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ABSTRACT
In the dissertation, which mainly deals with commutative
semi-prime algebras and representations thereof, we first examined the
class of the so-called regular ideals.

Definition 1. Let A be a commutative semi-prime algebra., For any subset

S of A, we define the ideal S by S€ = {acA, ax = O for all xeS}, An

ideal I in A is called regular if I = IS,

In B, the class of the regular ideals, we introduced the fol-
lowing operations:
pm, =M, vi = (nrs)f, 1' =16,
where (I\,) is any subset of B and I any element in B. We showed that,
under these operations, B is a Boolean algebra; since for any subset (Iv)
of B the intersection NI, belongs to B, it is complete; since IA(VI,)

= V(IAIV) » where (I ) is any subset of B ard I is any element of B, it is

distributive,

Definition 2, The algebra A satisfies the countable chain condition

(c.cec.), if one of the assertions in the following theorem holds in A.

Theorem 1, The following assertions are equivalent.

1. Every disjoint family (b,) (i.e. u # v implies bb, = 0) of non-zero

elements is countable;

2. Every intersection nIv of regular ideals Iv is countably accessible
{i.e. lherc exisis a countsbie subfamily (I, ) such thav {ii, = iiL, ).

n n

- In the special case where A = C(X), the algebra of the con-

tinuous complex-valued functions cn the ccampact Hausdorff space X, we

were interested whether or not there exists a strictlv positive measure,

i.e., a probability measure with the property that every non-void open
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subset of X has positive measure, In this connection we got the fol-
lowing result,

Theorem 2., The following assertions sasre equivalent.

1. There exists a strictly positive probability measure on X;

2. For every non=void regular open set 00 in X there exists a bounded

regular positive measure u 260, such that uo(o) is positive for

0

every open set O, which is dense in Oo; moreover, X satisfies the

C.C.Ce (_i_._e,. every disjoint femily of non-void open sets is counta-

ble),
In order to conclude 1. from 2, & slightly wesker condition is suffi-
cient: X satisfies the c.c.c. and for every non-void regular open set Oo
together with any subcollection C of {0, 0 open and dense in Oo} with
the property that the interior of any countable intersection nOn, 0, in
C, again belongs to C, there exists a measure Uo on 60, such that uo(O)
is positive for every member O of C.

In terms of Boolean algebras we proved the following.

Theorem 3. Let B be a camplete distributive Boolean algebra., The fol-

lowing assertions are equivalent.

1. There exists & bounded strictly positive measure ¥ on B (i.e. p # O,

p ¢ B, implies u(p) > 0);

2., For every element Py in B there exists a bounded positive measure u

on B, such that Zu(pi) ¥ 0 for averv disldoint cogucnec Or Wiiich

P, = Vp;; moreover, B satisfies the c.c.c..



In what follows we assume that the representation
U: A = L(F),
wvhere F is any locally convex vector space, has the property that for
every ideal I in A the projection
t+g -~ £, £ecUIF, ge UI°)F,

exists and is continuous.

Among others we proved the following results,
Theorem 4, Let A = C(X), where X is a locelly compact Hausdorff space,

which has a countable base for its topology. let F be a normed vector

space and let the representation U: A — L(F) be faithful, Then there

exists an element ¢ € F', such that the ideal {xeA, <U(x)f,4> = O for

all f in F} reduces to {0}, provided that for every f € F and ¢ € F', the

mapping x — <U(x)f,¢>, x € A, is continuous.

Theorem 5. Assume that the vector space F can be written as the topologi-

cal direct sum of complete metrizable vector spaces Hv. let the spaces H\:

“ggminimal in the sense that there do not exist proper closed invariant

subspaces H of H\’ for which the representation U is faithful., Assume that

the semi-prime algebra A gatisfies the c.c.c.. Then for each v there ex-

ists a vector f , such that U(A)fv is dense in H . Assume, in additionm,

that the spaces H, are Banach spaces and let U(I)f = {0}, where f ¢ F and

I an ideal in A for which I°® = A, imply f = O. Then for each v there ex-

1

ists =n elomont o in { ¢ }Iu) , Such tnat U(A)’¢v is w¥-dense in
uFv
z H *
( u)
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CHAPTER I
INTRODUCTION
In the present work we shall generalize the so=called Gelfand
triples for Hilbert spaces to arbitrary locally convex vector spaces. In
terms of a given operator (or a family of operators) defined on a Hilbert
space H, one often arranges for a triple
H0<—+ H hﬂ-Ha,
where Ho is a certain locally convex vector space (which may be a nuclear
space, a Banach space, etc.,), which is dense in H and for which certain
invariance conditions hold., The space HB is the topological dual of Ho.
For concrete examples see e,g., Ju., Berezanskii [2], I. Gelfand and others
in [10] and [11], R.A, Hirschfeld [14], K, Maurin [18].
We shall consider a representation
U: A — L(F),
where A is a8 commutative semi-prime algebra (i;g. a® =0 implies a = 0)
over the complexes, F any locally convex vector space and L(F) the alge~
bra of all continuous endamorphisms of F. In A we consider a certain
Boolean algebra of ideals. Many of the properties present in case A is
generated by a Boolean algebra of idempotents remain valid or can be for-
mulated in terms of this Boolean algebra of ideals.
Our ultimate aim is to arrange for
Fo‘;* F, F'<—> Fa and F0<—+ F',
where F  is U-invarient (i.e, U(x)F) C F, for all x € A) and the im-
bedding J: F, — F' has the property that U(x)'Jf = JU(x)? for all f € F,

- . P _ - ~ -
anc all x C A; ocCcc rI‘hCUrm ‘0.2.2 u.“.d Tul‘:OI‘t:m h..ju-l.'

In Chapter II we shall investigate the properties of semi-prime rings.
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More specifically we are interested in the class of the so-called regu-
lar ideals; ses Definition 2.1.2. In Chapter III we closely examine the
"simple" situation, where A = F = C(X), the algebra of all continuous
functions on a compact space X, and U: A — L(F) is defined by U(f)g
= fg for all f, g € A, In order to obtain the injection F — F', we need
the n>tion of a strictly positive measure; see Theorem 3.2,3. Finally,
in Chapter IV we shall consider the general situatiorn,

The measure-theoretical tools we need are taken fron [9] and
[13]. For the theory of locally convex vector spaces we use [16] and
(23], where a great many results on (partially) ordered vector spaces can
be found too. We employ the standard properties of Banach algebras as set
forth in [21] and [22]. A treatment of locally convex algebras can be
found in [20] and [26]. For a survey of the properties of Boolean algebras
see [24], For properties of (generalized) spectral and/or scalar operators

we mention [4], [5] and [17] and the references given there,



CHAPTER II
BOOLEAN ALGEBRAS AND IDEALS
1. A Boolean algebra of a certain class of ideals in a ring.

Throughout the sequel A stands for a commutative ring (with
or without identity). The present section is devoted to the comstruction
of a "canonical" Boolean algebra B of ideals I in A. No topology on A
will be needed for the time being,

Given any set S < A, we will write s¢ = {eeA, aS = {0}} for
the annihilator of S in A, (The superscript c¢ is reminiscent of set-
theoretical camplementation.) It is clear that S® will be an ideal in A
(possibly improper) and that S < S®€. We now impose the following

standing hypothesis on A: For every ideal I in A we have IAI¢ = {0}.

Recall that a commutative ring is semi-prime if it has no nilpotents ¥ 0.

Proposition 2.1.1. The following properties are equivalent:

(1)  For every ideal I in A we have IAI® = {0};

(i1) For every ideal I in A, I2 = {0} implies I = {0}
(iii) For every element b in A, b? = 0 implies b = O.

Proof.

(1) => (i1), If 12 = {0}, then I C InI® = {0}.

(ii) => (i), For any ideal I in A, we have (I~I)? = {0}, so IAI® = {0}.
(1) => (iii). Suppose b2 = 0. Consider I = bA, Then ba belongs to

IAI® = {0} for all a ¢ A and so bA = {0}. Hence b € A~AC = {0}.

(iii) = (i). I b € IAI®, then b2 =0, so b = O,
For more information on semi-prime rings, see e.g. [19].
We now adopt the following definitions.

Definition 2.1.2, An ideal I in A for which I = 1¢¢ is called regular,
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Definition 2.1.3. B will be the family of all ideals I (proper or not) in

A, which are regular.

We show that all annihilators belong to B.

Proposition 2.1.4, For any subset S ¢ A we have S€ ¢ B; {0} and A belong

to B.

Sc - SCCC

Proof. We must prove that . The obvious Inclusion S c Scc, im-

ccc. Conversely for any b € S¢€C we nave 1S®¢ = {0} ,whence

plies Sc < S
bS = {0}, so that b € S®, The remaining statements are obvious.
Before we introduce operations in B we agree upon some nota=-

tion., If {I

vs V E T} is a family of ideals in A, then LI, stands for the

ideal of all finite combinations Z’i‘:l a;, where a; € UI\) for i = 1,...,0.

Ir I1 and I2 are ideals in A, I} I, is the ideal of all finite combinations
n

of the form L., a;b., where a; ¢ L, bje I, fori=1,...,n. A similar

notation is used for the "product" I, I I of ideals I, ,...,L.

peee
In B we introduce two operations:

For an arbitrary family (I,), where v wanders over same index set (which
will not be mentioned) and where all I, belong to B, we define

AI\: = Iv’

vi, =(n)® = (z1,) ",
It will be seen that for these operations B becomes a camplete Boolean
algebra, Moreover we will notice a striking similarity with ordinary set

theory. In order to show these properties we will need the following lemma,

Lemma 2.1.5. Let I1 sesesly be 8 finite number of ideals in A. Then

)CC

cc cc ceC
eeool. = e = T-%n N
(IiIz I,) (Iln=- Al) LS -,

fie s elianm

‘the second eguality need not hold for infinitely many ideals.




Proof. It will be sufficient to prove the statement for n = 2, Since
alveys, I, € I nl < Ifcnlgc. we have (1112)°° c (IlnIZ)cc c
(IfcnIgc)cc. By the equality IfcnI:° = (If + Izc)c and by Proposition 2.1.k,
we get (Ifcnlgc)cc = (If + I:)ccc = (If + I:)c = If9NI:c. So there remains
to show that Ifcnlgc c:(IlIz)cc, or equivalently (IIIz)c c:(IfcnI:c)c.
Let a € (I;1,)% Then al, < I and so (aI )nI;¢ = {0}, For b any element
of III:c we have ab is an element of (aIl)nlgc = {0}. So a € (IlIgc)c.
whence aI3® ¢ I, Thus (aI7%)nI’¢ = {0}, Next let b belong to I; I C.
Then ab € (algc)nIfc = {0}, From this we finally infer a ¢ (IfcnIgc)c.
Next we will give an example in which we will see that the assertion
(NIn) €€ = ﬂlgc.
does not hold for countably many ideals In in A, Iet A = C{O,l], the ring
of all continuous complex valued functions on [0,1]. To each rational num-

ber r, 0 < r < 1, we assign the ideal

I, = {feA, £(r) = 0},

Then
NI. = {feA, f(r) = 0 for all rational numbers r} = {0}.
So
(ﬂlr)cc = {0}°¢ = {o}.
But
I: = {geA, gf = 0 for all feIr} = {0},

Hence, IS°= A, from which we see NIZ€ = A,

In the following statement we collect some of the properties



Theorem 2.1.6. The operations A and v satisfy the following rules:

(1) ("Lav on complements")

For (Iv) an arbitrary subset of B we have

(a) AT, € B, (A1) =vyIC e B,
(b) VI, € B, (VI)®= AI] e B.

(ii) ‘"pistributive laws")

For (Iv) an arbitrary subset of B and I € B, we have

(a) v(AL,) = NIvI,),

(v) IA(VIV) V(IAL,).

The family B is a Boolean algebra, for we have

(1ii) O (= {0}) and 1 (= A) belong to B.

(iv) For every element I € B there exists a uniquely determined element

I, € B, namely I = I°, satisfying Il =0 and VI = 1.

Proof.

(i)(a). We will prove that A, = (XIS)C. In virtue of Proposition 2.1.bL,

this will show AI\) € B. For a € AT, = II,, wve have, since I = ISC,

v
aI\c, = {0} for all v. So a.(ZIt) = {0}, whence a ¢ (EIS)C. Conversely, let
a ¢ (Z15)°, Then a(ZIS) = {0} and so bI{ = {0} for all v, Hence

a e ISC = I, for all v, vhence a ¢ [, = AI\).
(1)(b). The first property follows from Proposition 2.1.4, the second is
an application of (i)(a).

-~

In virtue of {i){a), (v) it is suificient to prove one of the

—~

EREAY
E N A A )

equelities, Let us prove the second one. Let I and (Iv) belong to B.
Then it is easy to verify that

1( ZIv) = 2IT,.



Upon taking second annihilators we get:
cc cc
[1(z1 )1 = [2(11,)1°,
An application of Lemma 2,1.5 to the left-hand side yields:
ce cc _ (N ¢ye
1°¢n(21,) ¢ = (M11,)%)°.
Applying the same lemma again we see:
c cce _ ,.CC__cCic _ c
(11,)¢ = (11)°°¢ = (1%1,9)° = (1a1,)".
Hence
c c
In(r1,) % = [N101,)1°,
implying (ii)(b).
Assertion (iii) is obvious.
(iv). Given any I € B, let I, € B be such that IAI0 =0, IVI0 =1,

From InI = IAL =0 we infer I ¢ I°. From (1°%19)° = IVI = 1 we con-

c
clude Icﬂlg = (Icnlo)cc = A® = {0} and thus I ¢ Igc I . Hence I0 = 1°,

]

Remark 1., In terms of lattice theory B, together with the operations p and
V, is called a Brouwerian lattice, See [3] for this and related topics.
Remark 2, We did not use the faect that elements of A have negatives,

For example, we may apply the results of this section to a cone A of pos~-
itive functions.

2. Regular ideals.

In the present section we first shall associate the regular
ideals (I = Icc) of an algebra A of functions on a point set X, to a cer-
tain Boolean algebra of subsets of X, We next address ourselves to the
main topic of the present work, viz, the regular ideals belonging to a

Boolean algebra of idempotents. The results are useful in the spectral

to a Boolean algebra of projections defined on a vector
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Our starting point will be the observation that any subset O
of a completely regular space is open if and only if for every x € O
there exists a bounded continuous real-valued function f on X such that

(1) £(x) # 0, (ii) f = O outside of O,
Now let X be some point set, K a field, and A a ring of K-valued func-
tions on X, Using this idea, we will define open sets in X. A subset O
of X is said to be hk-open if for every x € O, there exists a function
f ¢ A such that

(i) f(x) # 0, (ii) f = O outside of O,
It is easy to verify that an arbitrary union of hk-open sets is =again
hk-open. Moreover the intersection of finitely many hk-open sets is hk-
open., let 01""’0n be hk-open sets and x € nOi. Since for each i, Oi is
hk-open, there exists a function f; such that fi(x) # 0 and f; vanishes
off 0;. Let £ = f ...f. Then £(x) # 0 end £ = 0 off flo,. It is also easy
to verify that for each f € A, the set {xeX, f(x) # 0} is hk-open.
Moreover if L is an arbitrary subset of X then the hk-closure of L consists
of all points x € X, for which f(x) = 0 for all f which vanish on L.
In a formula:

T = {xeX, f(x) = 0 for all feA for which flL =0},
The hk-topology is reminiscent of the classical hull-kernel topology on
the maximal ideal space of a commutative Banach algebra; see [15]. In
fact. if the above function ring A on X happens +o be o Banech zlgebra
with X as its maximal ideal space, then the hk-topology introduced above
is readily verified to coincide with the hull-kernel topology (whence the

notation hk-~topology).



Following standard terminology (cf. P.R. Halmos [12]) a subset 0 c X
will be called a regular open set for the hk-topology if O = interior 0.
As shown l.c. the family of regular hk-open sets is a Boolean algebra

for the operations 0, A0, = 0,n0,, O VO, = (OﬁJOZ)", where O' is the

1
camplement of O in X. In the next sequence of lemmas and theorems we
will establish a one-to-one correspondence between reguler ideals in A

and regular hk-open sets in X.

Lemma 2.2.,1, Let P be a subset of A and form U = U c{xEX, g(x) # o},
gEeP

Then: (i) U is hk-open,
(i1) ffy; =0 <=> £ e PC,
(iii) u* = U {xex, g(x) # 0},
gepPCc
Proof.
(i) The set {xeX, g(x) # 0} is hk-open for g € A and the arbitrary

mion of such sets is open,

(ii) =>: Let flU =0 and g € P, For x € U, we have f(x) = 0 and so

f(x)g(x) = 0, For x ¢ U, i.e. g(x) = O for every g € P and again we have
#(x)g(x) = O. Hence f € P%,

<=: Jet £ ¢ P° and x € U, i.e. g(x) # O for some g € P. Then, since
£ e P¢, £(x)g(x) = 0. So, since g(x) # 0, f(x) = 0.
(1ii) By the above remarks U = MN{xeX, f(x) = 0}, where the intersection

£
is taken over all f for which flU =0, By (i1), U = pn {xex, £(x) = 0},
fep¢
Thus U' = X\U = U {xex. f(x) # 0},
feP®

lemma 2.2.2. Let P be a subset of A. Then P = P°C <=> P = {rea, £| = 0},

where O is same hk-open subset of X.

Proof., =>: Consider 0 = U {xeX, g(x) # 0}, Then O is a hk-open subset
gep*
of X and f|y = 0 if and only if £ € P = P,
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<=: Let P = {feA, f[o = 0}, where 0 is a hk-open subset of X. For every
x € O there exists a function f ¢ A such that f(x) # 0 and £ = 0 off O.
So if I denotes the ideal I = {feA, £ =0 off 0}, 0 = U {xeX, f(x) # 0}.
Thus, by (ii) of Lemma 2.2,1, f|y =0 if and only if ffilxc. Hence
P = I¢, Thus, by Proposition 2,1.4, P = pCc,

Lemma 2.2.3. A subset O of X is a regular hk-open set if and only if

there exists a regular ideal I such that 0 = U {xeX, £(x) # 0},

fel
Proof, (sufficiency) Let 0 = U {xeX, f(x) # 0}, where I = I°C,
fel
Then, by Lemma 2.2,1, 0'* = U {xeX, f£(x) # 0} = O,
felcc

(necessity) Let I = {feA, {xeX, f(x) # 0} < O} where O is regular hk-

open. Since 0 is hk-open, 0 = U {xeX, f(x) # 0}, By Lemma 2,2.1,
fel
1€ = {feA, £ = 0 on O}, It follows that I = {feA, £ = 0 on O} =

= {feA, {xeX, f(x) # 0} <X\O}, Since X\O is hk-open, we get

X\0 = U ({xeX, f(x) # 0}. Again, by Iemma 2.2.1, f ¢ I°C if and only ir
felC

£ vanishes on X\O. Hence I®C = {feaA, {xeX, f(x) # 0} € O}, Since for each

fed, {xX, f(x) # 0} is hk-open, we infer

1°¢ = (fea, {xeX, f(x) # 0} < Int(D)}.

Since O is regular hk-open, O = Int(0), whence I = I°C,
Incidentally we also proved

Lemma 2,2,L. A subset P of A is a regular ideal in A if and only if there

exists a regular hk-open subset O of X such that

™
i

~ {feh, {xeX, f({x) F 0} c 0}.

As a consequence, we obtain (notation from [12])
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Theorem 2.2.5. Let X be same point set, K 2 field and A a ring of K-

valued functions on X. Let X be supplied witk the hk-topology. Let B be

the Boolean algebra of all regular ideals in A and B be the Boolean al-

gebra of all regular hk-open sets in X.

Then, there exists a mapping u: B =+ B and a mapping v: B > B, such

that vou = identity on B and uov = identity on B. Moreover if I, I, and

I, belong to B, then u(IlAIz) = u(Il)Au(Iz), u(11v12) = u(Il)Vu(IZ)

and u(I®) = u(I)'. Similarly, v has the properties:

V(OIAOZ) = v(Ol)Av(Oz), v(OIVOZ) = v(Ol)Vv(OZ) and v(0') = V(O)c,

vwhere O, O1 and O2 are regular hk-open sets in B.

Proof. Define u: B -+ B by u(I) = U {xeX, £(x) # 0}, where I ¢ B, and
define v: B » B by v(0) = {feA, {:2)1(, f(x) # 0} « 0}, vhere O € B,
Then, indeed, by lemma 2.2.3, u maps B onto B and vou(I) = I for all

I ¢ B, By Lemma 2.2.L4, v maps B onto B and uov(0) = O for every O € B,
By virtue of these facts and since B and B are Boolean algebras, it will
be sufficient to prove that u(IlAIZ) = u(I1 )Au(Iz) for all Il’ I2 € B
and that u(I®) = u(I)' for all I ¢ B.

By definition

U {xex, f(x) # 0},
ft:Ilr\I2

u( IIAIZ)

It is easy to verify that

U {xeX, f(x) # 0} U {xex, f(x) # 0}nU  {xex, £(x) # 0},
f’s:Ilr\I2 feI, fe:I2
wnence )

u(I Al,) = u(I)nu(I,) = u(I )au(I,).

This holds for all I1 and I2 € B.
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If I € B, then by definition u(I) = U {xX, £(x) # 0},
So, by Lemma 2,2.1, u(I)' = fgIc{xex, £(x) # 0} = u(1%).

Notice that if A = C(X), the algebra of all continuous com-
Plex valued functions on the compact Hausdorff space X, then the hke-
topology for X coincides with the usual topology.

Next we shall, in a natural way, construct an algebra of
"simple functions" belonging to a Boolean algebra. let B be a Boolean
algebra under the operations A, V and ', Its elements will be denoted
by p, @, ¢+« Let K be a field with members A, u, ... Let § be the set of
all formal finite combinations of disjoint elements in B, i.e. an element
f 5 is of the fomm £ =7 A;p;,
where X, ,...,2) € K, Py secesPy € B and Pi APy = 0 whenever J # i.
Formally, we define a scalar multiplication, a multiplication and an
addition as follows:
If £ = ziglxipi and £, = ZJEIquJ belong to §,

then Af) = I, 0 AAps, for all A e K,

. n.m
£195 = T3t y=r iMgPiMy

= y.0 ¢ m . ) Dy p. Aq’? ' m ' '
and f+ f, zl=1zj=1(xl + uj)pjAqy + Ei=lklp1Aq1.Aqm + Zj=lquJAp1A..Apn.
We call an element f = Eiflkipi e'§ trivial if X; # O implies
p; =0 end if p; # O implies X; =0 for i = 1,...,n. An element
- n . . = m .
f1 zi=lxipi is said to be equivalent to f2 £j=lujqj’ notation f; ~ f,,

if the element

51212321(*1 - UJ)PiAqJ + LBAspiaalac.ag) + zjgl(-uj)qJ p;A..Ap;

is trivial, This relation is an equivalence relation indeed.
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If we do not distinguish between elements in S and their equivalence
classes, the (scalar) multiplication and addition, defined above, makes
S =3/, into an algebra over K. The class of the trivial elements will
become the zero element in S and (-1)f will be the negative of f for each
f € S, Upon identifying p and (the class of) l.p for each element p € B,
B is in a natural way s subset of S.
Under these identifications we have for instance:
pq = pAg, p +q-pa=paq, p+p' =e,

vhere p, q € B and e is the identity in B,
Example 1, If B is a Boolean algebra of projections defined on a vector
space over K, Then S is the algebra of operators spanned by B.
Example 2, If B is a Boolean algebra of subsets of same point set X, then
S is (iscmorphic to) the algebra of all simple K-valued functions spanned
by the characteristic functions of members of B.
Example 3, Let B be the Boolean algebra of the regular open sets of a
topological Hausdorff space X, Let S be the collection of all K-valued
functions of the form zizlxixoi' where Jor every i, O; is an open set in
X, xoi its characteristic function and where all A belong to K. Two func-
tions fl and fé in § are said to be equivalent, denoted by f} ~ £y if
they coincide on same open set, which is dense in X, Then it is readily
verified that S = 5/N is isomorphic to the canonical algebra, as construc-
tea above, belonging to B.

A Boolean algebra B is said to be camplete if for every de-

creasing family (p,) < B, its meet Ap, exists. It is called distributive

if for every decreasing femily (p

-ty

a) and every element p € B, pVipg

= A(pra).
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We will prove that, for complete distributive Boolean algebras, an ideal
I €S is regular (i.e. I = I°C) if and only if I is of the form I = pS,
where p belongs to the underlying Boolean algebra.
We first prove the following lemma,

Lemma 2.2,6, Let B be a complete distributive Boolean algebra, S as

above, and let (p,) be a decreasing family of elements in B.

M ﬂpuS = (Apa)s.

Proof. Denote Ap, by Pgye For any P, € (py) we have PgP, = pBI\pa =

= &pspcl = {.\p(1 =D, So, if f ¢ S, then pof = pgp,f for all 8, whence

PyS < ﬂpaS. Conversely let g = Ziglkiri € npaS. We will show that P& = B,
whence ﬂ(paS) € poS. We may assume that A, # 0 for all i. Then

pog = ziglkipori = l l 1(Ap )r Z n All\(parl) Since

g = zin]_)‘lrl € flp,S, we certainly have that g € p S. Hence, there exist.

constants uj, J = l,....m together with elements qg, J = 1ye4.,m such

T2 Ar, =12
that =1 1r1 J=l J an

Multiplying both sides by ry and by qJ we have Airiq_J = quan T

and such that j # k implies qJ =0,

Hence, if paqg‘ri # 0, we see that ug = A; and so

—ym, % @ _ em a
Apry = (5202 my)rs = Tymguypaayry = ZyzgAiPaayTye

Thus ri=2 r,whenceprl=r..

5= 1"“% i

= n = n = n =
So we have that pg = I, . AA(pory) = B3890 ATy = L,z 1)‘ r, = 8.
Theorem 2.2.7. Let B and S be as in Lemma 2.2 6. An ideal I © S is regular
ir and only if I = pS for some p € B,
Proof. (sufficiency) Iet I = pS, where p € B, Then f € IS if and only if

fp = 0, or equivalently, f = f(e = p) = (e = p)f. Thus (psS)€ = (e - p)S,

c
whence (pS)€C = ((e ~ p)S) = pS.
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(necessity) We will apply Zorn's lemma. Consider a family of increasing

cc. Since B is a complete Boolean algebra, we

idempotents (p ) c I =1
have é(e - pu) = e - p,, for same p, € B. Thus by the previous lemma ve
have that (e - p )S = (e - p )S.
a a 0
We will prove that p0 € I and that pupo =p for all a,
a
We have I>U{pS, pe I, pe B}
and so Icn{(ps)S, pe I, p e B}
={(e - p)S, pe I, p e B} (as above)

c (e = p,)s = (e = 1 )S,
ce

for which we see that poIc = I, Moreover it follows

{0} and so P, € I
that pa(e - po) = 0 or pp, = P, for all a. Consequently ve may apply
Zorn's lemma, to the effect that there exists s maximal element p ¢ IaB.
Suppose there exists an element £ ¢ I, £ ¢ pS. Then, by assumption, the
element f is of the form £ = Ei:llipi, where Ai # 0 and pipJ = 0 when-
ever J # i, Since, for every i, pif = Aipi it follows that every Py € I,
since £ ¢ pA, at least one p'j ¢ pS. Consider q = PJVP = pJ +p- P4D.
Then q ¢ I and ¢ # p and pq = p. Hence p is not maximal, which is a cor-
tradiction.
3, The countable chain condition,

In the following chapters we will need a certain countability
property of the ring A. We aim to generalize the results on Boolean al-
gebras of projections in locally convex spaces as set forth in [11 ana

[25]. It will be convenient to give five seemingly different conditions,

which turn out to be equivalent.
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Lemma 2.3.1. Let A be a semi-prime ring and I an arbitrary ideal in A,

Then there exists a family (bv) c I such that the following conditions

are satisfied;

(1) The family (bv) is mutually disjoint: b\,bu =0, if v # u,

(11) The family (b ) is not triviel: I°¢

= (zo,) "

Proof. Consider the collection of all subsets of I, which satisfy the
condition that any two distinct elements have product O, An application
of Zorn's lemma applies to the effect that there exists a maximal subset
¢ = (b,) having this property. We claim that the family ¢ also satisfies
(ii). Upon letting I, =b,A, we Lave to prove that 1°€ = (ZIv)cc. Since
II, < I, ve only need to shovw that 1°¢ ¢ (‘[.I\,)c:c = (ﬂIS)c or, equivalent-
ly, 1€ > ﬂIj; the latter amounts to IccnnIS ={ 0}, which, by lemma 2,1,5,
in turn is equivalent to InﬂIS = {0}. Now consider any ‘bo in InﬂIS.

For every u we have bqu < Iunﬂls c Iunlﬁ = {0}. Hence, b0 € I annihi-
lates all members of ¢, and so b, = 0.

For a more concise formulation of the next theorem we shall
adopt the following terminology: a family of ideals [ring elements] is
said to be disjoint if any two distinct pair has zero intersection
[product]. Furthermore, we shall say that an intersection NI, of ideals

is countably accessible if there is a countable subfamily of indices (un)

for which NI, = NI, .
a® n %

We now are apie To derive the tollowing result.



17

Theoren 2,3.2. Let A be a commutative semi-prime ring. Then, the follow-

ing assertions are equivalent,

(i) Any disjoint family of arbitrary nom-zero ideals is countabvle;

(ii) Any disjoint femily of arbitrary non-zero regular ideals is countable;

(iii) Any disjoint family of non-zero elements in A is countable;

(iv) The intersection of any decreasing family of regular ideals is

countably accessible;

(v) The intersection of an arbitrary family of regular ideals is counta-

bly accessible,

Proof, We will show (i) => (ii) => (iii) => (iv) => (v) => (i).

(1) => (ii). Trivial.

(i1) => (iii), Let & = (b,) be a family of nan-zero elements in A such that
bBba =0 for B # a, It is to be snown that ¢ is at most ~ountable, Consider
the ideals I = byA. By Lemma 2.1.5 we have Iicnlgc = (IaIB)cc = {O}CC =

= {0} for B # a. Thus ¢ is at most countable, since by (ii), the family
(Ia) is so.

(iii) => (iv)., Let & = (Ia) be a family of decreasing regular ideals., We
have to prove that there exists a counteble subfamily (an) such that

NIy = NI, . Consider the ideal I = EIE. By the previous lemma there exist

%
elements bv € I such that

,\
e
o
o'
I

=0 for v#u ,

(b) 1°€ = (zb )",
By (iii) the family (b,,) is at most countsble, say (bn). Since the family
) iz increasing, so we may assume that

(Ia) is decreesing, the femily (I

e
for every n, b, € I“n' for some a.
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Thus Ib_A cII, , whence
n

¢ _ c,ec _ _cc _ ce c \cc _ c
(ML) = (519)°° = 1°¢ = ()% e (31 )™ = (A1, )°.
It follows that I, > NI, . We have trivially that ﬂIan:o ni,.
n
This proves the assertion,

The implication (iv) => (v) follows from the next general re-

sult, which has some interest of its own,

Lemma 2.3.3. Let X be a point set and C a collection of subsets of X

which is stable under countable intersections and which has the following

property: The intersection of any decreasing family in C is countably

accessible,

Then, every intersection of members of C is countably accessible.

Proof. Given any subcollection T of C, we must exhibit a countable subset
8 of ', such that N® = nF. Let fo be the collection of all finite inter-
sections of members of 7: Consider the family of the countable subsets ¢

—

—
of fo. We shall write 01 ~ 452 whenever ﬂd?l = f1¢_, It is easy to verify

2.
that this does define an equivalence relation. Denote the class containing
¢ by ¢. We now define a partial order in the set of these equivalence
classes: 51 > 52 if for representations we have ﬂ°1<: n¢2. Again it is
readily verified, that this relation defines & partial order. Next, let
(3 ) be a descending family and write ¢, = {L, ., n € N}. Since C is
v v ot
stable under countable intersections, each gLV,n belongs to C.
Oince the lamaly &v is descending, there exists, Dy assumption, a counta-
ble subset {¢, } ¢ {¢ } , such that
n v
gniL, L e &,} = fn{L, L e Q"’n}'

The right-hand side features an intersection of countably masny memhers of

/0 Let ¢ be the set of these elements.
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Then, clearly, ® is greater than Bv’ for each v. Hence, by Zorn's lemma,

there exists a maximal equivalence class amax'

Claim: n{L, Le ?ﬁ = M{Ly Le dpanle
Suppose not, then, since 4{L, L e °max} certainly contains p{L, L ¢ ?ﬂ,
there exists an element L0 € 5rsudh that
ML, Le <bm8x}nL0 # ML, Le dpax}.
then °o is a countable subset of 3; for which

Let ¢, = {LnLo, L e °ma.x}'

3

0 > Pmax and ¢0 # Smax® This violates the maximality of ®naxs Whence

the statement,

In order to show the implication (iv) => (v) we need only to
remark that the set of regular ideals is stable under countable intersec-
tions. (We even know that it is closed under arbitrary intersections.)

(v) => (1), Let ¢ = {I,} be a family of arbitrary non-zero ideals satis-
fying IBnIa = {0} for 8 # a. It is to be shown that this family is
countable. Consider the family of regular ideals {Ig}. By (v) there exists
a countsble set {Io } such that nlzn = NI, Claim: ¢ = (T, Y. If not, o

would contain I0 with I, # I, for all n. Then, I nl, = {0} and so
n

%n

c e ¢
I, ¢ Ian for all n, whence I0 Cc ﬂIan = Il

in the semi-prime ring A. This proves the assertion.

c
Hence I0 c Io and so0 Ic = {0)

Remark 1. As the proof shows, the theorem remains valid if everywhere the

the expression "countable™ is replaced by "of cardinality %%", where

IS {
) X o
0

Remark 2, Condition (iii) enables us to campare our results with results

(SN
)

of various suthors [1] and [25].

Remark 3. Condition (v) will freguently be used in this sequel.
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We are now ready to define the countable chain condition.

Definition 2.3.3. A commutative semi-prime ring gatisfies the countable

chain condition (ec.c.c.) if it satisfies one of the five conditioms of

Theorem 2,3,2,

Corollary 2.3.4. Let X be a campletely regular topological space and A

the algebra of all bounded complex-valued functions on X. The following

assertions are equivalent:

(i) A satisfies the countable chain condition;

(ii) Every disjoint family of non-empty open sets in X is countable;

(1i1) Every family of open subsets (Oa) of X contains a countable sub-
fami 1y (oan) g_tgh_t_hit_UOan is dense in Uoq.

Proof. We will show (i) <> (ii), (1) <= (iii).

(1) => (ii). let (Oa) be a family of mutually disjoint open subsets of

X, Then, since X is completely regular, there exists for each a a bounded

continuous function f, such that fy # 0 and fy = 0 off Oy. By the counta-

ble chain condition for A, the family (f,) is at most countable and so is

the family (0q).

(i1) => (1). Let (fa) be a disjoint family of non-zero functions in A. We

will show that (f,) is countable, Consider the family of the open sets

04 = {xeX, fa(x) # 0}. Then, B # a implies 0"y is empty, whence the

result.
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(1) => (iii). Let (oa) be a family of open subsets of X.
Consider the set of ideals {Ig; Ig = {feA, £ = 0 on O4}}.
Then, by Lemma 2.2.2, Ia is regular for each a. On account of the
previous theorem item (v), there exists a countable family (I“n) such
that ﬂIun = fi1,.
Whence, {feA, £ = 0 on ann} = {feA, £ =0 on UOa}.

If Yo, were not dense in UO,, there would exist a point x, e UO, and
n

an cpen neighbourhood U of x

o such that (goan)nu = ¢ and x, € UnUO,.

Since X is completely regular there exists a function fo € A such that

fo(xo) # 0 and f, = 0 outside of UnU0,, Thus f, € ﬂIun and f0¢ 1 P

contradiction,

(iii) => (i). lLet (I4) be en arbitrary family of regular ideals. We will

show that there exists a countsble subfamily (Ia ) such that NI, = NI4 .
n n

By Lemma 2.2.2, we know that for every a there exists an open subset O,

of X such that I = {feA, £ = 0 on Oy}.

Then ML, = {feA, £ =0 on Oy} = {feA, £ =0 on U0},

But there exists a countable subfamily (Cy ) such that U0, is dense in

n

n

UO,. Hence NI, = {feA, £ =0 on UO%} = nxan.

Coroliary 2,3.5. lLet X be a completely regular topological space which

satisfies the countable chain condition and let O be an open subset of X.

Then there exists a countsble increasing family of open sets (0,) such

< & aud UGn is dense in O,

-t —t
3
n —.

vis

o}
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Proof. Since X is completely regular and O an open subset of X, there
exists for each x ¢ O a bounded non-negative continuous function f such
that f(x) # 0 and £ = 0 off O, Hence the set O can be written as

0= g{xex, £(x) # 0},
where the union is taken over all bounded non-negative continuous func-
tions f, which vanish outside of 0. By the previous corollary there
exists a countable subfamily (f,) such that
g{xeX, fn(x) # 0} is dense in O,

Without loss of generality we may assume that 0 < fn(x) < 1 for all x
and all n, Define fy(x) = Zn:l2-nfn(x), then f; is bounded, continuous
and non-negative. Moreover g{xex, folx) # 0} = {xeX, £ (x) # O}.
1y

Finally let O, = {xeX, f,(x) > n~
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CHAPTER III
SOME COMMENTS ON STRICTLY POSITIVE FUNCTIONAILS
1. Preliminary remarks,
This chapter is entirely devoted to an existence problem on
positive measures. let A be a commutative C¥*-algebra. A positive funce

tional ¢ € A" = (A, ||-])' is said to be strictly positive if £ e A, £ # O

implies <f*f > # 0, Does A possess a strictly positive functicmal?
Equivalently, let X be a compact Hausdorff space, Does there exist a
strictly positive probability measure, i.e. a regular positive Borel
measure u such that u(X) = 1 and such that, for every non-void open set
0, we have u(0) > 07

There are a few well-known cases for which the answer is
affirmative,

> 2'n6n, where 6§ is the point

First, if X is separable, we may take ¢ = zn=l

evaluation at the nth

element of a dense sequence in X,
Second, if X is the closure of an open subset of a compact group, one may
take the Haar measure; see e.g. [13], Chapter XI.

Let A be a cammutative C*-algebra, Then the existence of sa

strictly positive functional ¢ € A' implies that A satisfies the counta-

ble chain condition. Let {fY, Yy € T} be a family of positive elements in A

for which Hlei = 1 for all vy €T and lesz = 0, whenever Y1 # Y,. We will
show that I' is countable., Let & be any positive number and consider the
set

g = {yel, <f.,6> 2 8},
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Claim: is finite, In fact, if not, then I'  would contain at least

Ts 5
countably many distinct elements Yl’ Yysee o The sequence {gk}, defined
by

g = IS8, keH

i
would have the properties: [|g,|| = 1 for every k and
=y kK

<g, > = I B <f > > kS,
Bk i=1 Yi’

We may suppose that (¢} = 1, whence

v

1= llggll > <gx,$> 2 k6,
for all k, which is impossible.
Hence, I'y is finite and thus T = u{r, , n = 1, 2,..} is countable, indeed.

We also have the following easy proposition.

Proposition 3.1.1. Let ¢ be a positive functional on the commutative

C*~algebra A, The following assertions are equivalent:

(1) The functional ¢ is strictly positive;

(ii) For every non-zero ideal I in A, <IA,¢> # {0},

Proof. (i) => (ii). Let 0 # £ € I, then f¥*f ¢ IA and <f*f,¢> # 0.
(ii) => (i), Let £ ¢ A, £ # 0. Consider the ideal I = fA, Then
<IA,¢> # {0}, i.e. there exists an element h € A such that <fh,¢> # O
and so by the Schwartz inequality:
0 # |<fh,¢>|2 5 <f%f,¢><n%n,¢>,
whence <f#*f > # 0,
It, therefore, seems natural to consider ideals of the form
I4 = (feh, <fg,¢> = O for all geA},

where ¢ is any element of A',
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Notice that if A has an identity, then I¢ is the largest ideal in the
kernel of ¢, Then the task will become to prove the existence of func-
tionals ¢ for which I¢ = (0}, As pointed out above, it is necessary to
impose the c.c.c. on A. This, however, does not seem to be sufficient.
The reason is that the c.,c.c. essentially says something about regular
ideals: IlnI2 = {0} 1mplies IfcnIgc = {0}, or in terms of open sets
0{\02 = ¢ implies Int(al)nInt(Ez) = ¢, where Il, 12 are arbitrary ideals
and 01, O2 are arbitrary open sets, respectively,

2. Regular functionals and normed algebras,

In this section we will consider a topological algebra which
is commutative and semi-prime., Moreover we will assume that for every
ideal T < A the "projection mapping" p: IA + 1A — 1A, defined by
p(a + b) = a, aeg IA, b ¢ ICA, is continuous. Remark that a C*-algebra
satisfies all these conditions. By A' we will mean the totality of all
continuous functional~ defined on A, We will say that a functional ¢ e A'
is regular if I is regular (i.e. I;C = I¢). -

Example, Let A = c[0,1], equipped with the supremum norm and g ¢ A, Then
the functional f .;_%f(t)g(t)dt is regular,

One of the problems we face will be whether or not there exist regular
functionals, The following lemma gives sufficient conditions in order

that the regular functionals separate the points of A,
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Lemma 3.2.1. Iet the topological commutative semi-prime algebra A satis-

fy the following conditions:

(i) The topology is locally convex;

(ii) For every ideal I, the mapping
p: IA + ICA — 4,
defired by
p: a+b—+a, ac€ IA be IC,

is continuous;

(i1i) For every regular ideal I, I, # {0}, there exists a functional ¢,

such that <IA,$ > # {0}, for every closed ideal I for which

Icc=I.
0

Then ﬂ{I¢, $ regular}! = {0},
Proof, Let I = n{I¢, ¢ regular}. By Theorem 2,1.6 Iy = I§C. We first
prove that ¥ € A' implies Iﬁc > Io. Suppose not, i,e. assume Igcnlo # Io
for some ¥,
Consider the functional

- .cc ¢

Vot Iy A+ TA ¢,
defined by
c
W

Then 7170 is continuous on its domain. Let wo be a Hahn-Banach extension

Tp: a+b = <d,¢> ,ac Iz, bel

of ?70 to all of A, Then clearly I;c < I‘JJ . For the converse conclusion
0

we have by detinition

[}
o

I, = {xeA, XY ¥,> for all yeA}

¥

]
o

< {xeh, <xb,¥v> for all bEIE}

< {xeA, <xby,¢> = 0 for =1l bely, all ycAl

-~

= {xeA, xIy, ch}'= Iic.
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We conclude that IS¢ = I, . Our sbove indirect assumption now becomes

] Yo

= cc:: = = ce
I = (I, I8 = I,} Ioano Il #1,

which is impossible, Consider now the ideal I, AI , where ¢»0 is an ele-

¢y 0
0
ment in A' for which <IA,¢0> # {0} holds for every closed ideal I <€ A
with 1°¢ = I,. Then, by the definition of I, , we have
0

<(I¢OAIO)A’¢O> = {o}o
On the other hand, by the property of ¢, and assuming that I, # {0},
we have

<(I¢0nIO)A.¢O> # {0},
Thus, I0 = {0}.

The proof of the next lemma is rather technical.

Lemma 3.2.2. Let the topology for A be defined by a norm. Let again A be

semi-prime, commutative and let (ii) of the previous lemma be satisfied.

Let (%;) be & countsble family of regular functionals in A'. Then there

exists an element ¢0 € A' such that I¢ = ﬂI‘b .
e n

0
Proof., We will construct a sequence of regular functionals (wn) such that

for all n:
(1) (gl < 2,
. - N
(li) Iwn mSnI¢n’

(111) <Dd,¥> = D, for all b € Iy A.
n

>
n+l
We will assume that |l¢nH < 1 for all n. The construction employs by in-
duction. First, let ¥ = ¢1. Now let the functionals ‘l’l,..,‘l’n be con-
structed in such a way that
() jiopll s2 ~€¢, k=1,..,n 1>€>0,
(R = n T ~T Y Y. -
Ty T igteys B ESD
c
(e) dh> = <0,¥>, n2k21, be Iy A
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We will construct a regular functional ¥_,_ such that |[§ [ < 2 - 21
n+l n+l
and the family ¥ ,..,¥ ,, satisfies (b) and (c¢) with n replaced by n+l.
By (ii), there exists a constant ¢, such that, for all a € Iy A and
n

b e Ig, A, the inequality llall < cjjla + bll is valid,
n

Define
- c
" t Iy A+ Iy A+ C
n+l* v, v
by
Eh+l: a+b —+_¢ <a,¢n+l> + <b,y,>,
2°n

where a ¢ Id’nA' be IgnA.

< > + <a+b,¢n>|

Then |<a + b’-&‘-n-l-l)l = 8364y

|_e
2cn
_e fiajl + (2 = €)jja + bll

2crl

ecylla + bff + (2 =€) Ja + ll
2cn

A

A

= (2 - 27%) ja + by
Let ¢, ,, Pe & Hahn-Banach extension of Yn+1 to all of A, so that
|<x,ip41>] < (2 = 27Te)hxi)
for all x ¢ A,
Then, the family ) sees¥ns) Satisfies (¢). Let us prove (b); then Yoep
is automatically regular.
By definition

I th

{agA. <ax_h_.~> = 0 for 211 xcAl
n+l -

¢ {aeh, <aby,y > = 0 for all belj , =11 yeAl}
n

= {acA, aly c Iy}
i *n ¥n

{acA, al; < I, IS = {0}
by Ty iy
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Hence I Iy nl
wn-fl wn "n*-l

{aeIwn, <aX,yn41> = 0 for all xeA}

(by definition)

0 for all xeA}

(definition of ¥

>
n+l

n+l) {85I¢n. <8x,¢

I, nI
wn ¢n+1

(induction othesis =1 ALy nI .

The sequence (wn), obtained in this way, clearly satisfies the following
conditions
(1) ltw il <2 for all n,

(ii) I, ¢ I, form2n,
m

"n
(ii1) <b,¥p> = b9 > form >n and b ¢ Iff,nA,

i N, = nI, .
(lV) wn nd’n

Finally, let ¢ = 20y . We claim that Iy = ﬂIq,n. We shall again
0 0

En=1
use induction, First, we prove that I¢ C3I¢ e If a e I¢ » then

Y 1 0
<ax.¢o> =0, for all x € A, so certainly <aby,¢0> = 0 for all b ¢ Icl,

all y ¢ A. But, by the properties of the sequence (@n), we have

2™P<aby,¥,> = I

1

<aby’¢o> = Zn= n=1

> 2'n<aby,w1>,
and so
c c
whence
ce
ae Il = Ty W
¥ wl

We next show that I. <« I, implies T, « T .
P9 "n Y0 ¥n+1



By definition, we have

I% = {ael <ax,$,> = 0 for all xeA}

¥n’
{“Iwn. Zk:12'k<8-x.wk> = 0 for all xeA}

(by the fact that Iwn c Iwn_i: 61*1)

(ael, , E_,,278<ax, > = 0 for all xeA}
n

-k

laely , T 27 <sbx,>=0 for all bely , all xeA)

¥n+1

k=n+1

(by definition of yy)

{aeIwn, zk=g+12'k<abx,wn+l>=o for all bely , all xeA}
n+l

= {acl, , aIf I
wn wn+1 < ‘bn-o-l}
= {ael aIS I 1. = {o}}
o wn' wn+1c wn+1n wn+1
=1 AIS¢ =1 .
wnn wn+1 wn#-]_

It follows that I, ¢ NI, . The reverse inclusion ﬂIw c I¢ follows
¢0 wn n 0

directly from the definitions.

Theorem 3.2.3. Let the topological commutative semi-prime algebra A satis-

Iy the following conditions:

(i)  The topology is defined by & norm;

(ii) For every ideal I, the mapping p: IA + I°A — A  defined by

c
p: a+ b —* a, vhere a € IA, b € I A, is continuous;

(iii) The algebra A satisfies the countable chain condition.

Then the following assertions are equivalent:

(a) For every resunlew idesl I +# {0

o
()
ck
i

such that <IA,¢0> # (0} for every closed ideal I for which I€¢ = IO.

(b) There exists a functional wo such that Ilb = {0},
0
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Remark. The word topological may be cmitted if in assertion (a) "every
closed ideal I for which I€C = IO" is strengthened to "every ideal I for
which 1°€ = "

Proof. (b) =» (a). Let I, be a non-zero regular ideal (that is,

IS = I # {0}) and let 1°¢ I . Then <IA > # {0}, In fact, if

{0} and so {0} = I°C¢ = I.

<IA,xb0> = {0}, then I ¢ Iwo
(a) = (b). By Lemma 3.2.1 we have {0} = ﬂ{I¢, Igc = I¢}. From the
CeCeCay We infer that the intersection is countably accessible and so
there exists & countable family (¢n) of regular functionals such that
{o} = nI¢n' But, by Iemma 3.2,2, we know that there exists a functional
wo € A' such that Iw0 = ﬂI¢n.

3. Strictly positive functionals.

In this section we shall aspply the preceding results to a
commutative C*-glgebra. We follow standard terminology in calling an
element ¢ ¢ A' hermitian if the functional y*: x — <x¥,> coincides
with ¢ or, what is equivalent, ¢ takes real values on the hermitian ele-
ments of A. A functional ¥ € A' is called positive if it takes non-
negative values on the positive elements in A, It is well-known that a
positive functional is hermitian. Every ¢ in A' can be written in the
form ¢ = wl + iwz, where wl and wz are hermitian: simply let
wl = (¢ + o*)/2 and WZ = (¢ - ¢*)/21, We also know that every hermmitian
¥ € A' admits of a Jordan decomposition ¥ = ¢1 - ¢2, vhere ¢1 and ¥

2
are positive functionals in A' and ji¥ii = (¥ll + |)¥,]| (See [7](2.6.4));

. . 1.\
is even unigue {([7]{22.3.%),

according to Grothendieck. this decomposit

[

on

whether or not A is commutative).



It follows that any ¢ € A' can be uniquely represented in the form

L
$ =5 i,

with ¢1,¢2 s ¢3 and ¢h all positive,

The contents of the next lemma is that for suitable chosen positive funce

) _ < b .n _
tionals ¢1, ¢2, ¢3 and ¢“ for which ¢ = Zn=11 ¢n, we have I¢ = nI¢n.

It then easily follows that for

_ . b
¢0 - zn=1¢n

we have
I¢0 = I¢.
We also need the fact that, for any two positive elements al and a2 in A,
we have
{heA, 0 <h s a + a,} = {heA, 0 ch <a}+ (hed, 0 <h < az}.
It then follows that for ¢ any hermitian functionsl the mapping
a — sup{<h,y>, 0 < h < a}
is linear on the cone of the positive elements in A,

For more details on vector lattices see e.g. [23].

Lemma 3.3.1. Let A be a commutative C*-algebra and let ¢ € A'., Then there

exists a positive functional ¢0 € A' such that I¢ = I¢0.

Proof, We first prove that, if a € A and 0 < h < aa*, then h belongs to the

closure of aA. Since A is a commutative C*-algebra, we know that a closed

ideal T is the intersection of the maximal ideals containing I. It follows

that, if A denotes the maximal ideal space of A, the ideal aA is dense in
n{Kers, &ed, <a,8> = 0},

So, if 0 < h < aa*, then <a,8§> = 0 implies <h.6> = 0. Hence h belongs to

the closure of aA,
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Next we write ¢ = ¢1 + i\bz, where wl and y are hermitian functionals,
2
By definition we have

I¢ = {acA, <ax,¢> = 0 for all xeA}

{aeA, <e.x,d:1 + i\b; = 0 for all xeA}

< {aeA, <a,a.‘*x,\1:l + i¢2> = 0 for all xeA, x = x*}
= {aeA, <aa*x,¢1> = 0 for all xeA, x = x*}
niaeA, <aa’x,¢2> = 0 for all xeA, x = x*}

(since the hermitian elements span A)

{aca, <aa'x,w1> = 0 for all xeA}

n{aeA, <aa*x,¢2> = 0 for all xeA}

{acA, aa* e I, I, }
’ wl ‘02
(since I nly is closed)
1 2
= I, nI, .
wl wz
ivi Ig = I, .
The reverse inclusion leanz C I¢ is trivial, whence I4 len v,
Now let ¥ be a hermitian functional. Define its "positcive variation" ¥,
First for positive elements in A:
<a,@ > = sup{<h,y>, O <h <a}, a0,
1
(e.g. see [23], p.211)

Since A is a vector lattice,§ is linear on A+, the cone of the positive
1

L

elements. For arbitrary a € A, write a = Zn‘l

. . .
i"a,, where 8, is positive

for i =1, 2, 3, 4 and a8, = aa =0, Define <a,y > by linear extension.

3

Then 4:1 is a positive continuous functional on A, let lb2 ¥, = ¢ Then

for every element a ¢ AY we have

<&'w2> = 5up{<_h’w>’ 0 <h g a},

D S P S
30 ¥ is positive,

2

o~n A
il
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Next we prove that I, = I‘i’l"l%_’ Let a € I,; that is <aA,y> = {0},
If 0 £h < aa*, then, by the reasoning at the beginning of the proof,
h belongs to the closure of the ideal aA. It follows, by continuity, that
<h,¢> = 0, Hence <aa*,$ > = sup{<h,$>, 0 <h < sa*} = 0. Since ¥, is pos-
itive, we conclude a ¢ Iy . Similarly we may show that a € Iy ,

1 2
Hence Iy = I%nlwz, the reverse inclusion, Id’znlwl C Iii’ being triviel.
This method can be employed for the hermitian functionals wl snd t&z in
$ = tbl + it:z, providing us with four positive functionals ¢1, ¢2, 4)3 and
¢u, so that I¢ = nI¢n.
We now write down a result which is similar to Theorem 3.2,3.

Theorem 3.3.2, let A be a8 commutative C*=-algebra. The following assertions

are equivalent:

(i) There exists & strictly positive functional in A';

(ii) There exists a mapping T: A — A", which is one-to-one,for which

<ab,Tc> = <b,Tca> for all a, b, ¢ in A; moreover (3‘_._f_‘_ A does not possess an

identity) A satisfies the c.c.c.;

(ii1) For every regular ideal Io, I0 # {0}, there exists a functional ¢,

in A' such that <I,¢o> # {0}, for all closed idesls I for which I°C = I,

moreover A satisfies the c,c,.cC,

Proof. (i) => (ii), Let ¢ ¢ A' be strictly positive. Define T: A — A' as
follows: if a ¢ A, then Ta is the functional which assigns to x the number
<ax,¢>, Thus <x,Ta> = <ax,¢> for all a, x € A, It is readily verified that
<ab,Te> = <b,T(ca)> for all a, b, c in A, We show that T is one-to-one,
If a is an element of A for which Ta = 0, then <x,Ta> = 0 or <ax,$> = 0

for all = € A. In particular, <aa%,¢> = 0 and so aa* = 0, or a = 0,
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(i1) => (i), Let T: A — A' be as in (ii). Define, for every a £ A, the
functional ¢a on A by <x,¢a> = <x,Ta>, It is a matter of routine to veri-
fy that the ideal I¢ is equal to
a
Iy = {xer, ax =0l
a
Hence, by Proposition 2.1.k, Ig€ = 14 .
a a
If A hes no identity, we know, by the c,c.c., that the intersection

N acA} is countably accessible and hence there exists by Lemma

I¢a’
3.2.2 a functional ¢, such that I¢0 = ﬂ{I¢a, acA}, From the fact that
I¢a = {xeA, ax = 0}, we see that I¢0 = {0}. By the previous lemma we
may assume without loss of generality that ¢o is positive and so

I¢o = {xeA, <x*x,¢0> =0} = {0},
showing that ¢0 is strictly positive,
If A does have an identity e, the functional ¢e: x — <x,Te> has the
property I¢e = {0}. Again we may assume that ¢, is positive and it follows
that ¢, is strictly positive.
(i) => (iii). Let ¢ be a strictly positive functional on A, Then,
<I,¢> # {0} for every non-zero ideal I, Hence, if I°C = Io, where
Igc = IO # {0}, then <I,¢> # {0},
That A satisfies the c.c.c. has already been proved above.
(ii1) => (1). This is a straightforward application of Theorem 3.2.3 and
the previous lemma,
Remark 1, If ¢0 € A' is a strictly positive functional, then the mapping:

{e,b} — <ab*,¢o> s G@efined on A x A, is an inner product which mekes A

ilbert aigebrn; see {6}, p.330.
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Remark 2. A scmevhat weaker form of (iii) is sufficient to conclude (i).
For every non-zero regular ideal Io C A together with any collection
Ccc {1, Icc = Io} of closed ideals with the property that every countable
(and every finite) intersection

MI,, n=1,2,.. }, IoeC,
belongs to C, there exists a functional ¢0 € A' such that <I,¢0> # {0}
for all ideals I ¢ C; moreover A satisfies the c.c.c.
Closely related to this remark is the problem at the end of this chepter.

In the light of Theorem 3.3.2(iii), the existence problem for
strictly positive functionals can be reduced to the following one, Let I0
be a non-zero regular ideal i,e. Igc = I0 # {0}, As in (1ii), we consider
the collection of those closed ideals I for which I°C = IO. Now select in
every such ideal I a non-zero positive element x7; end look at the family
¥ - {x1}.
Claim, There exists a strictly positive functional on A if and only if
the family fcan be chosen in such a manner that there is a positive
functional ¢0 € A' which does not vanish at any point of f

In fact, suppose, indirectly, that for each choice of ?every
positive ¢ € A' the set T¢ = {xe¢ (7(, <x,¢> = 0} is non-empty. Since, for
every sequence (¢n) CA', ¢ 20, Moyl < 1, the functional ¢ = Zn212'n¢n
has again these properties, it follows that for any countable collection

T ;7
( f¢ ), the intersection f j¢ (= j¢) is non-void. This is impossible if
n

n
A = C(X), where X is compact and separable. Neither is it possible in
case J is weekly compact (= weakly countably compact according to

Eberlein, see e.g. (23], p.185).

However, we were not sble to construct such a weakly compact family f
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As another consequence of the theorem we have

Theorem 3.3.3. Let X be a compact Hausdorff space, The following asser-

tions are equivalent:

(1) There exists a strictly positive finite Borel measure u on X;

(ii) The space X gatisfies the c.c.c. and, for any non-void regular open

set O,, there exists a bounded regular positive measure M, on O

0
such that uo(o) > 0 for every open set O which is dense 32_00.

Proof. We consider the algebra A = C(X) of all continuous complex-valued
functions on X, Recall the one-to-one correspondence between regular
ideals in A and regular open sets in X; see Theorem 2,2.5.
The mapping

I — U {xex, £(x) # 0}

fel

is a bijection between the collection of closed ideals I A end the
topology of X: the collection of the open subsets,
Its inverse is given by

0 — {reaA, {xeXx, f£(x) # 0} c 0},
wvhere O is any open subset of X,
The restriction of these mappings to the regular ideals and regular open
sets respectively establishes a one-~to-one correspondence between the
regular ideals and the regular open sets,
Consider a pair (Io, 00), where O0 is a regular open set belonging to the
regular ideal Io. Then under the shove mappings the collection of ideals
{I ¢ A, I closed, 1°€ = Io} is in one-to-one correspondence with the col-
lection of open sets {0 € X, O open and dense in Os}.

After these preparatory remarks we now proceed with the proof of the theo—

rem,
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(1) => (ii). Clear,
(ii) => (i). By virtue of Theorem 3.3.2 it is sufficient to exhibit a
functional satisfying condition (iii) in that theorem. Let Io be any
regular ideal in A = C(X) and 00 its corresponding regular open set, By

(1i) there exists a measure u. on 65 such that uO(O) > 0 for every dense

0
open subset O of OO. Given any closed ideal I for which I€C = I,» the

set
0= U {xeX, f(x) # 0}
fel
is open and dense in 00' Since Mg is regular there exists a compact sub-
set X € 0 such that uO(K) > 0, Let fo be any function satisfying the
following conditions: fo(x) 2 0 for all xeX, fo(x) = 1 for all xeK and
fo(x) = 0 for all x off O, Such a function exists, since X is compact

(and so normal). The function f, belongs to I and we have uo(fo) # 0.

Since u

0 may be viewed as a continuous functional on 0(66) and I0 is in

a natural way a subspace of C(0,), the measure M, on 55 defines a con-

0
tinuous functional on Io. Let ¢o be any Hahn-Banach extension or uo to
all of A, then ¢0 does satisfy condition {iii) in Theorem 3.3.2.

Again, let X be a compact Hausdorff space, Teke a non-empty
regular open set O0 in X and consider the following hypothesis on 00.
Hypothesis (*). There exists a family (uY, vyel'} in A = C(X), together
with a family of points {xY, vel'} € X, such that the following conditions
are satisfied:
(i)

uY(xY) # 0 for every vy ¢ T;

(ii) For every open set O densc in O

here exists an element v € T

such that {xeX, uY(x) #0} CoO;



(iii) The functional

n n
bt Bi=aMly 7 Zi=1hy vy, (%yy)

is well-defined and continuous on the vector space spanned by the
family {uy, vel'l.
Remerk 1. The closure of {xY, veT} has non-void interior,
Remark 2, Whereas the collections {uY} and {xY} can always be chosen in
such a way that (i) and (1i) are satisfied, (iii) is the crucial condi-
tion.
Remark 3., A motive for locking at this type of conditions is furnished
by the fact that if instead of the family {uy, vel'} we would have taken
the collection of characteristic functions
{xo, O open and dense in 00},
then the functional
ziglxixoi S T ¥
has property (iii), if we take the supremum norm for defining the topology.

Theorem 3.3.k4., Let X be a compact Hausdorff space. A sufficient condition

for the existence of a strictly positive measure is that every non-void

regular open set 00 satisfies hypothesis (*) and that X satisfies the

countable chain condition. Moreover, if X is connected then these condi-

tions are also necessary.

Proof. (sufficiency) We will check assertion (iii) in Theorem 3.3.2. Let

I0 pe any regular ideal and O0 be the corresponding regular open set. If

{uy, vel'} and {xy, vel'} are as in hypothesis (*) for the set O_, then the

0’
functiaonal ¢0, which is defined on the vector space spanned by the family

{uy, vel'l admits a Ushn-Banach extension to all or C(X). This extension

satisfies the conditions put forth in Theorem 3.3.2 item (iii),
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(necessity) Assume X to be connected. Let I0 be any regular ideal and Oo
the corresponding regular open set, Select, for every open dense subset

0 of O , & function uy such that flujl =1, 121 (x) 2 0 for 811 x in X

0
and {xeX, uo(x) # 0} ¢ 0. Let M be the subspace of C(X) spanned by the
family {uo, O open and dense in 00, 0 # 00}. let ¢: C(X) — C be a
strictly positive functional on C(X) originating from the strictly posi-
tive measure u on X, We may assume that /¢l = 1.
Thus, for every such 0, we have

0 < <uo,¢> < NuOH = 1.
Since O # 00, 0 ¢ 0,, there exists a point x, € X such that uo(xl) = 0,
In addition, since HuOH = 1, there exists a point x2 € X such that
uo(xz) = 1. By the assumption that X is connected, there exists a point
Xy in O such that <ugy,¢> = uo(xo). Hence the functional ¢0: M — €, de-
fined by

$o(Eim qug,) = ziglxiuoi(xoi)
is continuous on M, And so the family {uo} together with the family
{xy} end ¢, does satisfy the conditions (i), (ii) and (iii) in
hypothesis (*),
ik, Boolean algebras and strictly positive measures,

In this section we shall consider a Boolean algebra B to-
gether with a "canonical" algebra S of "simple functions". As in
Chapter II section 2, S consists of all formal linear cemhfinations

i=14Py>» A19'~’An € C, Pls--rpn € B, PiAPJ = 0 whenever § # i,

modulo the set of all "trivial sequences" i.e. all formal comuinations

of the form T = Ziglkipi’ where Ai # 0 implies p; =0 and p; # 0 implies
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We made l.c. S into an algebra by defining (scalar) multiplication and
addition in the following manner:
n m
If £ = Zi:llipi’ g = ZJ=lquJ and A € C,
then Af = Ziglxxipi' fg = ZigltjzlkiudpiAqJ and
£+g=I 000 (A + uy)pgAay + I ApiAaiALLAQy + EyugasApiA. LAD 3
here pVp' = e and pAp' = 0 for all p € B,
These definitions coincide with the usual Boolean operations:
PAQ = pq, P' = e -p, PVQ =p + q - pq, for all p and q in B.
In the algebra S we define a norm
”zi:].)‘ipi“ = max{|A;], 1 < i <n},
and an irvolution
(Eizllipi)' = ZiZIXQPi'
Except for campleteness, (S,]|| ||} has the usual properties of a
C*~algebra, There is a natural way to introduce a partial order in S:
an element f = Ziglxipi is said to be positive (£ > 0) if 1 # 0 implies
A 2 0. Consequently f > g, if f = g > 0, The cone st = {fes, £ 20}
is generating in the sense that every element f € S can be written in the
form
)

+
vhere f , f , £ ,f €S and f f =°ff =0,
1 2 3 Y 12 Iy

f=r -f2+i(f3-f

1 Y

A measure on B (or a functional on S) is defined as an element of

(8,1t ii})". A measure is said to be positive if it is positive-valued
(or 0) on B. As in the general case, I¢ is the largest ideal in the ker-

nel of ¢ and ¢ 1s sald to be regular if Igc = I¢.
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We need two technical lemmsas.,

Lemma 3.4,1. Let S, B be as above and let ¢ €S°',

Then Il = sup{Zi:ll <pi,¢>l }, where the supremum is taken over all mutu-

ally disjoint sequences (pi) < B,

Proof. let f = zi:ﬂipi e S, Then we have

_ n n n
| <30>] = [E3or3<Pyo¢>] < Ziay[Asl]<Pias>| < £ 2io]<Piogo]-
Hence [/¢/l = supi|<f,¢>], feS, [Ifil = 1} < sup{: .:1| <Pi:¢>|}.
Conversely let (Pi) C B be a mutually disjoint sequence.

n
Let f, = Lj-12{Pi, Where

0 if <Pi 1> = 0
A T

|<pi +9> | if <p;.¢> # 0.

<Py{ o¢>

Then |if (| < 1, and <fy,¢> = Iyo1] <Py 20>] -

This holds for all n and for all rutually disjoint sequences (pi) < B,
whence || ¢ll > Sup{z;_q|<p;,%>|}.

Analogous to the above C®-algebra situation we have

Lemma 3.4.,2, Let S, B be as sbove and let ¢ ¢ S'. Then there exists a

positive functional ¢0 € 3' such that I = I%.
Proof. Basically the proof is the same as for Lemma 3.3.1. The only
problem is that S is not complete., We shall outline the proof. First de-

fine hermitian functionals wl resp. 11!2 on S as follows:

<f,wl> = (<f,¢> + <f* 4>)/2 and (f‘;tbz_s = (2P as — <£% 4} 08

for all f ¢ S. Then leu‘ < Uiy ¥ il < ¢ and g =y + i’*”z‘

We claim that an element p € B belongs to I¢ if and only if p ¢ I\DAI\U ]
1 "2

By definition p belongs to Id> if and only if <pq,w1 + iy > =0 or, since

¢,1 and (,‘;2 ere hermitian, <pq,tb1> = <pq,¥,> = 0 for all q in B.
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Hence p € I, if and only ifpe I NI, , Now let £ =1L nlxipi belong to

¢ vV, i=
I¢, then A;p; = fp, end so if A; # 0, ve have p; € I¢ and thus
p. e I, NI, . It follows I, ¢ I I ., The converse inclusion is trivial,
1 ¥ Y, ¢ \(’1 ‘1’2

Next, let ¥ be a hermitian functional., Define wI: S —+ € as follows;
for p any element of B

<p,¢1> = sup{<pq,¥>, qeBl.
Using the fact that for disjoint elements p1 and p2 in B the equality
plB + p,B = (p1 + pZ)B is valid, we easily infer that for such elements
<p1 + pz,wl> = <pl,w1> + <p2,w1>. The latter enables us to define
wlz S —+ C by linear extension.
Flementary estimations show that

o ®

sup{zi=1<pi,w1>} < sup{Ei=l|<pi.¢>l}.
from which we conclude that leu < vl
Similarly we define wzz S — ¢, If p belongs to B , then
<p,w2> = sup{-<pq,P>, qeB}. By linear extension we define wz on all of S.

It is readily verified that ¥ = ¥, - ¥, and that Iy = leanz = le+w2.

1

As a consequence of Theorem 3,2.,3 we obtain the result,

Theorem 3.4,3, Let B, S be as sbove., The following assertions are equiva-

lent:

(i) Tnere exists 2 functional which is positive for every p € Bj

(ii) The Boolean algebra B satisfies the c,c.c. and for every regular

ideal I < S there exists a functional ¢O € S' such that for every
0

mutually disjoint seguence (p;) ¢ B, for which (ZpiS)cc

= IO, we have
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Proof. (1) => (ii). Obvious.
(ii) => {i). We first prove that for any regular ideal I, there exists a
functional ¢0, such that <I,¢0> # 0 for every ideal I for which 1°¢ = IO’
By Lemma 2.3.1 there exists for every ideal I, for which I°¢=1I,, a
mutually disjoint family (pi) < B, such that (ZpiS)cc =1, (p;) € I.
Assuming that B satisfies the c.c.c., this family is necessarily counta~
ble. Since there exists a functional ¢0 € S', such that for every se-

quence (pi) for which (Epis)cc = I_, we have Zi:ll<pi,¢o>| # 0, it fol-

0’
lows <I,¢0> # {0} for any ideal for which I°€ = Io. Theorem 3.2.3 applies
to the effect that there exists s functional ¢0 € S' so that I¢0 = {o}.

By the previous lemma we may assume that ¢0 is positive and so, if p € B

and <p,$ > = 0, thenp €¢ I, , whence p = O,
0

¢0
Remark, If B is complete and distributive ccndition (ii) may, by virtue
of Theorem 2.2,7, be replaced by:
(1i') The Boolean algebra satisfies the c.c.c. and for every element

Py € B there exists a measure ¢0 € S' such that for every mutually

disjoint sequence (pi) C B for which Vpi =P, Ve have

zizll <Py .¢0>l # 0.
We conclude this chapter by mentioning the following open problem,
Problem, Let C be a collection of dense open subsets of the compact
Hausdorff space X, for which M{0, 0eC} is void and which is closed under
countable intersections in the sense that for every countable subcollec-
tion (O,) the open set Int(nOn) is again a member of C. Does there exist

such a collection? If so, does there exist a regular positive Borel

measure U on X such that (0} # 0 for every O in C7?
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If there exists a regular positive Borel measure y with the latter prop-
erty, then there exists a regular positive Borel measure uo on X such
that uo(O) = 1 for every O € C. To see this, consider the equality
inf{u(0), OeC} = inf{u(0;), 1 = 1, 2,.. }
for a suitable countable subcollection (0;) € C. Let Oy = Int(fi0;). Then
the open set Ou belongs to C and u(OnOu) = u(Ou) for every O in C.

Finally define

(B) = u(Bn0y)
My . 8%

for every Borel set B, Then My is a regular Borel measure on X with the
property that uo(O) = 1 for every 0 € C.

Also notice that, by the assumption {0, OeC} is void, the space X can-
not possess isolated points. See [8], Lemme 8, for a situation reminis-

cent to the above one,



CHAPTER IV
GENERALIZED GELFAND TRIPLES
1. Representations of semi-prime algebras,

In this chapter we shall consider a commutative semi-prime
algebra A, a locally convex topological vector space F and a faithful
representation U of A into L(F), the algebra of all continuous linear
operators in F, In section 2 we investigate the general situation. More-
over we specify to the case where A satisfies certain strong countabili-
ty conditions; see Lemma 4.2,3., In section 3 we consider the situation
vhere U(I)F is dense in U(I®C)F for each I belonging to a certain class
of ideals. Our purpose is to arrange for the situation

F,—F, F' —F,
in such a way that
(1) FO is an invariant dense subspace of F;
(ii) there exists a mapping
T: F, — F' (or F§)
such that for every a € A, U(a)'Tf = T(U(a)f), for all f € F.
2. The general situation,

First let us agree upon the notation. The vector space F is
equipped with a lecally convex Hausdorff topology, defined by a family of
semi-norms I'; L(F) denotes the algebra of all continuous linear operators
in ¥, ‘the topological dual of F is designated by F' and if S belongs to
L(F), then S' is its dual., We shall deal with a faithful representation

Us A — L(F)

of a given semi-prime algecbra A.
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A subspace H ¢ F is sald to be invariant if U(x)H c H for all x ¢ A,
similarly a subspace H' ¢ F' is called invariant if U(x)'H' < H' for all
x €A, If I is an ideal in A and H a subspace of F, U(I)H will denote
the vector span of all elements of the form U(a)h, a ¢ I, h ¢ H. A defi-
nition of the same type is used for subspaces of the dual space F'. We
adopt the following definitions.

Definition 4.2.1. The topology on F is said to be U-campatible if for

every regular ideal I {equivalently for every ideal) the mapping

P: U(I)F + U(IC)F - F,

defined by

P: £ + 1, =T,

£, € U(I)F, £, = u(1%)F, is well-defined and continuous.

Similarly, a semi-norm p € I is said to be U-campatible if for every

ideal I in A there exists a constant c¢ = c. such that

I

p(f)) < cp(f, + £,
for £, e U(I)F and £, e U(I®)F.
Example, Let A be the algebra generated by a complete distributive
Boolean algebra B of projections in L(F). Then by Theorem 2.2.7, an
ideal I is regular if and only if I = uA for some projection u € A, If
U{a)f = a{f) for £ € F and if I = uA, then U(I)F = uF and
U(I®)F = (e = u)F so that the projection u: U(I)F + U(IS)F — F is con-
tinuous, indeed. If, moreover, B is equicontinuous, then by [25] we may
assume that every semi-norm in the calibration T" of F is U-compatible,

As a matter of fact B, Walsh proves & much s
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this case; see [25], Proposition 2.3, 2.k,
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Unless stated otherwise, A will be equipped with the following weak op-
erator topology. A subbasis at O is given by open neighbourhoods of the
form {acA, |<u(a)f,¢>]| < 1}, where £ € F, ¢ € F', This locally convex
topology in A is the inverse image under U of the weak operator topology
in L(F); since U is faithful, it is a Hausdorff topology. We are inter-

ested in the following types of closed ideals:

those of the form I, = {ecA, U(a)f = O}, where fe F,

{acA, U(a)'y = 0}, where $ ¢ F' and

those of the form I45
those of the form Ip = {agA, U(a)F < N(p)}, where p is a semi-norm in T
and N(p) = {fcF, p(f) = 0}, An element £ ¢ F (¢ € F', p € I resp.) is
said to be regular if If (I¢, Ip resp.) is a regular ideal in A.

Example, let A = F = C(R), the algebra of the camplex-valued continuous
functions on R, equipped with the topology defined by the family of semi-
norms T = {pK, pK(f) = sup{| f(x)|, xeK}, K¢ R compact}. Then, every

f e F is regular; every semi-norm pyx is U-compatible; and, if O is a
bounded open subset of R, the functional f — fof(x)dx is regular.
Finally, a semi-norm Py is regular if and only if there exists an open
subset O € R such that O is dense in K,

The theorem we want to prove reads as follows.

Theorem 4,2,2, Let A be & semi-prime algebra, which satisfies the c.c.c.

Let (F, 7%,) be a locally convex vector space, U: A — L(F) an algebra

homomorphism, Assume there exists a family of closed invariant subspaces

{H,, v € A} for which the following conditions are satisfied.

(i) The spaces H, are disjoint: K, ncl( & H\)) = {0}, (v, ¢ A)
o v;évo -

(ii) They span F: Hy +c(z H)=F, (v e A)
0 v.-,.‘vo 0
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(11i) The mapping

P\’O:F "‘F’
defined by
Py,i By +h > hy, hye Hy» B € cl( T H)
v#vo

is continuous for all v, ¢ A,

(iv) The topology 7;; restricted to H, is U-compatible for all v € A,

(v) Every H, is a "copy of A" in the sense that there exists an ideal

Sv (proper.gz not)_ig A together with a mapping U,: 5, — H,,

such that (1) U,(S,) is dense in H ,

(2) U(a)u,(b) = U (ab),

for all a € A, b € 5.

(vi) The representation U restricted to H, is faithful: U(x)H, = {0}

implies x = 0O,

(vii) For every v
/

jv

0 € A, the family_gf regular functionals

4
={oe (T H), I,=1°)
0 Vv, ¢
has the property

NIy, ¢ ¢ 730} = {0},

(viii) For every v € A and every countable increasing family (In) of

regular ideals for which (UIn)cc = A, the subspace U,(SynUI ) is

dense in Hv'

Then there exists a family of invariant locally convex vector

spaces (F . 7:) € F such that

(a) For each v, F, is densely imbeddable into (K, 7/?).

//
(b) The locally convex direct sum (Fo, ’j;) =@ (F,, JV).EE densely im-

beddable into (F,'Jl).

(c) The space F' = (F, irf)' may be considered as a subspace of

J).

0? 0

F! =

o= (F
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(d) There exists a mapping

T: FO - F,

such that for every v # Voo

<F\,,T(F\,o)> = {o}.
(e) For every v ¢ A, T(F,) is invariant under U(x)' for a1l x e A, In

fact we have

U(x)'T(f) = D(U(x)f)
for all f € FO.
Before we prove this, we like to make a few comments. This type of the-
orem is proved by W, Bade [1] in the special case that F is a Banach
space and A an algebra of measursble functions on a Stone space X; for
every simple function a€ A, a = L.2A.x Ula) =2.20.U(xs )
’ 1=1"i"B;°* i=1"1 B;’*

where {U(XB.)} is a Boolean algebra of cammuting projections in F. In

i
this case the spaces H, are cyclic in the sense that H, = u(a)f,, for
some f e F. The family (fv) can be chosen in such a way that U(a)f, = 0,
ae A, implies a = 0, Under these circumstances one can show that, if H,

adnits a topological complement Hl in ¥, then there exists & functional

4 L
¢, € Hl ¢ F' such that U(A)'¢v is w*-dense in H.1 and the mapping

T: H, — H[L,

defined by
T: U(a)f, — U(a)'¢,, ac A
1s one-to-one, linear and satisfies
TJ(a)g = U(a)Tg,
for all ge H,.

We try to exhibit a similar construction in our generel cece,
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Upon imposing more conditions on A (e.g. C*-algebra, vector lattice)
and/or more conditions on F one can strengthen considerably the above
result. Condition (v) is readily verified if H, is of the form
cl(U(A)fv), where f e F. Simply let Uv(a) = U(a)fv for a ¢ A.
The following lemma gives sufficient conditions in order that conditicen

(vii) of the theorem is fulfilled.

Lemma k,2,3, Let Ho » H be subspaces of the locally convex vector space F

such that Ho H = {0} and the projection mapping

h +h H ,heH
0 — by, By H,he

is continuous, Moreover, let Ho be invariant under U.

In order that the ideal J0 = {xcA, U(x)Ho = {0}} is equal to

N{xeA, <U(x)H0 0> = {0}},

4
where the intersection is taken over all elements ¢ € H , for which the

ideal {xeA, <U(x)Ho o8> = {0}} is regular, either one of the following

conditions i_s sufficient:

(i) For every closed ideal I c A, U(I)HO is dense i_riU(Icc)Ho;

(ii) For every regular ideal I, ¢ A, for which I0 >3, I, # Jy » there

exists a continuous semi-norm p on F and & countable family of ele-

ments (an) € A such that both
(a) P(U(%)Ho) # {0} for all n,

(b) every closed ideal I for which

Gea, p(UGH ) = {0}}nI € T 1, I°¢ = I, contains at least
one element a .

Moreover the tovology of F, restricted toc H
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Proof. Sufficiency of (i). By definitiom,
J, = {xea, U(x)H) = {o}}
= {xeA, <U(x)H0,¢> = {0} for all ¢eF'}
< {xeA, <U(x)H;,¢> = {0} for all ¢eH"L}.
We claim that the converse inclusion is also true. Let <U(x)H,,4> = {0}
for all ¢ ¢ H' and take ¢, ¢ F'. We are going to show that
<U(x)HO,¢0> = {0},
First, define the functional
E&: H)+H - C,
by
%12 hg + h — <hg,é,>.
By the Hahn-Banach theorem there exists a continuous functional ¢; de-

fined on all of F, which is an extension of ?&. So, if x is en element in

1
A such that <U(x)H ,é> = {0}, for all ¢ ¢ H', then

<U(x)h0,¢0> <U(x)h0,¢l> + <U(x)h°,¢o> = <U(x)hy,é;>

0+ <U(X)h0’¢0> - <U(x)h0 )¢0>
= 0.

Tais shovs that J; = flxeh, <U(x)Hy,e = (0}, cH"}.

4L
To complete the proof it suffices to show that for every ¢ ¢ H , the

ideal Iy defined by Iy = {xeA, <U(x)Hj,¢> = {0}} is regular, From the de=

finition of I, it follows that <U(Iy)E ,¢> = {0}. Since U(Iy)H is dense

in U(Iic)ﬁo, we have <U(lgc)Ho,¢> = {0}. Hence, since Iy is the largest

ideal I for which <U(I)Hy,4> = {0}, it follows I, 3 Igc, whence

= 1C¢

I¢ ¢ L]
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1
Sufficiency of (ii). Define again, for any ¢ € H = {¢eF', <H,¢> = {0}},
the ideal I

by I, = {xeA, <U(x)H0,¢> = {0}} and let

¢ ¢
1 1

I, = ﬂ{I¢, ¢ H , I¢ = Igc}. We first prove that for every ¥V € H ,

ce - cc cc - tcc_rcc

I‘P nIo (I“r\Io) Io. Since we always have that (IwnIO) I\b r\I0 ,

it is sufficient to prove that both Ij = Igc and 13%10 = I_, The fact

0‘
that I0 = Igc is a consequence of Theorem 2.1.6. Next, let there exist
4 ce
an element ¥ € H™ for which IW nL, # Iye
Define the functional
- cc c
Vor U(Iy )Hg + U(IHH, + H = ¢
by
Vp: hg + by + h = < ,¥>,

(o] ¢] [o4
vwhere h ¢ u(Iw )Ho, h € U(Iw)Ho, h € H.

1
Then, since the topology on F restricted to HO is U-ccompatible, it fol-
lows that Tb'o is continuous on its damain and hence, by the Hahn-Banach
theorem, admits of a continuous extension ‘bo to all of F., Notice that

v
valid, too. By definition, we have

1
wo € H and that IS¢ ¢ I’# . We must prove that the converse inclusion is
0

Iwo = {xeA, <U(x)Ho,\bo> = {0}}

C {xeA, <U(x)U(I§,)H0,¢0> = {0}}

il

{xea, QI(xI%)HO,‘JP = {o}}

{xeA, xI¢ c I AI¢ = {0}}

2
= IEC’
from which the desired conclusion IW = Iic follows. Hence it follows
0
Iynl, # I . Hovever this is impossible, since, by definition, I% con=
u ~

tains IO.
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Mext, consider the space G = Ho + H, equipped with the topology of F.
Let G' denote the dual space of G and let, for each semi-norm p in the
calibration I' of F, Hé be the subspace of G' defined by
H§ = {¢eG', there exists a constant c = cy, such that
l<h0 + h,d>| < cp(ho) for all hoel , heH}.
Endowing Hé with the nom
el = surp{l<h0 +h,¢>|, p(b)) < 1, heH),
it becomes a Banach space.
Again, let for ¢ ¢ G', I, denote the ideal
{xeA, <U(x)H0,¢> = {0}}.
Notice that every functional ¢ ¢ G' can be extended to a continuous
functional defined on all of F, Moreover, if ¢ ¢ G' and <H,¢> = {0},
then every extension é of ¢ to F has the property that I$ = I¢. In other

words, if ¢ ¢ G', then I, is closed in the weak operator topology. By the

¢

sbove remark we even have that for every ¢ € G', ¢ € HJ; Igcnlo = IO.
We shall prove that the space Hé can be written as

Hé = g{¢eH§, <H,¢> = {0}, I¢ > I},
where the union is taken over all closed ideals I ¢ A for which both
{xcA, P(U(X)H%) = {0}}nI0 cIcI), and =1,

0

Recall that Io is the ideal defined by I0 = n{I¢, I¢ = 1°€¢

s ? ¢eHL}, where

1
H™ = {¢eF', <H 4> = {0}}.
If ¢ is an element in Hy, then |<h0 + h>| < cp(ho) for all h; ¢ H ,
h ¢ H, and so <H,¢> = {0}. Also if a ¢ A belongs to
I = {xeA, P(U(X)HO) = {0}}. then !<U(a)h0,¢>! < ep{ula)h,) = O for ail

n, € HO, vhence Ip < I¢.
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By the previous comments it follows that the ideal I =1 /\Io is closed

¢
and has the properties Ip/\I0 cIc Io and I®C = IO. We have to prove
that I =J , where J = {acA, U(a)HO = {0}}, We clearly have I,> J,
and I, is regular. Suppose, indirectly, that I # Jo. By condition (ii)
there exists a semi-norm p and a countsble family (a,) of elements in A
for which

(a) p(U(an)Ho) # {0} for every n, and

(b) every closed ideal I for which I.AI, € I ¢ T,, I =1 , contains at
ry 0 0 0

P
least one element a,.

Let HI; be the subspace belonging to this semi-norm. Then, by what has
been proved above, the Banach space HI'> can be written as the countable
wmion

HI') = U{¢eHI'), <H,$> = {0}, aneI¢}.
It is readily verified that for each n, the sets

{QEH;',’ <H,¢> = {0}, 8n€I¢},
are closed subspaces of H.!'). A Bajre category argument applies to the ef=-
fect that at least one of the subspaces

{¢gHI'), <H,$> = {0}, aneI¢}
conteins an open neighbourhood and, therefore, coincides with Hé. It fol-
lows that there exists an element a, ¢ A for which p(U(an)Ho) # {0} ana
<U(an)Ho ’HI'3> = {0}. However, this is impossible as the next argument
shiows. Let p(U(ay)h ) = 1 and define y: CU(a )by — €, by
v AU(a )h, — X. By the Hahn-Banach theorem v can be extended to all of

H0 in such a way that [<h1 > |

1A

p(hl) for all h e H . Finally define
i G — € as follows ¢(h + k) = ¥(h ) for all by ¢ Hy, n € H,

Then ¢ ¢ Hl'i and <U(aﬂ)h0 o> = 1,
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A Boclean algebra B is said to be complete (oc-complete) if
for every (countable) increasing family (pa) ¢ B, its supremum Vp, ex-

ists as an element of B, It is said to be distributive (0-distributive)

if for every (countsble) increasing family (p;) and every element p e B,
pAVp, = V(pap,).
Example 1. Let B be a complete (o-complete) distributive (o-distributive)
Boolean algebra of continuous projections defined on a topological vector
space F. let, for every (countable) increasing family (pa) ¢ B, Up,F be
dense in (Vpa)F (and let B satisfy the c.c.c.). Let A denote the algebra
of all finite complex combinations of projections in B and define
U: A — L(F) by U(a)f = af for a¢c A and f ¢ F. Then, U(I)F is dense in
U(ICC)F for every ideal I < A, (The proof of this hinges upon the fact
that 1€ = (Vpa)A, for a suitable chosen increesing family in Bal. If A
satisfies the c.,c.c., then this family can be chosen to be countable, see
Lemma 2,3.1,)
Example 2. Let X be a locally campact Hausdorff space, which has a
countable base for its topology. Let A denote the algebra of all complex-
valued continuous functions on ¥ and assume A to be equipped with the
tovology of uniform convergence on compact subsets of X. Let U: A — L(F)
be a faithful representation. Then there exists a countable family of
functious (fn) C A, f, # 0, such that every closed ideal in A contains st
least one f  and in particular, if the functionals

a + <U(a)f,¢>
are continuous on A for all f ¢ F and all ¢ ¢ F', property (ii) in ILemma

L.2.3n

olds

(So2y }
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The next example shows that (i) and (ii) in the previous lemma need not
go together,
Example 3. Let A = C[0,1], the algebra of all complex-valued continuous
functions on [0,1], F = 12[0,1], the Hilbert space of all square integ-
rable functions and U(f)g = fg for £ € A, g € F. The triple (A, F, U)
has the properties of the previous example; we will show that there
exists a closed ideal I in A, for which I°C = A and for which U(I)F is
not dense in U(A)F = F. Let U ¢ [0,1] be an open set, dense in [0,1], of
Lebesgue measure less than e, 1 > € > O, Let I be the ideal defined by
I = {feA, {xe[0,1], £(x) # 0} c U}. Then I°C = A, but U(I)F is not dense
in F, To see this, consider the fimction h = 1 =~ Xy in F, If f belongs to
U(I)F, then IIf - h{I2 = JIf2 + fihy? > |hi2 > 1 - €.
Such an open set U exists: following G. Helmberg, Math. Zeitschr. 83,
261-266 (1964), we define for r_  the n®™ rational number in R, V, by
Vo= (r, -2 r 4 ez'n'l). Let 0 = UV, and U = (0,1)n0. Then U is
n n » Tn n s
dense in [0,1] and the lebesgue measure of U is less than €.

For the proof of Theorem 4.2.2 we need one more technical

lemma, lemma L4,2.4 is in fact & generalization of Lemma 3.2.2.

Lemma 4.2.L4, let A be a semi-prime algebra, F a locally convex vector

space, U: A — L(F) a representation., As in the previous lemma, let B

and H be two subspaces for which the projection mapping h0 + h — ho,

ho £ HO5 h € H, exists and is continuous. Assume that H0 is invariant and

that the topology on F restricted EQ»HO is U-campatible., Let (¢n) C H'LES

& countable family of functionals for which {xeA, <U(x)HO,¢n> = {0}} is a

reqular ideel for cach un.




Then, there exists a countsble family of functionals (¥ ) ¢ H™ such that

the following conditions are satisfied:

(1) N {xeA, <U(x)H 4> = {0}} = {xeA, <U(x)H,,¥ > = {0}}, for all n;
ken
(i1) <U(b)hy > = <U(b)hy 4> for all elements

c
be {xeA, <U(x)H0 o> = {0}}, all h0 € Ho and all m > n,

In particular it follows that, for each n, the ideal

{xcA, <U(x)H0 s> = {0}} is regular and that

N{xeA, <U(X)Ho 6> = {0}} = N{xeA, <U(x)H0 s¥,> = {0}}.
n n
Assume, in addition, that

(a) there exists a fixed semi-norm p whose restriction to H, is

U-campatible;
(v) the family (¢,) has the property that, for each n, there exists a

constant c_ such that ]<h0,¢n>| < cnp(ho), for all h, € Hg.

Then, the family (4,) can be chosen in such a way that it has not only

properties (i) and (ii), but also satisfies the following:

]<ho,wn>| < p(ho), for all ho € H, and each integer n. It easily follows

that any Hahn-Banach extension L of the functional
wO: HO +H »¢C,

defined by
- ® .=
lbo. hO +h — Zn=12 <h0,¢n>,

has the property that

{xen, <U(x)H0,wo> = {0}} = Q{XEA’ U(x)H ,¢,> = {0}}.
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Proof. We first prove the second assertion. So, let A, F, Hy, H, U be as
in the lemma and let there exist a countable family (¢n) of functionals
in HJ; and a semi-norm p which restricted to H0 is U-compatible, such
that for each n we have l<h0,¢n>| < cnp(ho) for all h0 € Ho and a suit-
able chosen constant c¢,. We must prove that there exists a countable
family (¥,) such that the conclusions of the lemma are valid. Upon di-
viding by an appropriate constant we may assume that for each n,

[<h s6p>] < p(hy), h e Hj.
The construction proceeds by induction. First, let ¢; = ¢1. Now, let the
functionals wl,..,wn in HJ"be constructed in such a way that
(a) l<h0,wk>| < (2 - e)p(ho), allh € Hy, k = 1,..,n, 1> € > 0,
(b) {xeA, <U(x)H0,¢k> = {0}} = lgk{xeA, <U(x)Ho,¢l> = {0}}, for all k < n,
(¢) <hy,¥c> = <h 97>, n 2 k > 1, all h eU({xeA, <U(x)H,,¥;> = (0}})H,.
Upon writing I, for the ideal Iy = {xeA, <U(x)H0,wk> = {0}}, (c) may be
reformulated as <h),¥> = <h,,¥1>, n 2k 21, h, ¢ U(Ii)HO.
By the compatibility of p there exists a constant d4,, such that
p(h;) < dyp(h, + b)),

for h) e U(I)H andh, e U(Ig)H,.
Under this induction hypothesis we shall construct a functional
+] € B, such that !<h0,

¥ >l < (2= 2'1e)p(ho), for all h e H

n n+l 0?

and for which the family ¥, ,..,¥,47, satisfies conditions (b) and (c)

above with n replaced by n+l.
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Define
C
Vne1: UI)H, + U(IDH, — ¢,
by
Yneyf By Ry iml’%ﬂ) + <haa¥y”,

c
where h € U(In)H0 end h, € U(In)Ho.
The functional $n+1 is well-defined on its domain, In fact, if h,, h; are
. ' k3 c '
in U(In)H0 and h,, h) are in U(In)Ho, then hy, - h) € U(In)Ho and

c
h, = hj € U(In)H) end so [h)4dyp1> = <blydp4y>] = [<hy = nlLégap2]

sp(h) - h') < gp(h - ht +h, = h)) = dp(0) = 0.

Hence _€ <h1',¢n+l> + <h;,('n>
2d
n
= _€ <h1’¢n+l> + <h; + hé:‘%’
24,
= _E hy,éq41> + <h h?_"{‘n)
5,
= _E hyybper> * <y,
24,
Moreover, we have
|<h1 + h2’¢n+1>| = |§§_ Nyt <h2,q,n>|
n
= | e <hp,d,,0>+ )+ h2,¢n>l
24,
< _ep(hy) + (2 = €)p(h; + n,)
2dn

A

€ dpo(hy + h,) + (2 - €)p(h; +h,)
24
= (2 - 27le)p(n, +n)),

for all hy € U(I )Ry and h, € U(I )H,.
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Let be any Hshn-Banach extension of ¥ ., to all of H , so that

z'n+l
[45,¥41>] < (2 = 27le)p(n ), for allh eH,

and define
dh"'l: F - C,
as being any Hahn-Banach extension to all of F of the functional
ho +h — <h0,1pn

+17 h, € H;, h € H.

Then, the functional Y ,, satisfies (a) and the family W) ses sy Satis-
fies (c) with n replaced by n+l, Let us check (b).
Consider the ideal {xeA, W(x)H ,¥ ,,> = {0}}, denoted by Ip4;. We clear-
ly have I 4 © {xeA, <U(x)U(I§)H0,¢m.1> = {0}}

= {xeA, <U(xI§)H°,¢ln> = {0}}

c

= {xeA, xI

cI;}
=I13¢ =15,
Hence I,41 = InnIpsyy which is by definition,
= {xel;, U(x)H ,¥4,> = {01}
= {xel;, W(x)H ,ép4y1> = (O}
= {xel,, XEI%+1}
= Innly ,

n+l
from which (b) follows.

The sequence (wn) , obtained in this way, has the following properties:
(1) g, < 2p(hy), for allh e H,

22\ T
prepay) s

m < ‘ps form 2n,
(111) <(d)h ,¥y> = <U(b)h ,d> for alld e IS, all hy € Hy, allm 2 n,

(iv) I, = {xeA, <U(x)H ,4> = {0}}.

n
ken
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Upon dividing by 2, we may assume that for every n, |<ho,¢n>| < p(ho),
for all ho £ Ho. There remains to be proved that, if wo is any Hehn-
Banach extension of the functional
hy +h — znzlz'“<ho,wn>,
then wo has the property that
{xep, <U(x)H ,¥,> = {0}} = g{xEA, <U(x)Hg,¥,> = {o}},

This will be done by induction again., If <U(x)Hj,p,> = {0}, then

-

<U(x)U(If)Ho,wo> = {0} and so L,=12

_n<U(fo)Ho,¢1> = {0}, or fo <I,

i.e, x € Ifc = I, The remaining part of the proof is exactly the same as

1
in the proof of Lemma 3,2,2 and may be cmitted,
In the general case we, again, proceed by induction. First, define,
Y. = ¢, . Suppose that the functionals ¥ se e sV, are constructed in such a
1 1 1 n
way that
X 1
(i) o € H, k =1,.0,n,
(1i) (xeA, <U(x)H ,¥.> = {0}} = 1 {xeA, <U(x)H ,¢.> = {0}}, k = 1,..,n,
0 1% 0’71
(1i1) <U(b)h0,wk> = <U(b)ho,¢1?, h eH,beE 1§y n > k> 1.
(Again, as above, I, denotes the ideal Ij = {xeA, <U(x)H0,w1? = {0}}.)
Let ¢ be any Hahn-Banach extension to all of F of the functional
n+l ’
- c
Vpep? U(IH + U(I)E +E = C,

defined by

Yne1? By + By +h = <hy by b <h LV,
where h € U(I,)H , h U(IS)E and h € H.
Then by the same argumentation as sgbove the family wl,..,wn+l satisfies

(ii) and (iii) with n replaced by n+l,
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The construction of ¢n+l in this manner is possible by the facts that
the topology of F, restricted to Ho, is U-compatible and that the pro-

Jection hO +h —h h € HO and h € H, is continuous. Clearly, the

0? 0
family (¥,) obtained in this way satisfies the conclusions of the lemma.

Proof of Theorem k,2,2.

By assumption (vii) we know that for every H, , the family of regular
0

functionals in ( I Hv)l'has the property
V#v, 1
{0} = n{Iy, Iy = Igc, ¢ e (I H,)I,
v#v,
where by definition for every ¢ € F', I4 denotes the ideal

Iy = {xer, <U(x)F,¢> = {0}},

For brevity we shall write H, = HVO’ H=e¢elZ Hy.

v#v
Then, the pair HO' H satisfies the conditions of the previous lemma,
Since A satisfies the c.c.c. we know that there exists a counteble fami-

y (¢,) < H' such that {0} = niIy » Igc = I, }. By the previous lemma,
n n n

we may suppose that the sequence of ideals (I¢ ) has the following prop-
n

erties:
(i) I ¢ Iy , for allm 2 n,

m n
(ii) <u(b)hj,ép> = <U(b)h ,6,>, for allm 2 n, all h; € Hy, all b € Ign,
(1ii) I%c = Iy » for all n.

n n
Denote by K, the ideal Kvo = UI% and let Fvo be the subspace

0 n
F“o = Uvo(Sv61Kv0), where U\)o is the mapping of assumption (v). Then, by
{+1i1), FVO is dense in Hj. Derine T“o(r)’ for £ of the form f = Uvo(avo),
where 2y, € Svdqlg s bY Tvo(f) = U(avo)'¢ . Then T“O is a well-defined,
n

lineer and one-+o-one map defined on FVO and taking its values in F',

Moreover, it has the following invarience property,
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If x e Aend feF, as above, then U(x)'Tvo(f) = U(x)'u(a\,o)qsn
= U(xa\,o)'¢n = T“o(U“o(xa“o)) = T“o(U(X)U“o(a“o)) = Tvo(U(x)f).
We can follow this procedure for every v ¢ A, thereby providing our-
selves with a family of invariant subspaces (F,, ‘//v) as described in the
theorem, Let (F, 7;) =@ (F,, 9:) and define T : F, — F' as follows:
a generel element in Fo being of the form fo = va, where f, € F,, and on-
ly finitely many temms are non-zero, To(fo) is by definition
To(£,) = ITy(£,). Then T  satisfies (d) and (e) of the theorem.

A simple example featuring the situation of the theorem is
the following one,
Example, Iet A = F = Cc(R), the space of the complex-valued continuous
functions on R and let U(f)g = fg for all f € A, g € F, In this case
there is only one invariant space H, involved, namely F itself,
Ir UO: A — F is the identity map, then the conditions of Theorem k,2,2
are readily verified, We may take for Fo the space of all continuous
functions of compact support. For the sequence of regular functionals
(¢y) we may take <f,¢,> = /" Be(t)dt, where £ € F and n is a positive in=-

=N

teger, For the map Jo: Fo — F', we take the mapping defined by
+
<f,Jo(fo)> = f_mf(t)fo(t)dt

for all f e F, fo 3 Fo.

Corollary 4,2,5, Assume, in eddition to (i) - (viii), of Theorem k.2.2,

that the topology of F, restricted to H,, is given by a norm for each

v ¢ A. Then F’O in the theorem may be itaken (FO, JO) =& (u,(s,), 7:),

where 7/“ is the topology on F restricted to U(S,).
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Proof, This result is a consequence of the second assertion in Lemma
L,2.4, In fact, for every v, € A, there exists a functional ¢, in
(\,i\; Hv)-‘-for which Id,0 = {0}. Then Ty U"o(s\’o) — F' may be defined by
’ Ty(5,) = Ula)'eg, £, = Uy (a), ac s, .

3. The situation where U(I)F is dense in U(ICC)F,

In this section we examine the situation where, for every
ideal I ¢ A, U(I)F is a dense subset of U(I®®)F, We shall prove the fol-

lowing result.

Theorem U4,3,1. Let U: A — L(F) be a faithful representation of the semi-

prime algebra A, which satisfies the c.c.c.. Assume, there exists a family

of closed invariant subspaces {Hv’ VeA} such that (i) = (iv) of Theorem

4,2,2 are satisfied. Moreover, let every subspace H, be minimal, in the

sense that there does not exist a proper closed invariant subspace H c¢ H,,,

for which the representation U, restricted to H, is faithful. Finally, let

for every f € F the ideal {xeA, U(x)f = 0} be regular. Then the same con-

clusions can be drawn as in Theorem 4,2,2.

For the prcof we need the following lemmas. Lemma L,3.2 justifies the
title of this section.

Lemma 4,3.2, let H, be & minimal subspace, for which U is faithful, and

let the topology of F, restricted to Ho, be U-compatible. Then

(a) For every ideal I C A, H. = clU(I)H_ + c1U(I®)H .
* 0 0 0°?

(b) For every ideal I C A, U(I)H0 is dense in U( ICC)HO; U(A)Ho is dense

Proof. Let I be an arbitrary ideal in A. Consider the subspace

H = U(I)H, + U(IC)HO. ‘Then U(x)H = {0} implies x ¢ I°HI® = {0}.
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Thus, by the minimality, Hj = c1(U(I)H, + U(I®)H ). By the U-compatibil-
ity, it follows that H = cl(U(I)HO) + cl(U(Ic)Ho). This proves (a).
It follows U(I°®)H, = U(I®®)el(U(I)H ). Hence U(IAI)H  is dense in H.
So, certainly, the same holds for U(I)Ho. Since U(x)U(A)Ho = {0} implies
x = 0 and since Hj; is minimal, we conclude U(A)H0 is dense in H .

Lemma 4,3.3. let Ho be a closed invariant subspace of F and let h1 and

h, be two vectors in H . Denote by I the ideal I = {xeA, U(x)h1 = {0}}cc,

let Ho = c].U(I)H0 + clU(Ic)Ho and let the projection H. — clU(I)Ho exist

that

0
and be continuous. Then there exist a vector h € Ho such

"

{xeA, U(x)h = {0}} = In{xeA, U(x)h {0}}. Moreover, h can be chosen in

2

such & way that for all x € I, U(x)h, = U(x)h.

1

Proof. Let P P, denote the projections on clU(I)H, end c1U( IC)H0 resp.

ce?

and define h = Pcch2 + Pchl. It easily follows that x € I implies

U(x)h = U(x)h2 and that x e I¢ implies U(x)h = U(x)hl. Consider the ideal

{xeA, U(x)h = {0}}. This ideal is contsined in {xei, U(x)U(I%)h = {O}}

{0}} =

{xeh, U(xI®)h = {0}} = {xeA, U(xI%)h,

[

{xeh, xI® ¢ {yeA, U(y)h, = {0}}} C{xea, xI® ¢ T} = {xea, xeI} = I.

Hence, {xeA, U(x)h = {0}} = {xeI, U(x)h = {0}} = {xeI, U(x)h, = {0}}

= In{xeA, U(x)h, = {0}}. This proves the lemma.

Recall that a vector f € F is called regular if the ideal {xeA, U(x)f = 0}
is regular.

v -

Lemiia 4,3.%. Let A De & closed invariant subspace of F and let (hn) be

0 =

a countable family of regular elements i_nHo. Let, for every ideal I C A,

Hy = clU(I)Hy + c1U(I°)H  and the projection H — clU(I)H be continuous.
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Then there exists a sequence (g ) of elements in Hy, such that the fam-

1ly of ideals (In)’ where I = {xeA, U(x)gn = 0}, has the properties:

(1) I, =1g% 01, = N{xeA, U(x)h, =0}

(ii) x € I implies Ulx)g, = U(x)g, for all n 2 m;

(11i) I, = N {xeA, U(x)hy = 0},
ks
Proof. By induction, using Lemma L,3,3,

Lemma 4,3.5. Let Ho be an invariant subspace., Assume, there does not

exist an element h € H , h # 0, such that U(I)h = {0}, for some ideal

I cA, for which I°® = A, Then every h € H, is regular.

Proof. Let I = {xeA, U(x)h = 0}, where h is an arbitrary element in H.
Then, U(I + Ic)U(Icc)h = {0} and so, since (I + I°)SC = A and

U(I°°)h cHg, U(I%®)h = {0}, Since I is the largest ideal J for which
U(J)h = {0}, it follows I > ICC,

Proof of Theorem k.3.1.

We shall prove, with the additional knowledge, that (v) - (viii) of Theo-
rem L4,2,2 are satisfied too. Condition (vi) is valid by assumption: U re=-
stricted to H  is faithful for every V € A, Condition (vii) is an appli-
cation of Lemma 4,3,2(b) and Lemma 4,2,3(1). So (v) and (viii) remein to
be checked. lLet H,, be one of the minimal invariant subspaces.

Then {xeA, U(x)H, = {0}} = n{xeA, U(x)h = 0} = {0}, where the intersection
is taken over all elements h in H,,. By assumption, each of the ideals
{xeA, U{x)h = 0} is regular. Hence, since A satisfies the c.c.c., we may
assume that there exists a countable family (h,) < H,, such that

{0} = nixea, U(x)hn = 0}, By Lemma 4.3.4, we may assume that this family
hes the propertics (I, = I{xcA, U{x)h, = 6}): (8) I ¢ I,, torm 2 n, and

(b) U(x)h, = U(x)h, for x € Ig and m > n.
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Define S = UIE and U;: S, — H by Uv(x) = U(x)hn, for x € I:. In order
to complete the proof, it is sufficient to show that U,(5,n(UJ,)) is dense
in H,, for every increasing counteble family of regular ideals (J,) for
which (UJn)cc = A, It suffices to prove that the representation U, re-
stricted to U (S,MUJ,)), is faithful. Since the sequence (I7) is in-
creasing and the same holds for the family (Jn)’ it easily follows that
s,n(Ug,) = U (Igan). So, if U(x)U,(5,n(UJ,)) = {0}, then for every n and

n

every a € IgnJ U(x)u,(a) = 0. By the definition of U,, it follows that

n?
U(x)u( a.)hn =0 for all a ¢ Ingn. Recalling the definition of I,, we get
x(Ignd,) €I for all n, and hence x(Ind ) = {0}. From which x(U(Ifnd;))
= x((UIS)n(U3y,)) = {0}, Thus x e ((UIS)A(UJy))®. We prove that
((UISA(UT,))C = {0). From Lemma 2,1.5, it follows that ((UI)n(UJ )€

= ((UIDN(UI,)) °C = ((UTS) A(Us,) %) ¢ = ((nIS%) A(Ua,)°C)e.

Since Igc = I for all n, AI, = {0} and (UJ,)°® = A, it follows

((UID)A(UT))E = ({03HA)° = A% = {0},

Corollary L4.3.6. Let in Theorem 4.3.1, H be complete metrizsble. Then

there exists an element f, e H, such that H, = clU(A)f,. If the topology

of F makes H,, into a Banach space, then there exists an element ¢,, in

4 L
( £ Hy) such that u(A)'¢, is w*-dense in ( I Hu) , provided that there
uFv u#v
does not exist an element h e H , h0 # 0, for which U(I)h‘J = {0} for

. . c
some ideal I in A, I®C = A,
rroof, In order to show the tirst assertion, it is sufficient to con-

struct, for a countable family (hn) CH with the properties

(I, = {xea, Ulz)h, = 0}): (a) Irclc = I, for allmn, (b) Iy ¢ I form 2n,
(¢) U(x)hg = U(x)h, for m > n, x e IS, an element h ¢ H,, suck that

{xeA, U(x)h

0} = nij.
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let <Pk) be an increasing countable family of semi-norms, which defines

the topology of Hv'

Define h by h = I~ 1 h_.
en(1 + pn(hn))

Then, since for n, m >s, n, m > 1 - 1n e/1n 2,

m 1

ps(zk—n
= k
2 + h
(1 Pk( k))

hk) < €,

h belongs to Hv'

By induction one may show that {xeA, U(x)h = 0} = Al .

The second assertion is a consequence of Lemma L4,2.L, Lemma 4,3.5, the
way Theorem 4.3.1 is proved and the following proposition, which has same
interest in its own,

Proposition 4,3.7. Let Ui A — L(F) be a representation of the semi-prime

algebra A, Let HO and H be closed invariant subspaces for which

HyoH = {o}, Hy + H =F and for which the mapping

h,+h—h ,h ¢H

o 0 0* h € H,

is continuous.

Then the following assertions are equivalent:

i ini i e T hi U is
(a) The space H, is & minimal closed invarient subspace for which U is

faithful; moreover, EE.U(I)ho = {0}, hy € H, for same ideal I CA,

for which I°¢ = A, then hy = 0,

() The space H‘Lig_minimal, in the sense that there does not exist a

j
wi-closed invariant subspace Hy ¢ H™, for which U(x)'H& = {0}, x € A,

implies x = 0j; moreover, for every ea < or whi =
imp1i 0 , ideal I € A, £ hich I°¢ = A,

U(I)H0 is dense i&_HO.
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Proof, (8) = (b). Let I be an arbitrary ideal in A for which 1°¢ = 4,
Then U(x)U(I)Hb = {0}, x € A, implies x = 0. By the minimality of Hy, it
follows that U(I)Ho is dense in Ho. Rext, let Ha C;HJ-be a w*-closed in=-
variant subspace, for which U(x)'H} = {0}, x € A, implies x = 0. We shall
show that H& = Hi} let Hl be the closed invariant subspace defined by

H1 = (h ¢ Ho, <h,H6> = {0}} and let I denote the ideal

I = {xeA, U(x)H1 = {0}}. Then, since H) is w*-closed, H} = (K + H)

Hlan. Consider the subspace G = U(I)H0 + U(IC)HI. We first prove that
G is dense in Ho. By assumption (a), it suffices to prove that U(x)G ={0},
x e A, implies x = 0. Let x € A, for which U(x)G = {0}. Then both
U(xI)H = {0} and U(xI®)E, = {0}, It easily follows that xI = {0} end
xI¢ ¢ I, from which x = 0. Since Ho and H are topological complementary
subspaces in F, we infer that the space

{¢5H‘L, <U(I)H0 + U(IC)H1 4> = {0}}
reduces to {0},
Hence,

{¢eHi, U(1)*¢ = {0} and U(I®)'¢ CHIL} = {0},
from which

{¢eHJ‘, U(I)'¢

{0} and U(1%) ¢ cnllnni} = {0},

Or, equivalently,

{och™, U(I)'¢ = (0} mna U(I®)'¢ < H!} = (o).

Since U(IC)'Hé is contained in the left-hand side of the equality, we
have U(Ic)'Hé = {0}, Hence, since U(x)'Ha = {0}, x € A, implies x = 0, we
get IC = {0}, By the definition of the ideal I, we have U(I)H1 = {0}; this
= A implies, by assumption (a), that

together with the fact that I

H1 = {0}. Hence, Hé = HnH
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(b) => (a), First, let I be an ideal in A for which I®® = A and let h,
be an element in Ho for which U(I)h0 = {0}. Since U(x)'U(I)'H'L= {0} im-
plies x € I¢ = {0}, it follows, by the minimality of Hl, that U(I)'H‘L is
w*-dense in H™, So, since U(I)hO = {0} implies <h0,U(I)'H13 = {0},
<h0,Hi> = {0}. Since Ho and H are topological complementary subspsaces in
F, it follows <hO,F'> = {0}, and so ho = 0,

Next, let H, € Hj be a closed invariant subspace for which U(x)H = {0},

x € A, implies x = 0., We shall prove that H1 = Ho. Consider the

1
(H1 + H) together with

w¥-closed subspace Hj = {¢8Hl; <H, ,¢> = {o}}
the ideal I = {xeA, U(x)'Hj = {0}}, We first prove that the space
G' = U(I)'H" + U(I%) 'R}

is a w¥*-dense subspace of Hl. By the minimality of Hl} it is sufficient
to prove that U(x)'G' = {0}, x € A, implies x = 0. So let x € A be such
that U(x)'G' = {0}. Since U(xI)'H" = {0}, we get xI = {0}. Since
U(x1€)'HY = {0}, it follows, by the definition of I, that xI¢c I, From
these remarks we easily infer that x = 0. Since G' is a w*-dense sub-

space of HJ} it follows that the space (heH;, <h,G'> = {0}} reduces to

{0}. Equivalently,

[

L
{heH,, <U(I)h,H > = {0} and <U(1%)n,H!> = {0}} = {0},
1
Since H1 + H is a closed subspace of F and HY = (Hl + H) , it follows

{o}.

{0} and U(I®)h € H, + R}

1]

{her, U(I)n

%
&

{heH,y, U(I)h = {0} and U(I®)n < H;} = {0},
Since the space U(IC)H1 is contained in the left-hand side of the equal-

ity, ve have U(I®)H, = {0}, Since U(x)¥, = {0}, x ¢ A, implies x = 0, it

follows IC = {0} and so ISC = A,
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By the definition of I we have <U(I)H0,H6> = {0}, Since I°® = A, it fol-
lows, by assumption, that U(I)Ho is dense in Ho. Hence, <H0,H6> = {0}.
Thus, since H} ¢ HJ'and F=H +H, H = {o}. So, H + His a dense sub-
space of F; whence Hl = Ho.
Remark. Proposition U4,3.7 shows the symmetry between the representation
U and the "dual" representation, defined by x — U(x)'¢, x € A, ¢ € F',

The results in the third section show that the theory is

nice, if we assume that, roughly speaking, F can be decomposed into a
direct sum of closed invariant subspaces, which are minimal in the sense
of Theorem 4,3.1, In this case we necessarily have that U(I)F is dense
in U(I®C)F for every ideal I ¢ A, It seems to be worthwhile to develop a
theory of spectral operators along the lines of this chsapter. In particu-
lar, it might be useful to assume that the representation U has the above
property, viz. U(I)F is dense in U(I®®)F for every ideal I C A, One might
call an operator S A-spectral, if it commutes with U(a) for every element
a in A; one might say that it is Aescalar, if S = U(a) for some element a
in A, We mention the following two open problems,
Problem 1, Iet U: A — L(F) be a faithful representation of the semi-
prime algebra A, Assume that for every ideal I in A, U(I)F is dense in
U(I®C)F., Do there exist minimal closed invarient subspaces for which U is
faithful?
Problem 2, Assume that F can be decomposed as a direct sum of Banach
spaces, which are minimal in the sense of.Theorem L,3,1. Assume that A is
a vector lattice, Is it possible to choose the "cyclic" vectors f, and ¢,
of Corollary %.3.6 in such a way, that the expression <U(a)fy,$,> is pos-

itive for every element a in the positive cone of A?
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