effect of the tides on the currents could not be distinguished between a possible ebb-flood 

forcing mechanism and modulation of the existing currents. 

 

3.3 Observations Discussion 

3.3.1 Wave-driven Currents 

During this deployment, winds were moderate and blowing from the northeast (Figure 

3.1e), in approximately the same direction as the prevailing currents. Data from previous 

deployments (not shown) with winds that were either lighter, or from a different direction, still 

show currents significantly correlated with wave height and primarily in the alongshore 

direction. Additionally, previous deployments on this reef contain data from sensors placed south 

of the reef channel. The currents at these sensors are primarily in the alongshore direction, but 

moving northward towards the channel, and do not reverse. This direction is against that of the 
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prevailing winds in the area. Based on these two observations, and the analysis of the momentum 

equation terms for this experiment, it seems unlikely that wind is a major forcing mechanism for 

the circulation on the reef flat. 

At low tides on the reef at Ipan, there is little to no water on the reef, so the data in this 

experiment does not include dynamics at low tides. Complete analysis on tidal motion, therefore, 

is impossible. However, the consistency of the direction of the currents, alongshore towards the 

channel on the reef and seaward in the channel, supports the hypothesis that the flow is likely not 

generated by the ebb-flood movement of the tides to raise and lower the water level on the reef 

flat. Although the magnitude of the current changes with the tide, the mean currents are strong, 

and consistent in their direction (Figure 3.6). Because the amount of water needed to change tidal 

elevation over the reef is small, since the reef is so shallow, currents generated due to an ebb-

flood mechanism are likely also small. The primary influence on the tides for the reef circulation 

instead probably lies only in the modulation of reef currents.  

 Alongshore currents can also be driven by cross-shore gradients in the alongshore 

momentum stress tensor component Sxy [Feddersen et al., 1998; Longuet-Higgins, 1970; 

Longuet-Higgins and Stewart, 1964]. At the Ipan reef, the surf zone is very narrow on the edge 

of the reef flat, and is consistently in the same location [Péquignet et al., 2011]. Since the 

balance of alongshore currents with gradients in Sxy is generally only relevant in the surf zone 

[Feddersen et al., 1998; Longuet-Higgins, 1970], alongshore momentum stress gradients are 

likely not important for the overall circulation on the reef, although they could play a small role 

in driving alongshore currents near and in the surf zone. 

 The correlations of the reef flat currents with both wave height and the alongshore 

pressure gradient, combined with our observations regarding the wind, tides, and alongshore 

momentum stress, support the hypothesis that the circulation on the reef is primarily wave driven 

and tidally modulated. The force balance on the reef in the alongshore direction is primarily 

between the alongshore pressure gradient term, g(!+h)d!/dy, and the friction term Cr|u|v, where 

Cr is the quadratic friction coefficient. This alongshore pressure gradient arises from wave-

generated set up on the reef flat. The wave-driven setup is generated by the balance of cross-

shore gradients in radiation stress in the surf zone. The difference between the setup on the reef 

flat and the channel, where waves do not break and setup is minimal, creates the alongshore 

pressure gradient. This alongshore pressure gradient balances the bed stress, thus generating a 

wave-driven flow in the alongshore direction. 
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Our data support the hypothesis that the dominant balance on the reef flat is between the 

alongshore bed stress and alongshore pressure gradient (Figure 3.5). The strongest correlation (r 

= 0.79) between these two terms is at sensor 4, which is closest to the channel and has the 

strongest alongshore current. Data from the northern reef flat sensor, sensor 1, where the 

alongshore current is not significantly correlated with the alongshore pressure gradient (r = 0.06), 

is not shown. Sensor 1 is furthest away from the channel and has a much weaker alongshore 

component of the current than sensors 3 and 4, which are closer to the channel. This decrease in 

the alongshore current speed is not surprising. Close to the channel, the transport of a cross-shore 

section of reef must match the wave-driven transport of water over the length of the surf-zone 

between that cross-shore section and the northern peninsula, assuming zero seaward transport in 

the surf zone. A cross-shore section of reef further from the channel is approximately the same 

area, but its transport must match the wave-driven flux over a smaller length of surf zone. 

Therefore, the velocity over a given cross-shore width of reef will decrease moving away from 

the channel. Because of the alongshore momentum balance, the local d!/dy will decrease as well 

(Figure 1).  

Based on this, clearly the most appropriate analysis would be to compare the alongshore 

currents with the local alongshore pressure gradient, as opposed to the overall alongshore 

pressure gradient. A brief comparison of the alongshore bed stress at sensor 1 to the alongshore 

pressure gradient between sensors 1 and 3 (Figure 2.1b) does give a higher correlation 

coefficient, r1 = 0.32, but this is still nowhere near the strength of the correlations that were 

observed at sensors 3 and 4. Correlating total current magnitude at sensor 1 with the overall 

alongshore pressure gradient gives a correlation coefficient of r1 = 0.42, a marked improvement 

over the correlation with just the alongshore component of the current (rr = 0.06). This result 

indicates that at the northern end of the reef, the cross-shore force balance is as or more 

important than the alongshore force balance. The cross-shore pressure gradient would be 

expected to vary in a similar manner to the alongshore pressure gradient, explaining why the 

total magnitude of the current at sensor 1 is significantly correlated with the alongshore pressure 

gradient. 

Unfortunately, this hypothesis cannot be confirmed by the data. A cross-shore pressure 

gradient was not detected between sensors 1 and 2. Using the balance in equation (4), with a 

friction coefficient of 0.006 and a cross shore length scale of 350 m, it is possible to estimate the 

cross-shore sea surface height difference needed to drive a given current speed. To drive a flow 
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of 0.2 m/s, the sea surface height difference only needs to be 1.7 cm. It is possible, then, that a 

cross-shore pressure gradient does exist, but is too small for the sensors used in this study to 

measure accurately. Although this is still a likely explanation for the currents in the cross-shore 

direction at this location, the alongshore dynamics are still unclear. The currents here are clearly 

still influenced by the channel, since they are always flowing towards it, but there must be other 

physics, possibly related to the complicated bathymetry surrounding the peninsula, that affect the 

flow there. 

 

3.3.2 Friction on the reef 

 An orthogonal linear regression between the alongshore pressure gradient and the 

quadratic friction term at sensors 3 and 4 (Figure 3.5) gives an average friction coefficient of 

0.0045. This friction coefficient is an order of magnitude lower than the friction coefficient 

described in Kaneohe Bay, Cr = 0.02 [Hearn, 1999; Lowe et al., 2009b], and two orders of 

magnitude lower than the canonical value for a coral reef of 0.1 [Hearn, 1999]. Measurements of 

Cr on sandy beaches yield a variety of estimates ranging from 0.018-0.003 [Apotsos et al., 2007; 

Feddersen et al., 1998; Garcez Faria et al., 1998]. The canonical value of the friction coefficient 

for a sandy bottom is 0.002 [Hearn, 1999]. Our average value of Cr is 0.0045, clearly falling 

within the range of values for a sandy beach, as opposed to a coral reef. This is surprising given 

the coral substrate of our study site. 

This low friction coefficient indicates that the reef currents observed here are stronger 

than what would be expected based on previous studies on wave driven currents on reef-flats 

[Hench et al., 2008; Lowe et al., 2009b; Taebi et al., 2011]. The most obvious explanation for 

why the friction coefficient is so much lower on the reef flat in Guam than at other fringing reefs 

is the difference between reef rugosity at these locations. As noted previously, although the fore-

reef at Guam has live coral with a rugged spur and groove structure, the reef flat is primarily 

composed of algae covered dead coral. It is relatively flat and featureless, with only small ridges 

crossing the reef flat. This featureless reef likely reduces the drag coefficient, as coral heads and 

other coral structure increase friction on reef flats [Monismith, 2007]. Another possible 

explanation for the low friction coefficient is the use of a linear approximation for the alongshore 

pressure gradient. For the reasons discussed in section 3.2.1, a linear approximation of the 

overall pressure gradient likely overestimates the local pressure gradient, which is what drives 
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the local currents on the reef. This introduces a possible error into the analysis shown in Figure 

3.5 that gives the value of the friction coefficient.  

 

3.3.3 Water Level Effects 

 The importance of water level on the reef to both velocity and wave-driven setup has 

already been mentioned, and examined more extensively in previous work at this site [Vetter et 

al., 2010], but here we examine these water level effects in the context of alongshore variability. 

Laboratory experiments and field results indicate that as the mean water level over a shallow reef 

decreases, wave setup will increase due to the relationship of breaking efficiency with depth 

[Gourlay, 1996; Vetter et al., 2010]. Water level on the reef also affects transport, with transport 

decreasing as water level decreases [Gourlay, 1996]. This is especially important on this reef, 

since at low tides, the water level drops to near zero for most of the reef flat. 

During this study, the alongshore sea surface height difference on the reef flat, d!, 

increases as tidal height decrease and incident wave height increases (Figure 3.4), agreeing with 

the setup theory of Vetter et al. [2010]. At first glance, it would seem that this would predict an 

increase in velocity on the reef flat at low tides. However, velocities in the channel decrease at 

low tides (Figure 3.3a), indicating that transport on the reef must be lower at low tides. This 

decrease in transport can occur either because velocities are weaker, or the water level is lower. 

Looking at equation (5), although d!/dy and ! (setup) increase at low tides due to increased 

breaking efficiency, the still water depth, h, decreases. At Guam, the reef flat is so shallow that 

the still water depth on the reef goes to zero at low tides, so even though ! and d!/dy increase at 

low tide, because h drops to zero, the left side of equation (5) decreases, therefore causing the 

velocity on the reef flat to decrease. So, although the tide can affect the terms of equation (5) in 

competing ways, the importance of the still water depth, h, dominates, and the reef circulation in 

general weakens at low tides. Although constraints on the instruments ability to measure in 

shallow water do not allow us to measure these low tide velocities on the reef flat, the 

observations from the channel are consistent with this analysis of water level effects. It should 

also be noted that the reef should never get completely dry unless h+! is zero, and this will only 

occur when there are no waves at a low tide, or when the water level is so low that no setup can 

reach the reef flat. Thus although the wave driven circulation slows down at mid and low tides 

because the water level on the reef is low, in theory it will not completely shut down if there are 

waves, since there will still be some setup on the reef, unless the tide is extremely low and the 
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wave setup does not reach the reef flat. This is reflected in the channel velocities, which, 

although dropping at low tides to between 0.1 and 0.2 m/s, do not go to zero until the significant 

wave height drops below 0.5 m between 1/17 and 1/22 (Figure 3.3b). 

 

3.3.4 Channel flow structure 

 The channel flow is always to the east (offshore), and does not reverse during the 

deployment. This is not surprising, since reversal in channel flows typically occurs as part of a 

buoyancy driven water exchange with a back lagoon system [Hench et al., 2008]. This reef 

system lacks both a lagoon and sufficient freshwater input to cause buoyancy driven exchange, 

so the constant seaward direction of the current is expected. 

One perplexing aspect of the channel velocity is that it is depth intensified. This is clear 

both from the velocity profile time series (Figure 3.3b) and from diver observations during 

deployment and recovery of the channel instrument. Frictional bottom stress typically reduces 

near bed velocities, yet in this case we observe the opposite scenario. The reasons for this are 

unclear. It is possible that a diurnal cooling cycle of the water on the reef could cause enough of 

a density difference between the water on the reef and the channel to make the reef water sink as 

it enters the channel near the shore. Temperature data from the channel sensor, with the seasonal 

trend and overall mean removed, indicates that there is not a relationship between the strength of 

the bottom intensification and the temperature of the water (Figure 3.7), which shows that the 

depth intensification is probably not buoyancy driven. There does appear to be a relationship 

between the strength of the depth intensification and the significant wave height, however, with 

the most depth intensified flow occurring when waves are larger (Figure 3.7). 

A more plausible explanation for the depth-intensified flow is that convergence of the 

reef currents on both sides of the channel is strong enough to force into a depth-intensified jet. 

This depth intensification is probably due to the wedge shaped geometry of the channel, which, 

combined with a slightly onshore component of the convergence, will constrain the return flow 

out of the channel to a depth-intensified jet. Without velocity measurements near the channel, 

however, the onshore component of the convergence in the flow on the reef flat near the channel 

cannot be confirmed, unfortunately. On-site observations of foam and debris lines along the 

center of the channel, in addition to our measurements of channel bound currents on both the 

northern and southern reef flats, indicate that the channel is a site of high convergence, so this 

mechanism seems to be plausible, assuming that there is an onshore component of the 
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convergence. The correlation between the strength of the depth intensification of the channel 

current and significant wave height (Figure 3.7) supports this hypothesis, since currents will be 

stronger, leading to more intense convergence at the channel, during bigger waves. The details of 

the convergence and depth-intensification, however, are complex, and beyond the scope of this 

experiment. 

 

3.3.5 Reef streamlines 

 Field observations at the study site indicate that ridges of coralline-like material run 

approximately northeast to southwest on the reef flat, and are roughly 20 cm in height. This 

directional coral growth is clearly visible in satellite images of the study site from Google Earth 

(Figure 3.8). These lines in coral growth correspond well with the direction of measured mean 

velocities on the reef (Figure 3.2). Close to the channel, the coral growth patterns are directed in 

the alongshore direction, and turn gradually until they are nearly directly across-shore at the end 

of the reef.  

It has been suggested that corals will grow so that most of their surface area is parallel to 

mean currents, therefore reducing drag on the coral head, while still exposing the coral to 

currents that can deliver nutrients [Wainwright and Koehl, 1976]. Additionally, experiments have 

shown that morphology can vary within a single coral species depending on flow regimes [M P 

Lesser et al., 1994]. Although field observations of the coral on the reef flat at Ipan, Guam 

indicate that the coral is mostly dead and covered in algae, it seems likely that the unique flow 

environment on the reef flat, with consistent currents in the southwest direction, caused a 

preferential growth in the coral so that the coral grew parallel to the mean flow direction. It is 

also possible that the ridge-lines are the result of scouring by the currents in the rubble on the 

reef flat. With the scant amount of information we have regarding the history of the reef flat and 

the coral on it, it is difficult to draw a conclusive answer as to the origins of the ridges. 

The consistent direction of the coral ridges is a useful observation here because we have 

the unique opportunity to validate, at several different points, the legitimacy of using the coral 

ridge lines as a first order approximation for current direction. We do this simply by comparing 

the direction of the ridges with observed mean current vectors. From the results, the coral growth 

in satellite images does seem to do a surprisingly good job at predicting current direction. 

Figures from Taebi et al. [2011] that show mean current vectors superimposed on satellite 

images suggest that coralline ridges at Ningaloo also run in the same direction as the mean 
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current. Of course, this method says nothing about the current speeds, or how various factors 

such as water level and wave height control current strength. However, simply knowing the 

direction of the prevailing currents on a reef can be useful. In the future, Google Earth images at 

other reef flats around the world could be used to determine mean current direction over shallow 

reef flats by examining coralline streamline patterns.
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Figure 3.1 Deployment conditions, from top to bottom, significant wave height (H), wave period 
(T), wave direction, tidal height, and wind velocity. 
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Figure 3.2 Depth and time averaged velocity vectors and variance ellipses plotted over study site 
bathymetry (colorbar, m). 
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Figure 3.3 a. North/South velocity (m/s) profile for station 4 (positive North). Y-axis is depth 
above bottom. White areas are regions of the profile with non-viable data due to the depth cell 
being out of the water, or low scattering. b. East/West velocity (m/s) profile for station 6 
(positive East). Y-axis is depth. Average depth at this station is approximately 20m. White areas 
are non-viable data due to lack of scattering particles. 
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Figure 3.4 Alongshore sea surface height difference, d", measured between sensors 2 and 5, 
plotted against the significant wave height, H, and tidal height. 
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Figure 3.5 Linear orthogonal regression of pressure gradient term (y axis) and friction term (x 
axis), scattered with significant wave height, H. Correlation coefficients and the slope of the 
regression, or the friction coefficient Cr, are also shown. 
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Figure 3.6 Comparison of momentum equation terms as in equation (5) in the alongshore 
direction for sensors 3 and 4. 
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Figure 3.7 Scatter plot of the difference between the near bottom and near surface channel 
velocity with significant wave height and de-trended temperature. 
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Figure 3.8 Google Earth satellite photos showing reef scouring in approximately the same 
direction as flow on the reef flat for near the channel (1) and midreef (2). 
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4. Numerical Model 
4.1 Model output results 

Initial test runs of the Delft3D numerical model were done isolating possible wind 

forcing and tide forcing.  For both cases of tide forcing only and the combined tide and wind 

forcing, circulation on the reef was sluggish (<0.1 m/s). The currents weakly oscillated in the 

cross-shore direction, and there was little to no flow in the channel. 

In the numerical model experiments, five model runs were done with the friction 

coefficient varying between 0.002 and 0.025. To validate how well the model predicts the 

observed reef circulation, the Root Mean Square Error (RMSE) and correlation coefficient (R) 

was calculated for two key variables, channel velocity and alongshore pressure gradient, 

d" (Table 2). The lowest RMSE and highest R values, indicating the best fit, are for Cr values of 

0.004 and 0.006. Since there is a considerable amount of missing current data from the reef flat 

during the observations, a more qualitative comparison between the model output and 

observations must be made to determine which friction coefficient best replicates the 

observations made on the reef. The lower friction model run, Cr = 0.004, shows currents that 

reverse on nearly every low tide, which, based on observations, likely does not occur on the reef. 

Based on this, the Cr = 0.006 run was selected as the one which best replicated the observations 

results. Unless otherwise noted, further discussion will focus on this model run. 

The scale of the channel influence and its relation to the friction coefficient was 

examined in this series of model runs. The scale of influence is the estimated distance between 

the channel and the point on the reef where the currents on the reef are weak and no longer 

directed towards the channel. Figure 4.1 shows quiver plots of the depth-averaged Eulerian 

currents, at high tide and during the wave event, for Cr values of 0.025, 0.006, and 0.002. The 

apparent cross-shore divergence in Eulerian velocities at the reef crest is balanced by Lagrangian 

wave-driven flow, which also drives the onshore flow further inshore. As the friction decreases, 

the point of the reef where currents appear to not be affected by the channel moves further north, 

until for Cr = 0.002 the entire reef circulation is towards the channel. 

Depth and time averaged Eulerian currents over the model run using the forcing 

conditions in Figure 2.3 on the Ipan reef flat are directed predominately in the alongshore 

direction towards the reef channel on both the northern and southern portions of the reef flat 

(Figure 4.2). These currents increase in strength with proximity to the channel. The time 

averaged magnitude of the flow typically ranges from 0.1 m/s to 0.5 m/s, depending on exact 
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location on the reef. In the channel, currents are directed offshore. The channel is also a site of 

strong convergence of alongshore currents from the northern and southern portions of the reef 

flat (Figure 4.2). The very shallow surf zone has a mean Eulerian velocity in the offshore 

direction that results from some of the water on the reef flat flowing back off the reef due to an 

offshore gradient in wave setup. The Eulerian flow in the surf zone from the FLOW module is 

balanced by stokes drift in the surf zone, directed in the onshore direction, which is calculated in 

the WAVE module. Currents offshore of the surf zone on the fore reef are small in comparison to 

the reef flat currents.  

Although the time-averaged currents are towards the channel, there is a short period of 

time when alongshore flow for parts of the reef reverses, weakly moving away from the channel 

at ~0.1 m/s (Figure 4.5). This reversal in flow occurs during low tides during a period of low 

waves. There is no reversal in the direction of the channel current, which is always directed 

offshore. Generally, currents on the reef and in the channel decrease to near zero at low tides, 

and are stronger at high tides. 

 The model output indicates that tidal height and significant wave height both contribute 

to the water level on the reef flat. In general, the water level on the reef flat is higher during wave 

events due to the presence of setup. This wave setup is significantly correlated with wave height 

(r = 0.80). On the reef flat, there is an alongshore gradient in water level between the northern 

end of the reef and the channel (Figure 4.3, Figure 4.4). Water level gradients in the cross-shore 

direction are present in certain places on the reef, but are not as strong as the gradients in the 

alongshore direction (Figure 4.3). Just offshore of the surf-zone, there is a small region of wave 

set-down. Figure 4.3 also shows a small amount of numerical noise in the water level offshore of 

the reef, but it is not thought that this noise affects the overall model results on the reef in an 

important way. Dissipation output from the model shows highest dissipation on the eastern rim 

of the reef flat, and very low dissipation between the eastern rim and shore, indicating that all of 

the wave breaking occurs here, rather than at the shore in the western part of the domain. 

Similar to the methods used in the observation section, the force balance between the 

alongshore pressure gradient and the bed stress in the model output is examined. To do this, the 

local alongshore pressure gradient is approximated by subtracting the water level from the grid 

cell below the velocity grid cell in question from the grid cell above it. We use this 

approximation of the alongshore pressure gradient and examine the force balance between the 

pressure gradient term and the bed stress as in the observations section of this paper. The 
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correlation coefficients between the alongshore pressure gradient and alongshore velocities for 

the three grid cells closest approximating the locations of sensors 1, 3, and 4 are r1 = 0.14, r3 = 

0.89, r7 = 0.79. These results show a similar pattern to that in the observations section of this 

paper. The correlations of the two sensors nearer to the channel (sensors 3 and 4) are much 

stronger than the sensor at the northern end of the reef (sensor 1), which in this case is not even 

statistically significant. 

 

4.2 Comparison of model output and observations 

 Qualitatively, the model output represents the major features of the reef circulation 

nicely. The most obvious feature of the circulation is the direction of the time-averaged reef flat 

currents. The average currents on the reef flat are directed towards the channel both on the 

northern reef flat, which the observations section of this paper focuses on, and on the southern 

reef flat, where we have observed channel bound currents during previous deployments.  

The model output also shows a seaward current in the reef channel, similar to what our 

observations have indicated. There is also a strong convergence in the channel area of currents 

from the northern and southern reef flat. This convergence was predicted in the observations 

section of this paper based on our measurements of currents on the northern and southern reef, 

and based on observations of foam and debris lines in the channel during deployments. This 

agreement supports the theory that the bottom intensified channel current is caused by this 

convergence in the channel area. Actual depth intensification of the channel current could not be 

replicated in the model, however, since the model runs were all done as single layer, depth-

averaged runs. 

A comparison of the current magnitude time-series from the model output and 

observations shows that there is relatively good agreement between the two (Figure 4.5). The 

current time-series in the channel is replicated particularly well (Table 2). The low frequency 

variability, caused by variation in the significant wave height, which was discussed in the 

observations portion of this paper, is shown in the model output, with stronger currents occurring 

during the peak of the wave event. The high frequency variability, dictated largely by tidal 

elevation, is also reflected nicely in the model output. Channel current velocities drop to near 

zero at low tides as transport on the reef decreases, and water no longer flows into the channel. 

 The time-series of currents on the reef flat in the model output are not as similar to the 

observations as in the channel, but the results are still good overall. The low frequency 
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variability in the alongshore velocity at sensors 3 and 4 is accurately shown in the model, with 

stronger currents occurring during the wave event which peaked around January 11, and weaker 

currents during the period of low waves around January 20 (Figure 4.5). 

 When the significant wave height and the tide is low, the model output shows a 

northward alongshore current at sensors 3 and 4. During the deployment, the water was not deep 

enough to get an accurate measurement of the current velocity, so a comparison cannot be made 

between the model output and observations. The reversed current in the model output, however, 

is weak enough and occurs infrequently enough, in both a spatial and temporal sense, that it 

likely does not represent an important part of the dynamics of the system.  

The model output does not agree as well with the reef flat (sensors 3 and 4) observations 

with respect to high frequency variability. Although it is difficult to get a good sense of the high 

frequency variability on the reef flat for this time period due to the lack of data at low tides, some 

observations can be made. In the case of sensor 3, the model shows current speeds that drop at 

low tide, yet observations, where they exist, seem to show the opposite, with current speeds 

increasing at low tide. It is possible that sensor 3 happened to be placed in a small divot in the 

reef, which, when surrounded by drier reef at low tide, could have been the site of a small jet, 

where water velocities increased as the tide got lower, until that portion of the reef also went dry. 

The resolution of the model does not allow for such small-scale features to be represented, so 

this jet is not reflected in the model output. Data at the other reef sensor, sensor 3, is too sparse to 

gain any information about the high frequency variability. 

 The model output agreed very well with observations of the alongshore difference, d", in 

sea surface height on the reef flat (Table 2). Figure 4.6 shows a comparison of the model output 

and observations of the alongshore d" measured between sensors 2 and 5. Although the model 

slightly overestimates the alongshore pressure gradient during the main wave event, overall the 

magnitude and variability of the alongshore d" due to waves and tidal effects is predicted well in 

the model. Similarly, the model output agrees well with observations on water depth. The water 

depth on the reef flat at Guam is dictated by the combined effect of wave setup and tidal height. 

The model output is able to capture these effects well to give depths that are generally accurate, 

although small discrepancies in the local mean water depth do exist because of the small scale 

variability of the reef bathymetry that cannot be captured with this model resolution. 

 The most informative piece of information from the model output, however, is the 

alongshore water level variation over the reef. As discussed in the observations section of this 
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paper, we hypothesized that the alongshore currents on the reef are driven by an alongshore 

pressure gradient. This is in contrast to previous work on coral reefs where cross-shore pressure 

gradients drive cross-shore currents. We were able to measure an overall alongshore pressure 

gradient, d!/dy, and found that it is well correlated with the alongshore currents on the reef. We 

also predicted that the local d!/dy would be smaller further from the channel, based on 

constraints due to conservation of mass and the geography of the reef. The model output agrees 

with this hypothesis. Figure 4.4 clearly shows that the alongshore pressure gradient is the 

strongest closer to the channel, and further from the channel it is much smaller, leading to an 

overall alongshore profile of water level that is similar to our schematic in Figure 1. This 

reduction in d!/dy further from the channel results in weaker currents at the northern end of the 

reef, which again agrees with the observations section of this paper. 

 The model output also shows that the water level does not vary much as much in the 

cross-shore direction as it does in the alongshore direction. In the observations section of this 

paper, it was noted that there is a cross-shore component of the flow, particularly at the northern 

end of the reef. The cross-shore flow was hypothesized to be driven by a cross-shore pressure 

gradient that is too weak to reliably measure with the instruments available. The model data does 

show a weak cross-shore pressure gradient at the northern end of the reef flat in particular 

(Figure 4.3), indicating that a cross-shore balance could be important for this part of the reef.  

 One of the biggest challenges with the analysis of the alongshore frictional force 

balancing the alongshore pressure gradients in the observations section of this paper was that we 

had to use the overall pressure gradient on the reef, rather than the local pressure gradient, due to 

the spatial constraints of our sampling scheme. The model output, however, has no such 

constraints, so the analysis could focus on the correlation between local pressure gradients and 

local alongshore currents. The model output results show a similar trend to the observations, with 

low correlations between the two terms at the north end of the reef flat, and much higher 

correlation nearer the channel. The observations section of this paper points out that this low 

correlation in the alongshore direction could be due to the influence of other forcing mechanisms 

on the currents. A cross-shore balance is probably significant here, and the model output does 

show a small cross-shore pressure gradient at the northern end of the reef. However, the lack of 

correlation in the alongshore direction is still unexplained.  
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4.3 Friction effects 

In the observations section of this paper, the friction coefficient was estimated to be 

0.0045 using a linear regression between the alongshore pressure gradient and bed stress terms of 

equation (5). As noted in section 3.3.2, this value of Cr is surprisingly low for a reef, but possible 

reasons for the low friction were identified, and included smooth substrate for a reef and the 

linear approximation of the alongshore pressure gradient. The Cr value that best replicated 

observations, however, was 0.006, only slightly larger than the value estimated in the 

observations section of this paper. Additionally, higher friction coefficient values do a poorer job 

replicating observations than lower values (Table 2). This validates the estimate of the friction 

coefficient in the observations section, indicating that the reef is probably smoother than reefs 

such as Kaneohe Bay, where the friction coefficient was estimated to be 0.02 [Lowe et al., 

2009b].  

The low friction coefficient on the reef at Guam is of more interest than just indicating 

that the reef is smoother than expected, however. Figure 4.3 shows that the scale of influence of 

the channel on the reef flat currents changes with friction. High friction model runs show that the 

currents on the northern end of the reef flat are weak and variable in direction, even during high 

tides and waves, when currents on the reef are the strongest (Figure 4.1). As the friction 

coefficient decreases, the scale of influence increases until currents on the entire reef flat 

between the channel and the northern peninsula are flowing towards the channel. This 

observation is key because, as was discussed extensively in the observations section of this 

paper, the currents on the reef flat, even at the very northern end, consistently flow towards the 

channel without changing direction. This feature of the circulation is especially important 

because the influence of the channel is very large, 2 km, compared to the size of the channel. It 

seems that, based on these observations of friction affecting the scale of channel influence in the 

model output, that the low friction observed on the reef is responsible for this defining feature of 

the reef circulation. 
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 RMSE r 
Cr u, channel d" u, channel d" 
0.002 0.085 0.058 0.861 0.524 
0.004 0.074 0.056 0.867 0.827 
0.006 0.080 0.060 0.870 0.830 
0.01 0.097 0.077 0.878 0.771 
0.025 0.109 0.103 0.859 0.604 

 

Table 2 Root mean square error (RMSE) and correlation coefficient (r) between model output 
and observations of cross-shore channel velocity (u, channel) and alongshore pressure gradient 
measured between sensors 2 and 5 (d"). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Eulerian velocity vectors plotted over depth (colorbar, m) for from left to right, Cr = 0.025, 0.006, 0.002 model runs.
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Figure 4.3 Water level on the Ipan reef flat during a mid tide and 1.5m incident waves. White 
portions of the domain are dry points. 
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Figure 4.4 Alongshore water level section on the reef flat between the channel and northern 
peninsula during the 2 m wave event.
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Figure 4.5 Comparison of model output and observed data for currents at the channel sensor 6, 
sensor 4, and sensor 3. See Figure 2.1b for sensor map. Note that only one component of the 
current (the dominant component for that location) is plotted in each panel, and that the 
convention is positive north/east. 
 

 

 

 

 

 

 

 

 

 

Figure 4.6 Comparison of model output and observed data for the alongshore sea surface height 
difference between sensors 2 and 5, d!, on the reef flat. 
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5. Summary 

 This study focused on a large, shallow reef flat with a deep, narrow sandy channel 

located on the southeast coast of Guam. These reef flats are common in this part of Guam, and 

can be found in other parts of the world as well. Although past research on shallow reef flats 

finds that wave driven currents are predominantly in the cross-shore direction and are driven by 

cross-shore gradients in wave-driven setup, our study site is unique in that the mean currents are 

predominantly in the alongshore direction. These alongshore currents are wave driven, rather 

than being driven by wind or tides. Waves break over the reef flat, but do not break in the 

channel because the water there is very deep (30 m). Breaking waves over the reef flat create a 

wave driven setup, which in this case is uniform in the cross-shore direction. The difference in 

sea surface height between the wave-driven setup on the reef and the channel, where setup is 

low, is balanced by the bed-stress, or alongshore current.  

 Analysis of this balance between the sea surface height gradient and bed stress was done 

according to equation (5) using a quadratic friction law. Linear orthogonal regression analysis of 

the two terms in the equation gave a friction coefficient, Cr of approximately 0.0045. While this 

is an order of magnitude lower than similar studies done on wave driven currents over reefs 

[Lowe et al., 2009b; Taebi et al., 2011] it compares well with studies of momentum balance on 

sandy beaches [Apotsos et al., 2007; Feddersen et al., 1998; Garcez Faria et al., 1998] and 

suggests that the reef at this study site may be smoother than other previously studied reef flats. 

 Water level effects on both the mean current and setup over the reef are extremely 

important. At low tides, reef circulation slows down dramatically as the still water level drops to 

zero, causing the pressure gradient term of equation (5) to decrease, and thus decreasing the 

velocity on the reef. The decrease in transport over the reef at low tides is also reflected in the 

channel velocity, which decreases at low tides, even during wave events. The alongshore 

pressure gradient is also affected by water level, with the highest values occurring during low 

tides due to more efficient breaking on the fore-reef. These competing water level effects are 

predicted in analytic studies, and have been validated in other locations as well [Gourlay, 1996; 

Lowe et al., 2009b; Vetter et al., 2010]. 

 In this study an alongshore current is observed that, rather than being forced by 

alongshore radiation stress or wind, is forced by waves. This current, which is only present 

because of the deep channel in the reef, is forced at extremely far distances from the channel (up 
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to 2km), which is remarkable given the relatively narrow width of the channel (30m). The 

dominant alongshore component of the current on the reef is in contrast to wave driven currents 

on other reefs, which are primarily in the cross-shore direction [Hench et al., 2008; Lowe et al., 

2009b; Taebi et al., 2011]. A numerical model does show alongshore currents over the reef flat 

at Ningaloo [Van Dongeren et al., 2013] but these currents are primarily in the reef lagoon, as 

opposed to on the reef flat. 

 The Delft3D numerical model, a coupled WAVE and FLOW simulation, was able to 

capture the main features of the circulation. The model results showed alongshore currents on the 

reef flat that increased in strength closer to the channel, and with only a few small exceptions, 

constantly flowed towards the channel. There was a gradient in water level between the channel 

and the northern end of the reef flat, with the strength of the gradient being strongest closer to the 

channel, and weaker further from the channel. These results from the numerical model 

experiments, combined with our observations data, support the hypotheses regarding both 

primary force balance on the reef and the shape of the alongshore pressure gradient on the reef.  

 Comparison of model output of varying friction coefficients to the observations indicated 

that the estimation of friction in the observations experiment was likely fairly accurate. This 

shows that the Guam reef is likely simply smoother than other reefs previously studied, and helps 

explain the relatively high flow speeds observed on the reef. Additionally, based on these model 

runs, it seems that the friction coefficient may be key to setting the scale of influence of the 

channel. Model runs with low friction coefficients showed that currents on the reef flat were 

influenced by the channel as far as 2 km away, large compared to the size of the channel itself. 

These low friction, large scale of influence runs are consistent with the observations, which 

indicate that the alongshore current as far as 2.3 km away is effected by the channel, since the 

flow there is always directed towards the channel, regardless of wave conditions. 

The currents on the reef and in the channel at Ipan, Guam are often very strong, and the 

area is well known to locals to be extremely dangerous to swimmers and fisherfolk. Through this 

analysis we have identified the two primary conditions for dangerous currents on the reef and in 

the reef channel: high tides and high waves. We have also shown that it is possible to develop a 

numerical model to predict relatively accurately the currents on both the reef flat and the 

channel. Additionally, we have established that in some cases, Google Earth images of fringing 

reefs show streamlines in the coral parallel to mean flow direction. Hopefully these tools will 
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help enable shallow reef flats such as the study site at Ipan, Guam to be managed in such a way 

so as to reduce the dangers of swimming or fishing there. 



%

% ??%

 

Bibliography 

Angwenyi, C. M., and L. Rydberg (2005), Wave-driven circulation across the coral reef at 
Bamburi Lagoon, Kenya, Estuarine, Coastal and Shelf Science, 63(3), 447-454, 
doi:http://dx.doi.org/10.1016/j.ecss.2004.12.008. 

Apotsos, A., B. Raubenheimer, S. Elgar, R. T. Guza, and J. A. Smith (2007), Effects of wave 
rollers and bottom stress on wave setup, J. Geophys. Res., 112(C2), C02003, 
doi:10.1029/2006jc003549. 

Battjes, J. A., and J. P. F. M. Janssen (1978), Energy loss and set-up due to breaking of random 
waves, Coastal Engineering Proceedings, 1(16), doi:10.9753/icce.v16. 

Booij, N., R. C. Ris, and L. H. Holthuijsen (1999), A third-generation wave model for coastal 
regions: 1. Model description and validation, Journal of Geophysical Research: Oceans, 
104(C4), 7649-7666, doi:10.1029/98jc02622. 

Chamberlin, C. (2008), A digital elevation model of Guam for tsunami inundation modeling, 
edited, p. 7, NOAA Pacific Marine Environmental Laboratory technical report, Seattle, WA. 

Feddersen, F., R. T. Guza, S. Elgar, and T. H. C. Herbers (1998), Alongshore momentum 
balances in the nearshore, J. Geophys. Res., 103(C8), 15667-15676, doi:10.1029/98jc01270. 

Garcez Faria, A. F., E. B. Thornton, T. P. Stanton, C. V. Soares, and T. C. Lippmann (1998), 
Vertical profiles of longshore currents and related bed shear stress and bottom roughness, J. 
Geophys. Res., 103(C2), 3217-3232, doi:10.1029/97jc02265. 

Gourlay, M. R. (1996), Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an 
idealised two dimensional horizontal reef, Coastal Engineering, 27(3–4), 161-193, 
doi:10.1016/0378-3839(96)00008-7. 

Gourlay, M. R., and G. Colleter (2005), Wave-generated flow on coral reefs—an analysis for 
two-dimensional horizontal reef-tops with steep faces, Coastal Engineering, 52(4), 353-387, 
doi:10.1016/j.coastaleng.2004.11.007. 

Hearn, C. (1999), Wave-breaking hydrodynamics within coral reef systems and the effect of 
changing relative sea level, J Geophys Res-Oceans, 104(C12), 30007-30019. 

Hearn, C., M. Atkinson, and J. Falter (2001), A physical derivation of nutrient-uptake rates in 
coral reefs: effects of roughness and waves, Coral Reefs, 20(4), 347-356, doi:10.1007/s00338-
001-0185-6. 

Hench, J. L., J. J. Leichter, and S. G. Monismith (2008), Episodic circulation and exchange in a 
wave-driven coral reef and lagoon system, Limnol Oceanogr, 53(6), 2681-2694. 

Inman, D. L., W. R. Gayman, and D. C. Cox (1963), Littoral sedimentary processes on Kauai, a 
subtropical high island. 



%

% ?D%

Kohn, A. J., and P. Helfrich (1957), Primary organic productivity of a Hawaiian coral reef, 
Limnol Oceanogr, 241-251. 

Kraines, S. B., T. Yanagi, M. Isobe, and H. Komiyama (1998), Wind-wave driven circulation on 
the coral reef at Bora Bay, Miyako Island, Coral Reefs, 17(2), 133-143, 
doi:10.1007/s003380050107. 

Lesser, G. R., J. A. Roelvink, J. A. T. M. van Kester, and G. S. Stelling (2004), Development 
and validation of a three-dimensional morphological model, Coastal Engineering, 51(8–9), 883-
915, doi:http://dx.doi.org/10.1016/j.coastaleng.2004.07.014. 

Lesser, M. P., V. M. Weis, M. R. Patterson, and P. L. Jokiel (1994), Effects of morphology and 
water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis 
(Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity, Journal 
of Experimental Marine Biology and Ecology, 178(2), 153-179, doi:10.1016/0022-
0981(94)90034-5. 

Longuet-Higgins, M. S. (1970), Longshore Currents Generated by Obliquely Incident Sea 
Waves, 1, J. Geophys. Res., 75(33), 6778-6789, doi:10.1029/JC075i033p06778. 

Longuet-Higgins, M. S., and R. W. Stewart (1964), Radiation stress in water waves, a physical 
discussion with applications, Deep Sea Research, 11, 529-563, doi:citeulike-article-id:6353848. 

Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson (2009a), A numerical study of 
circulation in a coastal reef-lagoon system, Journal of Geophysical Research: Oceans, 114(C6), 
n/a-n/a, doi:10.1029/2008jc005081. 

Lowe, R. J., J. L. Falter, S. G. Monismith, and M. J. Atkinson (2009b), Wave-Driven Circulation 
of a Coastal Reef–Lagoon System, Journal of Physical Oceanography, 39(4), 873-893, 
doi:10.1175/2008jpo3958.1. 

Lucas, D. L., and J. M. Lincoln (2010), The Impact of Marine Preserve Areas on the Safety of 
Fishermen on Guam Rep., Centers for Disease Control & Prevention, National Institute for 
Occupational Safety & Health, Honolulu, HI. 

Luo, Q. C., and S. Khosrowpanah (2012), Continuing calibration and applicatoin of LUOM in 
the southern guam watersheds, Technical Report No. 131, edited, Water and Environmental 
Research Institute of the Western Pacific, University of Guam. 

Marsh, J. A., R.M. Ross and W.J. Zolan (1982), Water circulation on two Guam reef flats, 
Proceedings of the 4th Interna. Marine Science Center, Univers. E.D. Gomez, C.E. Birkeland, R. 
1, 355-360. 

Monismith, S. (2007), Hydrodynamics of Coral Reefs, Annu. Rev. Fluid Mech., 39, 37-55, 
doi:citeulike-article-id:6354730. 

Nelson, R. C. (1987), Design wave heights on very mild slopes!an experimental study, 
Transactions of the Institution of Engineers, Australia. Civil engineering, 29(3), 157-161. 



%

% ?E%

Nelson, R. C. (1994), Depth limited design wave heights in very flat regions, Coastal 
Engineering, 23(1–2), 43-59, doi:http://dx.doi.org/10.1016/0378-3839(94)90014-0. 

Nelson, R. C. (1997), Height limits in top down and bottom up wave environments, Coastal 
Engineering, 32(2–3), 247-254, doi:http://dx.doi.org/10.1016/S0378-3839(97)81752-8. 

Pawlowicz, R., B. Beardsley, and S. Lentz (2002), Classical tidal harmonic analysis including 
error estimates in MATLAB using T_TIDE, Comput. Geosci., 28(8), 929-937, 
doi:10.1016/s0098-3004(02)00013-4. 

Péquignet, A. C., J. Becker, M. Merrifield, and S. Boc (2011), The dissipation of wind wave 
energy across a fringing reef at Ipan, Guam, Coral Reefs, 30(0), 71-82, doi:10.1007/s00338-011-
0719-5. 

Presto, M. K., A. S. Ogston, C. D. Storlazzi, and M. E. Field (2006), Temporal and spatial 
variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, 
Hawaii, Estuarine, Coastal and Shelf Science, 67(1–2), 67-81, doi:10.1016/j.ecss.2005.10.015. 

Symonds, G., K. P. Black, and I. R. Young (1995), Wave-driven flow over shallow reefs, J. 
Geophys. Res., 100(C2), 2639-2648, doi:10.1029/94jc02736. 

Symonds, G., L. J. Zhong, and N. A. Mortimer (2011), Effects of wave exposure on circulation 
in a temperate reef environment, J Geophys Res-Oceans, 116, doi:Artn C09010 
Doi 10.1029/2010jc006658. 

Taebi, S., R. J. Lowe, C. B. Pattiaratchi, G. N. Ivey, and G. Symonds (2012), A numerical study 
of the dynamics of the wave-driven circulation within a fringing reef system, Ocean Dynam, 
62(4), 585-602, doi:10.1007/s10236-011-0514-4. 

Taebi, S., R. J. Lowe, C. B. Pattiaratchi, G. N. Ivey, G. Symonds, and R. Brinkman (2011), 
Nearshore circulation in a tropical fringing reef system, J. Geophys. Res., 116(C2), C02016, 
doi:10.1029/2010jc006439. 

Van Dongeren, A., R. J. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, and R. 
Ranasinghe (2013), Numerical modeling of low-frequency wave dynamics over a fringing coral 
reef, Coastal Engineering, 73(0), 178-190, 
doi:http://dx.doi.org/10.1016/j.coastaleng.2012.11.004. 

Vetter, O., J. M. Becker, M. A. Merrifield, A. C. Pequignet, J. Aucan, S. J. Boc, and C. E. 
Pollock (2010), Wave setup over a Pacific Island fringing reef, J. Geophys. Res., 115(C12), 
C12066, doi:10.1029/2010jc006455. 

Wainwright, S. A., and M. A. R. Koehl (1976), The nature of flow and the reaction of benthic 
cnidaria to it, Plenum Press, New York. 
 
 


