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Abstract
We develop a model of investments in interdependent se-
curity systems in the presence of a strategizing oppo-
nent, who attempts to infiltrate at least one of the sys-
tems with a harmful device. In the first stage, a finite
number of targets decide about their respective invest-
ments in direct and indirect security systems by choosing
appropriate detection probabilities minimizing expected
losses. In the second stage, infiltration of a target’s se-
curity system with the harmful device is directed by the
agent from the outside and may occur either directly by
a target’s failing to detect the device at its entry level or
indirectly by first passing undetected through the other
target’s entry screening and subsequently clearing the
cross-screening device.

1 Introduction
Recent history has shown that private organizations (tar-
gets) as well as public institutions may fall victim to
malevolent attacks from the outside directed at maxi-
mizing the losses to their targets and possibly society at
large. As a consequence of the intertwined relationships
between many of the targets and the strategizing atti-
tude of the malevolent outside force plotting an attack,
private investments in security systems are highly inter-
dependent, a notion which will be made more precise
below. Our paper focuses on these interdependencies
and their consequences from the perspective of both a
private target and a welfare-maximizing social planner,
of which the latter is in a position to change the ground
rules through regulation and public deterrence.

We summarize by “security” all measures that aim at
protecting a target’s facilities and at providing freedom
from danger or anxiety to individuals that could be di-
rectly or indirectly affected by an attack. An attack may
come in the form of a terrorist operation using, for ex-
ample, an explosive device to sabotage productive facil-
ities and cause individual harm, or it may manifest itself
in other malevolent activities, such as the theft of valu-
able assets, manipulation or jamming of business activ-
ities, resulting in loss of control, or simply diversion

of decision makers’ attention. In assessing the overall
damage caused by a successful attack one needs to con-
sider the affected target’s foregone payoffs and a mone-
tary equivalent for the harm or inconvenience to individ-
uals both within and outside the target. Overall losses
are thus incurred partially by the attacked target and its
employees (the private losses) and partially by the rest
of society (the public losses). In other words, the impact
of a successful attack consists in its immediate effect on
the targeted organization and its repercussions (or neg-
ative externalities) on the rest of society.

For concreteness and to streamline our analysis, we
assume that the threat of an attack emanates from a sin-
gle pernicious agent whose aim it is to maximize the ex-
tent of damage to any targeted organization or, possibly,
to society at large. Multiple pernicious agents and the
possibility of multiple attacks in a dynamic setting are
interesting topics for future research and are not con-
sidered here. We further suppose that the provision of
security systems is costly and decisions about their ac-
quisition are made autonomously by the different tar-
gets. In this context, by a “security system” we mean
all the various elements within a target that provide ac-
cess control and safety monitoring so as to ensure early
detection and thus attack prevention.

Given the pernicious agent’s goal to maximize the
damage caused by his attack (provided that it is indi-
vidually rational for him to carry it out), the targets’
respective investments in security systems are interde-
pendent in two distinct ways. First, a lack of secu-
rity investment – all else equal – renders a target more
prone to an attack, since the pernicious agent trades off
expected losses (i.e., his “gains”) against the expected
disutility of being detected and punished. As an in-
teresting consequence of the agent’s optimizing behav-
ior, the targets may be in direct competition with each
other to provide the highest security level in order to
divert an inevitable attack. We denote these interdepen-
dencies caused through target substitution on the part
of the pernicious agent as “first-order” interdependen-
cies. Second, the targets’ security systems themselves
may be interdependent as a result of the targets’ inter-
connectedness. For instance, the targets may be using
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a shared resource such as a common infrastructure. As
a result, the agent might carry out the attack indirectly
by passing first undetected through another unit’s ac-
cess control system and then use private links between
different units to reach the ultimate target. To take ac-
count of such “second-order” interdependencies we dis-
tinguish between “direct” and “indirect” security sys-
tems, whereby the former provides safety against direct
attacks while the latter shields against indirect attacks.
We furthermore assume that for each target k there ex-
ists a simple statistic in the form of a detection probabil-
ity pk, which completely characterizes the overall qual-
ity of its security system, both in terms of its robustness
against a direct attack (pk) and against an indirect attack
(qk) being carried out by passing first through another
organization.1

In addition to the targets’ security systems, comple-
mentary protective measures may be provided by exec-
utive and judicial branches of societal institutions such
as the police force, national security agencies, the mili-
tary, special task forces or, to some extent the court and
legal system. In mobilizing public means for the pro-
vision of deterrence a social planner needs to balance
the private and public incentives for preventing harm-
ful attacks on targets. For this he needs to consider two
countervailing effects. First, as alluded to earlier, the
targets generally do not bear the full social cost of an at-
tack and may therefore tend to privately underinvest in
security systems. Second, the intertarget competition re-
sulting from the perceived target substitution effect may
increase security levels above the socially optimal level.
The planner in turn uses a range of measures to respond
to these effects and at least partially re-internalize the
potential negative externality resulting from the threat
of attacks to the private targets, increasing their secu-
rity spending. These measures may include regulation
in the form of safety standards and public deterrence in
the form of prosecution, a credible threat of retaliation,
or other appropriate punishments.

The model developed here differs from prior models
in a number of ways: we examine a fully strategic set-
ting, consider regulatory action, and admit incomplete
information on the targets’ respective loss distributions.

1.1 Literature

There is ample literature concerning “security prob-
lems,” broadly encompassing a class of problems that
targets and possibly individuals can face, with the fol-
lowing two features:2

a. Existence of an outside threat: there is an outside
force that can cause damage to the targets and in-
dividuals. The behavior of the outside force can
be either nonstrategic (e.g., a natural disaster), so
that it is independent of what action any target
takes, or strategic (e.g., a burglar or terrorist), so
that it may be directly influenced by the targets’
behavior.3

b. Payoff interdependency: the behavior of one tar-
get in the face of potential losses impacts the sub-
jective loss distribution of other targets and con-
sequently their self-interested behavior. These
payoff dependencies can be of first-order (target
substitution) and/or second-order (interconnect-
edness), as explained earlier.

Figure 1: Classification of Security Problems.

We denote the class of problems exhibiting feature b.
with at least first-order interdependencies as interdepen-
dent security (IDS) problems. Payoffs in IDS problems
depend on both the nature of the outside threat and the
payoff externalities between agents. In this paper we fo-
cus on strategic IDS (or SIDS) problems, in which the
outside threat is assumed to be self-interested and ra-
tional. To clarify the main differences in our approach,
that admits both first- and second-order payoff interde-
pendencies, we now briefly review the different classes
of security problems; cf. Fig. 1.

Optimal Insurance and Protective Measures. If
the outside threat is nonstrategic and externalities be-
tween different agents are absent, then the overall se-
curity problem decomposes into a number of indepen-
dent single-person decision making problems. Each de-
cision maker must choose his optimal insurance cover-
age given his set of beliefs about the loss distribution

1As an example, the probability of a successful indirect attack on target 1 through target 2 is (1− p2)(1− q1), cf. Fig. 2.
2Enders and Sandler [5] provide an interesting overview of literature on security problems specifically related to terrorism.
3In both cases there may be considerable uncertainty associated with the magnitude of a potential loss. Furthermore, the prior beliefs about

the loss distributions may vary across individuals.
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implied by the external threat [16]. This analysis car-
ries over to the modeling setting in which an inherently
strategic outside threat (such as terrorism) is approached
from a probabilistic single-period point of view. Us-
ing an open-loop (i.e., non-equilibrium) approach it is
possible to consider protective measures in considerable
detail using, for example, a decision analysis frame-
work by allocating resources across the threatened sys-
tem from the viewpoint of a single decision maker [12].

Bilateral Conflict. If a single target faces the threat
of a single pernicious agent who acts strategically ac-
cording to rational preferences, then in the resulting
zero-sum game it is often in the target’s best interest
to minimize its worst-case payoffs which at the same
time minimizes the agent’s incentives for an attack. If
the losses from an attack are reversible or deferred, the
final payoffs may be contingent on the outcome of a ne-
gotiation between the target and the pernicious agent.
As an example, Selten [15] examines a simple model of
kidnapping and concludes based on a model with per-
fect information that it is generally not in the kidnap-
per’s best interest to carry out a threat of killing his vic-
tim. Nevertheless, an (irrational and exogenous) com-
mitment to a mixed strategy (the kidnapper kills his vic-
tim only sometimes) turns out to provide a higher pay-
off.4 A more systemic point of view is developed by
Hirshleifer [7], who examines an equilibrium model for
the resource allocation of two neighboring economies
between warfare (“appropriative effort”) and productive
activities (“contestable productive effort”).

IDS Problems: Multilateral Insurance and Mitiga-
tion. [6] and [10] consider IDS problems in a variety of
contexts, such as the choice of individuals in vaccinating
or not against an infectious disease. Even though their
analysis captures the payoff interdependencies resulting
from shifts in the threat when other agents make their
vaccination decisions, the outside threat remains non-
strategic. In other words, the probability of a direct in-
fection is fixed and independent of the protective actions
of other agents, so that rational target substitution (a nat-
ural consequence of strategic outside behavior) cannot
occur. Under these conditions [6] shows that security
investment may be subject to excess inertia in the sense
that if nobody has invested in security, then incentives
to go first might be minimal. On the other hand, if many
players adopt a high security standard, there may be the
possibility for free-riding which endogenously limits the
security investment, generating multiple equilibria and
thus a need for coordination.

SIDS Problems: Multilateral Conflict. In situations
where payoff externalities between the different play-
ers are present and the external threat exhibits strate-

gic behavior, the players’ actions will be taken both in
competition with each other and in anticipation of the
pernicious agent’s equilibrium actions. [9] uses sim-
ulation to approximate an equilibrium model, but the
“avoidance” dynamics they obtain are a consequence
of rather specific assumptions on the way substitution
between targets occur. [14] examines an IDS prob-
lem where the target substitution effect is captured by
a first-order stochastically dominant shift of two coun-
tries’ prior beliefs about their being attacked, as a re-
sult of their respective investment in deterrence. The
focus is on symmetric equilibria with perfect informa-
tion, where the countries are identical and thus the per-
nicious agent’s payoffs are the same from a successful
attack on either one of the countries. As pointed out ear-
lier we do admit private information about the targets’
expected losses and consider the interesting case where
targets are interconnected, whence the pernicious agent
has different modes of attack at his disposal, direct and
indirect. It turns out that in equilibrium the agent has no
strong preference for an indirect attack. Indeed, if the
protection against one mode increases, the pernicious
agent substitutes away from that mode to either a differ-
ent mode of attack or a different target altogether. [3]
examines the effectiveness of policy interventions re-
sponding to terrorism and finds empirical evidence for
the substitution phenomenon in two out of three eval-
uated policies. Their notable exception is the installa-
tion of metal detectors in US airports starting January
1973 that induced a significant drop in skyjackings and
(after a three-month lag) a substantial increase in non-
skyjacking terrorist activity. In our analysis we do not
distinguish between specific modes of attack other than
direct or indirect, however substitution (or “transfer-
ence” in the criminal justice literature) is a natural con-
sequence of the pernicious agent’s self-interested opti-
mizing behavior evaluating the relative attractiveness of
different targets and modes of attack. Thus, rendering
one target less attractive may lead the pernicious agent
to switch his strategy.

1.2 Outline
This paper examines both private and public choice in
the presence of multiple payoff interdependencies be-
tween targets, pernicious agent, and a social planner.
Section 2 introduces a three-stage model. Section 3
presents the pernicious agent’s optimal attack policy as
well as a symmetric Bayes-Nash bidding equilibrium as
the solution to the last two stages of the model. Section 4
then treats the regulator’s policy problem in providing
the correct incentives for a social-welfare maximizing
solution. Section 5 concludes.

4If the game is repeated, such as in hijacking incidents between governments and terrorist organizations, then a no-negotiation policy is
typically not in a government’s best interest [11].
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2 Model

We consider a situation in which K ≥ 2 targets (e.g.,
firms or public organizations), depending on their in-
vestments in security systems, are vulnerable to a de-
liberate attack by a pernicious agent. The agent’s goal
is to cause what he perceives to be the maximum ex-
pected loss by setting off a single harmful device (e.g.,
an explosive) in one of the targets, while taking into ac-
count the likely negative consequences for him in case
an attack fails. In addition to the equilibrium behavior
of both agent and targets in the associated sequential-
move game we are concerned with a regulator’s socially
optimal choice of minimum safety standards as well as
the question of what public means should be used for
implementing measures directed at deterring the agent
from carrying out his malevolent attack in the first place.

Figure 2: Model Overview.

Overview. A main feature of the model is that
all targets are interconnected by a shared resource
(cf. Fig. 2): an attack on target k ∈ K = {1, 2, . . . ,K}
may be conducted either directly by entering through its
entry-level security systems (detection probability: pk)
or indirectly by infiltrating another target j 6= k first
(detection probability: pj) and then passing the harmful
device internally via the shared resource from target j
to target k (detection probability: qk). Such an attack
may be either successful, in which case target k faces a
nonnegative expected loss Lk, or it may be unsuccess-
ful if the target is able to detect the harmful device, in
which case the pernicious agent faces prosecution re-
sulting in an expected nonpositive payoff of−δ for him,
where δ ≥ 0 is a given constant. The targets’ prior be-
liefs about the distribution of their losses are common
knowledge and not a source of disagreement [1]. The
pernicious agent evaluates the loss prospects prior to de-
ciding first if to attack, then whom to attack, and eventu-

ally how to attack. To counteract the threat of an attack
each target can independently invest in security systems
to increase its direct detection and cross-check capabil-
ities pk and qk, respectively. Anticipating the targets’
and the agent’s behavior, the regulator attempts to max-
imize social welfare by imposing a minimum security
level (or “safety standard”) ρ for entry-checks, effec-
tively imposing the constraint pk ≥ ρ, k ∈ K, on the
targets’ investment problem.5 In addition to requiring a
minimum security investment from agents, the regula-
tor can also make an effort in prosecution and punish-
ment after detection, effectively deterring the agent by
increasing his expected disutility in case of an unsuc-
cessful attack. The regulator, the targets, and the agent
move sequentially over three time periods t ∈ {0, 1, 2};
cf. Fig. 3. We solve for symmetric (perfect) Bayesian
equilibria by using backward induction.

Agent. At time t = 2, the pernicious agent finds
out the agents’ vulnerabilities in terms of their expected
losses and security systems. Thus, the agent is assumed
to know more than any single target when plotting his
attack, which is a conservative assumption that leads
to robust security design choices for the targets. For a
direct attack on target k the agent knows the expected
loss Lk, the target’s direct security level pk, as well as
the regulator’s choice of δ and ρ. The agent’s payoff
from a direct attack on target k is ϕdk = Lk − pk(Lk +
δ). For an indirect attack on target k the agent can
choose the path of least resistance by passing through
the entry systems of the target with the lowest security,
p̄−k = minj∈K\{k}{pj}. Our conservative assump-
tion is that the agent is able to devise a path into the
shared infrastructure at the minimum admissible detec-
tion threshold ρwhich never exceeds p̄−k. This assump-
tion provides robustness of the target’s security invest-
ments against a later expansion of the target network,
as the equilibrium safety investments are nonincreasing
in the number of targets. It also renders the analysis
tractable, since the distribution of the order statistic p̄−k
is endogenous and itself determines the equilibrium. It
also makes the agent, whose payoff from an indirect at-
tack on target k is ϕik = Lk− (qk +(1− qk)ρ)(Lk + δ),
somewhat more prone to attack. Based on the com-
parison of ϕdk and ϕik the agent decides whether to
attack k depending on whether the best mode of at-
tack m, which could be either direct (m = d) or in-
direct (m = i), yields a nonnegative expected pay-
off ϕk = maxm∈{d,i}{ϕmk } for him. These payoffs are
given in Table 1. Conditional on his attack (which by
itself has an opportunity cost of zero) not being success-
ful, the agent expects a disutility of δ resulting from the
blow of his cover and additional repercussions.

5There is no need for the regulator to impose safety standards on the cross-level security, since is optimal (cf. Lemma 1) for each target k to
choose a level qk that discourages indirect attacks in equilibrium.
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Figure 3: Timeline.

Targets. At time t = 1, the risk-neutral tar-
gets – anticipating a possible attack by the pernicious
agent – decide about their respective investments in se-
curity. Target k’s beliefs about the distribution of any
other target’s expected losses, L̃j , in the event of a
successful attack are independent and identically dis-
tributed (i.i.d.) according to the probability distribu-
tion F with support R+. Each target k ∈ K trades
off its privately known expected loss Lk against the
cost of the detection-capability tuple (pk, qk). This
cost is described by the function c : [0, 1]2 → R+,
which is assumed to be increasing (with nonzero gra-
dient), twice continuously differentiable, convex, and
such that c(0, 0) = 0, and the Inada conditions,

c(p, 1) = c(1, q) =∞, ∂c

∂p

∣∣∣∣
(0,q)

=
∂c

∂q

∣∣∣∣
(p,0)

= 0,

are satisfied for all p, q ∈ [0, 1]. The latter ensure the in-
teriority of solutions: a small improvement in detection
from a zero level is almost costless while the expense to
ensure 100% detection is unbounded. All targets take
their investment decisions simultaneously. They are ef-
fectively taking part in an all-pay contest with private
information, the “loser” of which will be attacked by
the pernicious agent, provided that it is individually ra-
tional for the latter to do so. The all-pay contest is non-
standard in the sense that the targets’ actions are mul-
tidimensional, and that the “winner” is determined not
based on the targets’ “bids,” i.e., their security invest-
ments, but based on the agent’s own payoff assessment.
Note also that every target tries its best to avoid being
singled out for an attack. The expected payoffs from an
attack on target k both from the agent’s and the target’s
point of view are summarized in Table 1.

Regulator. At time t = 0, the regulator determines
the safety standards in terms of the minimum (direct) de-
tection probability ρ ∈ [0, 1) which is mandatory for all
targets. A safety standard for the minimum indirect se-
curity level is not necessary, as will become clear later.
The regulator also decides about an appropriate deter-
rent δ ≥ 0 in the form of a disutility to the pernicious
agent in the event of a failed attack. Given a symmetric
equilibrium strategy profile such that pk = p∗(Lk; δ, ρ)
for all k ∈ K, the overall objective for the regulator is to

maximize social welfare,6

W (δ, ρ) = K

∫
R+

Π∗(`; δ, ρ) dF (`)−D(δ), (1)

where Π∗(L; δ, ρ) is the equilibrium payoff of a tar-
get with expected loss L. The increasing, convex, and
continuously differentiable function D : R+ → R+,
with D(0) = 0, describes the cost to society of provid-
ing a deterrent. We discuss the solution to the regulator’s
problem in Section 4.

m Target Payoff: πmk (pk, qk) Agent Payoff: ϕmk (pk, qk)

d −(1 − pk)Lk − c(pk, qk) Lk − pk(Lk + δ)

i −(1 − ρ)(1 − qk)Lk − c(pk, qk) Lk − (qk + (1 − qk)ρ)(Lk + δ)

∅ −c(pk, qk) 0

Table 1: Expected Payoffs Resulting from an Attack
a = (k,m). (NB: πmj = 0, j 6= k.)

3 Optimal Security Investment
To determine a perfect Bayesian equilibrium of the
three-period game we proceed by backward induction,
starting at time t = 2.

The Agent’s Attack Policy (t = 2). Taking into ac-
count the possibility that the harmful device is detected
in a security check spoiling an attack, the agent’s ex-
pected payoffs ϕmk given an attack on target k using at-
tack mode m are given in Table 1. At t = 2, the agent
chooses an attack policy a∗ = (k∗,m∗) ∈ K× {∅, d, i}
such that

a∗ ∈ arg max
(k,m)

{ϕmk } , (2)

where ϕmk are given in Table 1. Comparing the agent’s
motivation between attacking target k directly and indi-
rectly we have that

ϕdk ≥ ϕik ⇔ pk ≤ qk + (1− qk)ρ, (3)

independent of both the expected loss Lk and the regu-
lator’s deterrent δ.

Security Investments (t = 1). After privately ob-
serving their respective expected losses, the targets non-
cooperatively determine their security investments, an-
ticipating the agent’s attack policy. Thus, given Lk tar-
get k seeks to determine pk ∈ [ρ, 1] and qk ∈ [0, 1] so
as to maximize its expected payoffs, given the other tar-
gets’ strategies. For simplicity, we restrict attention to
symmetric Bayes-Nash equilibria in which pk = p(Lk)
and qk = q(Lk) for all k ∈ K.

Lemma 1. In a symmetric equilibrium the pernicious
agent is indifferent between attacking a target directly
or indirectly, i.e., ϕdk = ϕik for all k ∈ K.

6The pernicious agent’s payoff is not included in the regulator’s understanding of social welfare.
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The intuition for the last result is that any excess in-
vestment in preventing a direct attack compared to pre-
venting an indirect attack is wasted, as the agent always
chooses the most promising attack mode. Lemma 1
therefore lays the foundation for determining the tar-
gets’ equilibrium policies at t = 1, establishing an
affine relation between direct and indirect security ca-
pabilities pk and qk. Indeed, relation (3) together with
Lemma 1 implies that

qk =
pk − ρ
1− ρ

(≤ pk), (4)

for all k ∈ K, in equilibrium. Because of the fixed pro-
portions in direct vs. indirect security investment, we
can set

C(p) = c(p,
p− ρ
1− ρ

), (5)

for any p, ρ ∈ [0, 1). We are now ready to deter-
mine the targets’ unique symmetric equilibrium strate-
gies. For this, we first note that any target can al-
ways guarantee itself an attack-free existence by in-
vesting in the “full security” level p̄(L) = L/(L + δ)
which ensures that the agent’s attack payoff vanishes,
as ϕ = L − p̄(L)(L + δ) = 0. Using the convention
that sup ∅ = 0, let

r(L) = sup
{
r̂ ∈ [0, 1] : C

(
L
L+δ

)
− (1− r̂)L ≥ C(r̂)

}
denote a “critical security” level that renders a loss-L
target indifferent between no attack at p̄(L) and an at-
tack at r(L). It is clear that r(L) never exceeds p̄(L),
and that it can only be positive if L lies strictly between
zero and the expected loss L̂ above which investment
in full security becomes prohibitively expensive, deter-
mined by L̂ = C(p̄(L̂)).7 Furthermore, when r(L) van-
ishes for some L > 0, then for that loss it is not optimal
to invest in full security.

3.1 First-Best Security Investment
Consider the socially optimal policy at time t = 1. If
the regulator or social planner has full control over each
target’s security investment, then the resulting optimal
security-investment policy is termed “first best” and de-
noted by (pFB(L), qFB(L)), L ≥ 0. It is subject to the
security infrastructure (δ, ρ) as determined in the pre-
ceding period (i.e., at t = 0; cf. Section 4.1 below). By
Lemma 1 it is

qFB(L) ≡ pFB(L)− ρ
1− ρ

, (6)

so that we can restrict attention to the determination
of pFB(L). In equilibrium, because of the convexity of

the cost C(p) for security p, the agent will be attacking
the target with the highest expected loss that is avail-
able. Otherwise, the planner could save by decreasing
the security of a high-loss target without increasing the
likelihood of an attack, which contradicts the optimal-
ity of a policy p(L) that would lead to a nonmonotonic
agent payoff ϕ(L) = L − p(L)(L + δ). Given (δ, ρ),
the social planner’s problem is therefore 8

max
p(·)∈[0,1]

E
[
−G(L̃)

(
1− p(L̃)

)
L̃− C(p(L̃))

∣∣∣ δ, ρ]
s.t. p(L) ≥ ρ, ϕ̇(L) ≥ 0, L ≥ 0.

(7)

This variational problem can be solved explicitly using
optimal control theory [13, 19]. Its solution is very sim-
ple when the monotonicity constraint is not binding, in
which case the marginal cost of increasing the security
level further is equal to the expected loss L times the
probability G(L) of this loss being the highest (secur-
ing the agent’s attack interest).

Proposition 1 (First-Best Security Investment).
The unique first-best security-investment pol-
icy (pFB(L), qFB(L)), L ≥ 0, is such that pFB(L) = ρ
for all L ∈ [0, Lρ], and

pFB(L) =

{
C′−1(G(L)L), 1 > [pFB(L)(L+ δ)]′,
1− ṗFB(L)(L+ δ), otherwise,

(8)
for all L ≥ 0, where 0 < Lρ ≡ sup{` ≥ 0 : G(`)` ≤
C ′(ρ)} ≤ L̄, and qFB(L) is obtained from Eq. (6).

The first solution in Eq. (8) determines the optimal
security investment based on the marginal cost, whereas
the second is such that the agent is indifferent between
attacking targets of varying losses. The first policy is
implemented as long as the agent’s payoff is increasing,
otherwise the second policy is used. The second policy,
which is, for notational convenience, determined only
implicitly, is such that

pFB(L) = 1− (1− pFB(L̂))
L̂+ δ

L+ δ

provided that ϕFB(L) is never increasing in some right-
neighborhood of the point L̂ ≥ 0 and the value pFB(L̂)
is known.

Corollary 1. The first-best security-investment pol-
icy pFB(L) is nondecreasing in ρ and generally non-
monotonic in δ, whereas qFB(L) is generally nonmono-
tonic in ρ and δ.

7By l’Hôpital’s rule the definition of r(L) implies that ṙ(0) = 1, so that r(L) > 0 in a right-neighborhood of L = 0.
8Despite the apparent nonoptimality of a policy p(L) does not lead to a nondecreasing agent payoff the monotonicity of ϕ(L) needs to be

imposed as a constraint in (7) to ensure that G(L) = FK−1(L) remains the distribution that correctly reflects the agent’s attack policy.
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Proposition 2 (First-Best vs. Second-Best). Let L0 =
δρ/(1 − ρ) < L̄. In equilibrium, any target with a
loss L > L0 underinvests in security compared to the
first-best solution.

3.2 Security-Investment Equilibrium

The following result summarizes the agent’s and the
firms’ equilibrium behavior as a function of their respec-
tive expected losses.

Proposition 3 (Security-Investment Equilibrium).
Let L1 ≥ L0 = δρ/(1− ρ) and ω = (L0, L1).

(i) If L0 > L̄, then the pernicious agent
does not attack any target, and the unique
(symmetric) security-investment equilibrium
is (p(L), q(L)) ≡ (ρ, 0).

(ii) If L0 ≤ L̄, then the unique (symmetric)
security-investment equilibrium (p(L), q(L)),
with q(L) = p(L)−ρ

1−ρ , solves 9

ṗ(L)
1−p(L) + ĝ(L;ω)L

C′(p(L))−Ĝ(L;ω)L−λ(L;ω)
= 1

L+δ , (9)

with p(L0) = ρ, p(L1) = p̄(L1), where
λ(L;ω) =

[
C ′(ρ)− L d

dL (G(L;ω)(L+ δ))
]
+

.

The function ϕ(L) = L−p(L)(L+δ) is the agent’s
equilibrium payoff from attacking an agent with ex-
pected loss L. The agent is willing to attack if and only
if this payoff is nonnegative.

Corollary 2. The agent’s equilibrium payoff ϕ(L) is
nondecreasing, and therefore

m 6= ∅ ⇔ ϕ(L) ≥ 0 ⇔ L ≥ L0, (10)

i.e., the agent attacks only targets with losses of at
least L0.

The loss threshold L0 = δρ/(1 − ρ) is entirely de-
termined by the regulatory policy (δ, ρ). It is interesting
to note that the two instruments are extensive comple-
ments at the origin, in the sense that it is impossible to
deter the agent from attacking a positive-loss target us-
ing only one of the two instruments (except when set-
ting ρ = 1). By setting L0 = L̄ the regulator can ensure
that no attacks take place in equilibrium, but the social
cost of implementing such a “no-risk” policy may be
prohibitive.

Corollary 3. The targets’ equilibrium strategies p(L)
and q(L) are generally nonmonotonic in L.

The nonmonotonicity of the targets’ equilibrium
strategies means that it is possible that higher-risk tar-
gets invest less in security than lower-risk targets. More
specifically, it is possible to show that the strategies are
always nondecreasing for losses in the interval [0, L0 +
ε], where ε is some positive constant. Yet, as the fol-
lowing simple example illustrates, it is entirely possible
that the highest-risk targets also have the lowest security.
The reason is that the negative-externality exerted by the
security efforts of lower-risk targets makes an attack on
the higher-risk targets so likely that spending additional
funds on security measures becomes undesirable.

Example 1. Let the public deterrent δ ≥ 0 and the
safety standard ρ ∈ [0, 1) be given. We assume that
the cost of security is linear, so that c(p, q) = αp + βq,
where α, β are nonnegative constants with α + β > 0.
By Lemma 1 and Eqs. (4)–(5) we can restrict atten-
tion to direct security investments with the cost func-
tion C(p) = c(p, p−ρ1−ρ ) = αp + β p−ρ1−ρ ≡ γp − βρ

1−ρ ,

where γ = α + β
1−ρ > 0. With this, the initial value

problem (9) yields the agent’s expected payoff from at-
tacking a target of loss L,

ϕ(L) =

(
exp

[∫ L

L0

g(`)` d`

γ −G(`)`

]
− 1

)
δ,

for all L ∈ [0, 1], given L0 = δρ/(1− ρ). In the case of
a uniform loss distribution, with G(L) ≡ FK−1(L) ≡
LK−1 and g(L) = Ġ(L) = (K−1)LK−2, we therefore
obtain

ϕ(L) =

((
γ − LK0
γ − LK

)(K−1)/K

− 1

)
δ,

and thus,

p(L) = max

{
ρ, 1− δ

L+ δ

(
γ − LK0
γ − LK

)(K−1)/K
}
,

q(L) =
p(L)− ρ

1− ρ
,

for all L ∈ [0, 1], given the interesting case where L0 =
δρ/(1 − ρ) ≤ L̄ = 1. It is straightforward to show
that p(L) is nondecreasing on [0, 1] if and only if γ ≥
1 + (1 + δ)K. Thus, if the marginal cost of security, γ,
is relatively small or the number of targets, K, is large
(so that the previous inequality is not satisfied), then the
equilibrium safety p(L) will decrease in L in the high-
loss region. In other words, some targets with interme-
diate losses like to invest more in safety than high-loss
targets. �

9A dot denotes total derivatives with respect to the independent variable L, i.e., ϕ̇(L) ≡ dϕ(L)/dL.
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Proposition 4 (Comparative Statics). Let (p(L), q(L)),
L ≥ 0, be a symmetric security-investment equilibrium
as in Proposition 3, and ϕ(L) be the agent’s equilibrium
payoff conditional on attacking a target of loss L.

(i) p(L) is nonincreasing in K, nondecreasing in ρ,
and generally nonmonotonic in δ.

(ii) q(L) is nonincreasing in K, and generally non-
monotonic in ρ, δ.

(iii) ϕ(L) is nondecreasing in K, nonincreasing in ρ,
and nondecreasing in δ for small δ > 0 (but gen-
erally nonmonotonic for larger δ’s).

Part (iii) implies that a slight increase of a small
deterrent may have the perverse effect to increase the
agent’s expected payoffs and thus elevate the likelihood
of an attack. This somewhat counter-intuitive result
stems from the fact that it decreases the targets’ incen-
tives to invest in security. The result is actually opposite
for small L.

In addition, we find that increasing the deterrent δ
increases the attacker’s payoff for small losses. More-
over, increasing the safety standards decreases the at-
tacker’s payoff for all loss levels and increases the in-
vestment in safety. Finally, if ρ ≥ L̄/(L̄+ δ), then there
will be no attack.

Overall, the deterrent is bad for targets with
losses L ≥ L0. A further increase is immaterial for tar-
gets with losses L < L0, since they will not be attacked
at all. Their safety is set at the minimum standard ρ.
Both instruments have the effect of reducing the num-
ber of targets. The benefits for society are concentrated
in the margin. The deterrent is bad for high risks, the
safety standard bad for low risks.

Corollary 4. As the number of targets K goes to infin-
ity, the targets’ security investments become minimal, as
limK→∞(p(L), q(L)) = (ρ, 0).

The incentives to acquire security diminish as there
are more and more other targets.

4 Safety Standards and Public De-
terrence

4.1 Efficient Regulatory Policy

We now provide criteria for both the optimal safety stan-
dard and the most effective deterrent from a public-
policy viewpoint.

Proposition 5 (Optimal Regulation). The socially op-
timal safety standard ρ̂ and deterrent δ̂ satisfy

δ̂ρ̂ FK−2(L0)f(L0)
(1−ρ̂)2 = C ′(ρ̂) +

∫ L̄
L0
λ(`;δ̂,ρ̂)dF (`)

F (L0) (11)

and

δ̂ρ̂2FK−1(L0)f(L0)
1−ρ̂ =

D′(δ̂)

K
+

∫ L̄

L0

G(`)`+λ(`;δ̂,ρ̂)

`+δ̂
p∗(`; δ̂, ρ̂)dF (`),

(12)
where the Lagrange multiplier λ(L; δ̂, ρ̂) is given by 10

λ(L; δ̂, ρ̂) =
[
C ′(p∗(L; δ̂, ρ̂))−G(L)L− (L+ δ̂)g(L)L

]
+
≥ 0,

(13)
for all L ∈ [0, L̄], and p∗(L; δ̂, ρ̂) is part of the targets’
symmetric security-investment equilibrium in Prop. 3.

For any given ρ > 0 there is a unique solution,
since the left-hand side is increasing and the right-hand
side is decreasing. Moreover, the right-hand side is
bounded whereas the left-hand side varies over the en-
tire space R+.

The effect of increasing public deterrence δ on sym-
metric equilibrium investment is generally ambiguous.
A higher level of deterrence may both increase and de-
crease equilibrium security investment of different tar-
gets, depending on their private expected losses. To
show this consider the following continuation of our ear-
lier example.

Example 2. Assume first 2 + δ ≤ α, so that λ(L) = 0
on [0, 1]. Then LK−1

0 = (1− ρ)α and

ρLK0 = dδ+

∫ 1

L0

`K

`+δ

(
1− δ

`+δ

(
α−LK0
α−`K

)(K−1)/K
)
d`

characterize the socially optimal choice of δ and ρ.

There is also the idea of discouraging underinvest-
ment through safety standards. More specifically, one
can allow for penalties to the targets in the case of a
successful attack, reinternalizing the social externality.
Such punishments EW only effective if the targets re-
main liquid after a successful attack and do not seem to
correspond to common practice.

4.2 Other Policy Choices
To prevent socially inefficient overinvestment in secu-
rity, the social planner could cap the targets’ losses by
providing a guarantee of last resort. Losses are also
bounded from above by the targets’ limited liability.

In the case of inefficient underinvestment the social
planner could impose fines in the case of a loss to make

10For any x ∈ R we define by [x]+ = max{0, x} the nonnegative part of x.
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the targets internalize the harmful externalities to soci-
ety. However, such punishments may not be effective or
desirable due to the targets’ limited liability and other
reasons (in the public eye the government should help
targets in a misfortune rather than punish the targets on
top of it).

5 Conclusion
In this paper we have examined a SIDS problem with
first and second-order payoff interdependencies. The
equilibrium security investments depend on the costs of
achieving a high detection capability as well as on the
public policies implemented by the social planner. If a
high-loss target finds it very expensive to install secu-
rity systems it will balance expected losses against its
investment in providing safety while on the other hand
accepting the fact that it likely still represents a most at-
tractive target to the terrorist who will be compelled to
attack. If on the other hand it is sufficiently cheap for
the high-loss target to install security systems, it is in its
best interest to provide “full” security in the sense that
the terrorist most likely responds by not attacking the
target.11 A target’s decision is influenced by its expec-
tation of the lowest direct security level that is imple-
mented in equilibrium as this determines the likelihood
of an indirect attack. We show that in equilibrium the
pernicious agent cannot have a strict preference for such
indirect attacks. Nevertheless, the externalities implied
by the targets’ interconnectedness influence the equilib-
rium significantly: the lower the expected lowest direct
security level, the more likely a target will opt for full
protection. In fact, in our considerations we restrict at-
tention to the situation in which there are (at least weak)
economies of scale (and complementarities) in the se-
curity technologies, which results in threshold policies
switching between full and minimum security invest-
ment. There is some empirical evidence for economies
of scale in the provision of security, at least over a cer-
tain range [21]. We find that interestingly the resulting
equilibrium investment policies do not need to be mono-
tonic in the expected private losses. There can be many
switching points as these private losses increase, reflect-
ing the delicate balance of benefits when comparing the
two options.

In discussing policy options one has to examine both
the private and social welfare aspects of investing in se-
curity. If from a social welfare perspective each agent
overinvests in protection in a competitive environment
because each one fears being a target of attack, then
some public involvement is necessary. This can take
the form of a well-enforced regulation or standard or
economic incentives such as a subsidy or fine. — For
once, a social planner can provide deterrence in the form
of commitment to punishment using legal means or re-
taliation. Such public deterrence may have an ambigu-
ous effect on private security investments. On the one
hand, it may decrease target spending since public de-
terrence in effect constitutes an imperfect substitute for
private security systems; on the other hand, it may also
increase target spending, since it tends to narrow the
‘cost gap’ for achieving full security. Safety standards
are a relatively weak instrument for the public policy
maker, since it may lead to inefficient overinvestment
in security, especially for the provision of private inter-
target (i.e., indirect) security. We find that safety stan-
dards tend to increase private investments even beyond
the prescribed level: it encourages full security invest-
ment at least for those close to a previous indifference
point. Punishments conditional on an attack being car-
ried out successfully may work in theory, if the punish-
ment can be made contingent on the loss. But it is diffi-
cult to enforce contingencies on the social loss portion.
In addition, the target is subject to limited liability. Note
that the public provision of deterrence compensates for
inefficiencies arising from asymmetries in the targets’
loss distributions as well as differences in their cost of
installing security systems.

To provide incentives for security investment in a
situation where firms face security interdependencies is
a complex task.12 The two main instruments, namely
safety standards and public deterrent against the in-
truder, require a credible commitment by the planner.
Regulatory commitment is necessary for the firms to
agree to the irreversible security investments. The op-
timal level of commitment, which could be achieved
by the regulator by self-imposing penalties for the ex-
post deviation from announced standards and deter-
rence guarantees, may be subject to optimization itself
(cf. [20]).

11Under complete information targets may enter into a direct all-pay contest with the low-loss target leading generally to a mixed-strategy
equilibrium unless one of the targets drops out of the contest by selecting one of its outside options. When entering a rent-seeking contest
(under complete information) at most one target will do so at a gain [2]. The other target will, in equilibrium, be indifferent between the
expected payoffs it receives from the contest and the expected payoffs from its best outside option. The presence of private information (such
as the targets’ respective expected losses) tends to restore a pure-strategy (Bayes-)Nash equilibrium [8].

12The main focus here was on physical security with interdependencies. There is a link to the literature of software security [17].
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Appendix: Proofs

Proof of Lemma 1. Let (p(L), q(L)), L ∈ [0, L̄], be a symmetric
Bayes-Nash equilibrium describing the targets’ security investments
at time t = 1. The pernicious agent strictly prefers attacking target k
directly to attacking it indirectly if and only if ϕdk(Lk) > ϕik , which
by (3) is equivalent to

pk < qk + (1− qk)ρ.

Thus, target k could save costs by decreasing qk somewhat, since it
does not increase the probability of being attacked successfully. Some
of the cost savings can then be reinvested to augment the direct secu-
rity level pk by some finite amount. Hence, target k can profitably
deviate from the equilibrium strategy profile. The proof that there is
also a deviation when the agent strictly prefers a direct attack proceeds
in a similar manner, so that in equilibrium an attacking agent must (at
least ex ante) be indifferent over whether to attack target k directly or
indirectly, i.e., ϕdk = ϕik for all k ∈ K. �

Proof of Proposition 1. We first rewrite the planner’s optimization
problem with the agent’s payoff as choice variable, similar to our proof
of Proposition 3,

max
ϕ(·)≥0

∫ L̄

0

(
−Ĝ(`)

ϕ(`) + δ

`+ δ
− Ĉ(ϕ(`), `)

)
dF (`)

s.t.
L− ϕ(L)

L+ δ
≥ ρ, ϕ̇(L) ≥ 0, L ∈ [0, L̄],

(14)

where Ĝ(L) ≡ G(L)L. By introducing the control u = ϕ̇, it is possi-
ble to formulate it equivalently as a standard optimal control problem,

J(u) =

∫ L̄

0

(
−Ĝ(`)

ϕ(`) + δ

`+ δ
− Ĉ(ϕ(`), `)

)
f(`)d` −→ max

u(·)

s.t. ϕ̇(L) = u(L), ϕ(0) = 0, u(L) ≥ 0,

L− ϕ(L)

L+ δ
≥ ρ, L ∈ [0, L̄].

(15)

The corresponding Hamilton-Pontryagin function is

H(L,ϕ, u, ψ) = ψu−
(
Ĝ(L)

ϕ+ δ

L+ δ
+ Ĉ(ϕ,L)

)
f(L),

where ψ = ψ(L) is an adjoint variable. We first consider a relaxed
version of this problem, without the state constraint (L−ϕ(L))/(L+

δ) ≥ ρ. A solution to this relaxed problem exists [4], and can be ob-
tained using the Pontryagin maximum principle [13]. Indeed, given
an optimal state-control trajectory (ϕFB(L), uFB(L)), L ∈ [0, L̄], the
Pontryagin maximum principle implies that there exists an absolutely
continuous function ψ(L) such that the following conditions are sat-
isfied.

1. Adjoint equation:

ψ̇(L) = −
∂H

∂ϕ

∣∣∣∣
(L,ϕFB(L),uFB(L),ψ(L))

=

(
Ĝ(L)− C′

(
L− ϕFB(L)

L+ δ

))
f(L)

L+ δ
,

for all L ∈ [0, L̄].

2. Transversality condition:

ψ(L̄) = 0.

3. Maximality condition:

uFB(L) ∈ arg max
u≥0

H(L,ϕFB(L), u, ψ(L)),

for almost all L ∈ [0, L̄].

From the maximality condition we obtain that uFB(L)ψ(L) = 0

a.e. on [0, L̄]. Thus, if uFB(L) > 0 a.e. on some interval,
then ψ̇(L) = 0 on the same interval, so that the adjoint equation
implies

pFB(L) ≡
L− ϕFB(L)

L+ δ
= C′−1(Ĝ(L)), (16)

which is a nondecreasing function.13 If uFB(L) = 0 a.e. on some
interval [L̂, L̂+ ε] ⊂ [0, L̄] (for some ε > 0), then

ϕ̇(L) =
d

dL

(
L− pFB(L)(L+ δ)

)
= 1− pFB(L)− ṗFB(L)(L+ δ) = 0,

which is a (separable) ordinary differential equation, with the follow-
ing unique increasing solution (taking into account the known initial
value pFB(L̂)):

pFB(L) = 1−
(

1− pFB(L̂)
) L̂+ δ

L+ δ
(17)

for all L ∈ [L̂, L̂+ ε]. We therefore conclude that the relaxed version
of problem (15) has in fact the same solution as the original prob-
lem (15), as long as the relaxed solution pFB(L) is at least ρ, or, equiv-
alently, as long as L ≥ Lρ, where

Lρ = sup{` ∈ [0, L̄] : pFB(`) ≤ ρ},

given the convention that sup ∅ = 0. Note also that Ĝ(0) = 0 <
Ĉ′(0), so that pFB(L) = ρ in a right-neighborhood of L = 0 and
thus Lρ > 0. Moreover, on [0, Lρ] we have that uFB(L) = ϕ̇(L) =

1 − pFB(L) > 0 (for the relaxed problem), so that ψ(L) = 0. By
continuity of ψ we therefore conclude that

ψ(Lρ) = 0.

In addition, the threshold Lρ can now be expressed in terms of the
primitives of the problem,

Lρ = sup{` ∈ [0, L̄] : Ĝ(`) ≤ C′(ρ)}.

Combining (16) and (17), together with the fact that the second solu-
tion simplifies because (independent of L̂ > Lρ)

(
1− pFB(L̂)

) L̂+ δ

L+ δ
= (1− ρ)

Lρ + δ

L+ δ
,

we obtain the claims of the proposition. �

Proof of Corollary 1. We first note thatLρ as defined in Proposition 1
is nondecreasing in ρ by convexity of C and constant in δ. Yet, as can
be seen in the proof of that proposition, Lρ has no influence on the

13When C is not strictly convex, then it may not be possible to take the (multivalued) inverse of C′, and the solution (17) is likely to be
optimal.
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solution of the relaxed solution, and thus the solution pFB is weakly
increasing in ρ where it is constant and otherwise essentially unaf-
fected by ρ. The parameter δ has no effect on the first policy in (8).
An increase in δ leads to an increase of the second policy at loss L if
and only if (Lρ + δ)/(L + δ) > δ, leading to a generic nonmono-
tonicity in δ. The claims about qFB(L) now follow by considering
Eq. (6). �

Proof of Proposition 2. By Corollary 2 the agent’s payoff ϕ(L)

is nondecreasing in a security-investment equilibrium (p(L), q(L)),
L ∈ [0, L̄], and increasing for all L > L0. For Lk > L0, any tar-
get k’s optimality condition for its payoff maximization problem in
the proof of Proposition 3), the probability p(Lk), which solves

max
pk∈[ρ,1]

{
−G(ϕ−1(Lk − pk(Lk + δ)))(1− pk)Lk − C(pk)

}
,

can be written in the form

g(Lk)

ϕ̇(Lk)
(1−p(Lk))(Lk + δ)Lk +G(Lk)Lk = C′(p(Lk)). (18)

This condition states that the marginal cost of security for any agent k
is in equilibrium equal to the benefit of that from the decreased proba-
bility of attack on target k and the increased probability of uncovering
an attack. Let ϕFB(Lk) be the agent’s expected payoff of attacking
target k when the first-best security policy (pFB, qFB) is implemented
for all targets. Assuming that ϕ̇FB(Lk) > 0, the social planner’s opti-
mality condition (see Eq. (16) in the proof of Proposition 1) becomes

G(Lk)Lk = C′(pFB(Lk)). (19)

The marginal cost of the socially optimal security investment is equal
to the decrease in loss due to the improved detection capability. Com-
bining Eqs. (18) and (19) yields

C′(pFB(Lk)) = C′(p(Lk))−
g(Lk)

ϕ̇(Lk)
(1− p(Lk))(Lk + δ)Lk

> C′(p(Lk)),

which, for the cost function C is by assumption convex, implies that

pFB(Lk) < p(Lk). (20)

Note now that for any (differentiable) security policy p(L) < 1,
L > L0, it is by definition ϕ = L− p(L)(L+ δ), so that

ṗ(L) =
1− p(L)

L+ δ
− ϕ̇(L) ≥

1− p(L)

L+ δ
,

for all L ∈ (L0, L̄], provided that ϕ̇(L) ≥ 0. This means that at a
lossL ∈ (L0, L̄) the steepest increase of any security policy that does
not decrease the agent’s payoff has a slope of (1 − p(L))/(L + δ).
Hence, when ϕ̇(Lk) = 0, it is not possible for the second-best policy
to ever catch up with the first-best policy on [0, Lk], which (taking
into account that under the second-best security-investment policy the
agent’s equilibrium payoff from attacking a target is actually increas-
ing for losses exceedingL0) implies that inequality (20) must hold for
all Lk ∈ (L0, L̄], completing our proof. �

Proof of Proposition 3. (i) Note first that when ρ = 1, the unique
security-investment equilibrium strategy is (p(L), q(L)) ≡ (1, 0)

and there is nothing to prove. We now assume that (δ, ρ) ∈ R+ ×
[0, 1), and consider target 1’s choice of (p1, q1) when all other targets
play according to the symmetric strategy (p(L), q(L)). By Lemma 1
we obtain that q(L) = (p(L) − ρ)/(1 − ρ) for all L ∈ [0, L̄]
and q1 = (p1−ρ)/(1−ρ). Let ϕk = ϕ(Lk) be the agent’s expected
payoff from attacking target k ∈ {2, . . . ,K} and let

ϕ1 = L1 − p1(L1 + δ) (21)

be his expected payoff from attacking target 1, which has an expected
loss of L1 ∈ [0, L̄]. Note that if ρ ≥ L̄/(L̄ + δ) (or, equivalently,
if L0 ≤ L̄), then p1 ≥ ρ implies that ϕ1 < 0 for all L1 ∈ [0, L̄).
Hence, using Eq. (4) we obtain (p(L), q(L)) ≡ (ρ, 0). (ii) Using the
notation established in the proof of part (i), target 1’s expected payoff
Π(p1, q1) is equal to

−P
(

max{ϕ(L̃2), . . . , ϕ(L̃K)} ≤ ϕ1

)
(1− p1)L1 − c(p1, q1).

Using Eqs. (5) and (21) we obtain that this payoff can be equivalently
rewritten in the form

Π̂(p1, L1) = −P(max{ϕ(L̃2), . . . , ϕ(L̃K)}
≤ L1 − p1(L1 + δ)) (1− p1)L1 − C(p1).

We now assume (and verify ex post) that the agent’s equilibrium pay-
offϕ(L) is increasing inL (at least as long asϕ(L) > 0). Thenϕ(L)

is invertible, and

P
(

max{ϕ(L̃2), . . . , ϕ(L̃K)} ≤ ϕ1

)
= P

(
L̃2, . . . , L̃K ≤ ϕ−1(ϕ1)

)
= FK−1(ϕ−1(ϕ1)).

Thus, after settingG = FK−1 and taking into account the regulatory
constraint that p1 ≥ ρ, target 1’s payoff-maximization problem can
be written in the form

max
ϕ1≥0

{
−G(ϕ−1(L1 − p1(L1 + δ)))(1− p1)L1 − C(p1)

}
s.t. p1 ≥ ρ.

(22)

The first-order necessary optimality condition for the problem (22) is,
using the inverse function theorem and the fact that L1 = ϕ−1(ϕ1),

g(L1)L1

ϕ̇(L1)
(1− p1)(L1 + δ) +G(L1)L1 − C′(p1) + λ(L1) = 0,

where λ(L1) is the Lagrange multiplier associated with the inequal-
ity constraint p1 ≥ ρ. By setting L1 = L and realizing that ϕ̇(L) =

1− p− ṗ(L)(L+ δ), we obtain(
1

L+ δ
−

ṗ(L)

1− p(L)

)−1

g(L)L+G(L)L = C′(p(L))− λ(L),

(23)
where g(L) ≡ Ġ(L). The complementary slackness condi-
tion λ(L)(p(L) − ρ) = 0, together with the fact that ṗ(L) = 0

on any interval where p(L) = ρ, yields that

λ(L) =
[
C′(ρ)−G(L)L− g(L)L(L+ δ)

]
+

=

[
C′(ρ)− L

d (G(L)(L+ δ))

dL

]
+

≥ 0. (24)

Eqs. (23)–(24) with the initial condition p(L0) = ρ are equivalent
to the initial value problem (9) for L ≥ L0. For L < L0 we ob-
tain (p(L), q(L)) = (ρ, 0) as in part (i). The monotonicity of ϕ(L)

is established in the proof of Corollary 2.14 �

14A standard result from the theory of ordinary differential equations (see, e.g., [18]) is that since the differential equation in (9) has – when
written in the form ϕ̇(L) = h(ϕ(L), L) – a right-hand side which is Lipschitz-continuous in ϕ and uniformly bounded (the latter holds,
because we know that ϕ(L) lies in [0, L] ⊂ [0, L̄] and is therefore uniformly bounded), there exists a unique solution ϕ(L), L ∈ [L0, L̄], to
the initial value problem (9). Even if L0 = 0, there is no singularity at L = 0, since by assumption C′(0) > 0.
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Proof of Corollary 2. We now verify the monotonicity of the agent’s
equilibrium payoff ϕ(L). Without loss of generality, let us consider
the case where L0 = 0. In that case, the denominator of the right-
hand side of the differential equation in (9) is positive, since by as-
sumption C′(0) > 0. The latter continues to hold for small pos-
itive L, so that the right-hand side stays nonnegative. By assump-
tion the distribution G has the support [0, L̄], so that the correspond-
ing density g = Ġ is positive there on [0, L̄]. Hence, ϕ̇ is positive
and therefore ϕ(L) increasing on [L0, L̄]. Note that it is impossible
that G(L)L > C′(p(L)) in equilibrium, because the slope ϕ̇ must
be bounded from above, for ϕ is uniformly bounded (cf. Footnote 14).
Relation (10) obtains immediately from the monotonicity of ϕ(L),
together with the initial condition in (9). �

Proof of Corollary 3. Example 1 serves as a proof of the generic non-
monotonicity of the security-investment equilibrium (p(L), q(L)),
L ∈ [0, L̄]. �

Proof of Proposition 4. Consider first the effect of an increase of the
number of targets, fromK to K̂ > K. The differential equation in (9)
can be rewritten in the form

ϕ̇(L) =
(K − 1)(ϕ(L) + δ)FK−2(L)f(L)L

C′(p(L))− FK−1(L)L

=
(K − 1)(ϕ(L) + δ)

C′(p(L))

FK−1(L)
− L

f(L)L

F (L)
.

Consider now the point (L,ϕ), and compare the slopes of the trajec-
tories through that point for K and K̂. Indeed, the slope of the latter
trajectory is greater if and only if

K̂ − 1
C′(p(L))

F K̂−1(L)
− L

>
K − 1

C′(p(L))

FK−1(L)
− L

.

The last inequality holds, because F K̂−1 ≤ FK−1. Thus, at any
point in the state space (L,ϕ) the agent’s payoff ϕ̂(L) for K̂ targets
increases faster than the agent’s payoff ϕ(L) for K targets. But the
initial condition ϕ(L0) = 0 is independent of K, so that both trajec-
tories start at the same point (L0, 0). This implies that ϕ̂(L) > ϕ(L)
for all L > L0. Lastly, because of part (i) of Proposition 3, it
is ϕ̂(L) = ϕ(L) for L < L0. Therefore the agent’s equilibrium
payoff is nondecreasing in the number of available targets. This im-
mediately implies that p(L) and q(L) are both nonincreasing in K.

We now consider the effect of an increase in the safety standard ρ.
The integral representation of the initial value problem (9) is

ϕ(L) =

∫ L

L0

(ϕ(`) + δ)g(`)` d`

C′((`− ϕ(`))/(`+ δ))−G(`)`
, (25)

for all L ∈ [L0, L̄]. By the Leibniz rule we obtain

∂ϕ(L)

∂ρ
= −

(ϕ(L0) + δ)g(L0)L0

C′(L0−ϕ(L0)
L0+δ

)−G(L0)L0

∂L0

∂ρ

+

∫ L

L0

∂

∂ρ

(ϕ(`) + δ)g(`)` d`

C′( `−ϕ(`)
`+δ

)−G(`)`

= −
δ2g(L0)L0

(1− ρ)2(C′(ρ)−G(L0)L0)

+

∫ L

L0

∂ϕ(`)
∂ρ

(
[C′(ζ)+ζC′′(ζ)]|

ζ=
`−ϕ(`)
`+δ

−G(`)`

)
g(`)` d`(

C′( `−ϕ(`)
`+δ

)−G(`)`
)2 ,

which implies that

∂ϕ(L)

∂ρ
≤ −

δ2g(L0)L0

(1− ρ)2C′(ρ)
= −

δ3ρg(δ/(1− ρ))

(1− ρ)3C′(ρ)
< 0,

for all L ∈ [L0, L̄]. In other words, the agent’s payoff is decreasing
in ρ for L > L0, and vanishes for L ≤ L0. This implies that p(L) is
nondecreasing in ρ. Differentiating Eq. (4) with respect to ρ yields

∂q(L)

∂ρ
=

(1− ρ)(∂p(L)/∂ρ)− (1− p(L))

(1− ρ)2
,

indicating that it is possible for q(L) to decrease in ρ while p(L) in-
creases. Example 2 provides a concrete instance of this effect.

Lastly, let us examine an increase in the deterrent δ. Differenti-
ating the integral representation (25) of the initial value problem (9)
gives

∂ϕ(L)

∂δ
= −

(ϕ(L0) + δ)g(L0)L0

C′(L0−ϕ(L0)
L0+δ

)−G(L0)L0

∂L0

∂δ

+

∫ L

L0

∂

∂δ

(ϕ(`) + δ)g(`)` d`

C′( `−ϕ(`)
`+δ

)−G(`)`

= −
g(L0)L2

0

C′(ρ)−G(L0)L0

+

∫ L

L0

(
C′( `−ϕ(`)

`+δ
)+

(ϕ(`)+δ)(`−ϕ(`))

(`+δ)2
C′′(

`−ϕ(`)
`+δ

)−G(`)`

)
g(`)` d`(

C′( `−ϕ(`)
`+δ

)−G(`)`
)2

+

∫ L

L0

∂ϕ(`)
∂δ

(
C′( `−ϕ(`)

`+δ
)+
ϕ(`)+δ
`+δ

C′′( `−ϕ(`)
`+δ

)−G(`)`

)
g(`)` d`(

C′(
`−ϕ(`)
`+δ

)−G(`)`

)2 .

As long as 0 < L0 < L̄, we conclude that ∂ϕ(L)/∂δ < 0

in a right-neighborhood of L0, which is unsurprising as the thresh-
old loss L0 for an attack is bound to increase. For larger values
of L > L0 the effect may go in opposite directions, so that it
is possible that ϕ increases in delta for some losses. The mono-
tonicity properties of p(L) and q(L) with respect to δ are identical.
Since ϕ(L) = L− p(L)(L+ δ), it is

∂p(L)

∂δ
> 0 ⇔

∂ϕ(L)

∂δ
> −p(δ) ⇔

∂ ln(L− ϕ(L))/∂δ

∂ ln(L+ δ)/∂δ
> −1.

Concrete instances of the generic nonmonotonicity of (p(L), q(L))

in the deterrent are provided in an example in the main text, which
concludes our proof. �

Proof of Corollary 4. If L0 ≥ L̄, there is nothing to prove. As-
sume that L0 = δρ/(1 − ρ) < L̄. In the proof of Corollary 2 we
have shown that as the number of targets K increases, the agent’s
payoff ϕ(L;K) strictly increases for L > L0. Thus, the security-
investment equilibrium (p(L;K), q(L;K)) decreases in K for L >
L0. Thus, for any fixed L ∈ (L0, L̄), the sequence {p(L;K)}∞K=2
is decreasing and bounded from below by ρ. It therefore converges,
and there exists ρ̂ = ρ̂(L) ∈ [ρ, 1] such that limK→∞ p(L;K) = ρ̂.
Suppose that ρ̂ > ρ. Then target 1’s value of his payoff-maximization
problem must be such that

max
ϕ1

{
−FK−1(ϕ−1(ϕ1;K))

ϕ1 + δ

L1 + δ
L1 − Ĉ(ϕ1, L1)

}
→ −FK−1(L1)(1− ρ̂)L1 − C(ρ̂)→ −C(ρ̂),

as K → ∞, where L1 = L ∈ (L0, L̄), be-
cause limK→∞ FK−1(L1) = 0. Thus, for large K it is best for
the agent to reduce p to a value smaller than ρ̂, which is feasible since
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by assumption ρ̂ > ρ. But this is a contradiction to the monotonicity
of the sequence and to ρ̂ being the limit, which completes our proof.�

Proof of Proposition 5. Given the regulator’s decision variables δ
and ρ, let (p∗(L; δ, ρ), q∗(L; δ, ρ)) be a security-investment equilib-
rium. Ex-ante social welfare is of the form

W (δ, ρ) = K

∫ L̄

0
Π∗(`; δ, ρ)dF (`)−D(δ),

or equivalently,

W (δ, ρ) = −KC(ρ)F (L0) +K

∫ L̄

L0

Π∗(`; δ, ρ)dF (`)−D(δ),

where any firm’s expected equilibrium payoff as a function of its
loss L is given by

Π∗(L; δ, ρ) = −1{L≥L0}G(L)(1−p∗(L; δ, ρ))L−C(p∗(L; δ, ρ)).

Hence,

1

K

∂W (δ, ρ)

∂ρ
= −C′(ρ)F (L0)− C(ρ)f(L0)

∂L0

∂ρ

−Π∗(L0; δ, ρ)f(L0)
∂L0

∂ρ

+

∫ L̄

L0

∂Π∗(`; δ, ρ)

∂ρ
dF (`),

where

Π∗(L0; δ, ρ) = −G(L0)(1−ρ)L0−C(ρ) = −G(L0)δρ−C(ρ).

Using the fact that ∂L0/∂ρ = 1/(1− ρ)2, we therefore find

∂W (δ, ρ)

∂ρ
=
δρG(L0)f(L0)

(1− ρ)2
− C′(ρ)F (L0)−

∫ L̄

L0

λ(`)dF (`).

By virtue of the envelope theorem we have that

∂Π∗(L; δ, ρ)

∂ρ
=

∂L
∂ρ

∣∣∣∣
(p∗(L;δ,ρ);δ,ρ)

= −λ(L; δ, ρ) ≤ 0,

where Lagrange multiplier λ(L; δ, ρ) associated with the inequality
constraint p∗(L; δ, ρ) ≥ ρ is

λ(L; δ, ρ) =
[
C′(p∗(L; δ, ρ))−G(L)L− (L+ δ)g(L)L

]
+

≥ 0. (26)

This implies Eq. (11) as the optimality condition for the socially opti-
mal safety standard ρ̂. Consider now

1

K

∂W (δ, ρ)

∂δ
= −C(ρ)f(L0)

∂L0

∂δ
−Π∗(L0; δ, ρ)f(L0)

∂L0

∂δ

+

∫ L̄

L0

∂Π∗(`; δ, ρ)

∂δ
dF (`)−

D′(δ)

K
, (27)

or equivalently,

1

K

∂W (δ, ρ)

∂δ
=
δρ2G(L0)f(L0)

1− ρ
+

∫ L̄

L0

∂Π∗(`; δ, ρ)

∂δ
dF (`)−

D′(δ)

K
.

By the envelope theorem we have that

∂Π∗(L; δ, ρ)

∂δ
=

∂L
∂δ

∣∣∣∣
(p∗(L;δ,ρ);δ,ρ)

= −
G(L)L+ λ(L; δ, ρ)

L+ δ
p∗(L; δ, ρ) ≤ 0,

where the Lagrange multiplier λ(L; δ, ρ) is as in Eq. (26). Thus, the
first-order condition for the optimal deterrent δ̂ is given by (12), which
concludes our proof. �
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