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ABSTRACT

In the dissertation. which mainly deals with camnutative

semi-prime algebras and representations thereof. we first examined the

class of the so-called regular ideals.

Definiticn 1. ~ A ~ ~ canmutative semi-prime e.lgebra. ~ any subset

S ~ A, ~ define lli ideal SC &. SC = {a£A. ax = 0 for all xES}. ~

ideal I i!l A~ called regular II I = ICc.

In !!o. the class of the regular ideals, we introduced the fo1-

loving operations:

where (Iv) is any subset of B and I any element in B. We showed that,

under these operations, B is a Boolean algebra; since for any subset (Iv)

of B the intersection nl v belongs to !!O, it is complete; since H,(V Iv>

= V(IAI) , where (Iv> is any subset of B ar.d I is any element of ~, it is

distributivee

Definition 2. ~ a*ebra A satisfies the countable chain condition

(c. c. c. ), if.~ £!~ assertions iE..~ following theorem holds in A.

Theorem 1. 1!:!!:. following assertions ~ eguivalent.

1. Every disjoint fami1,y (bv ) (~. ~ :# " implies b\.lb
V

= 0) £! non-zero

e lements k countab le ;

2. Every intersection nlv E!. regular ideals Iv ~ countably accessible

(~. I.uc:rc: t:JU..::;i.:s a counl;.able subfamily (Iv ) such that iii" = iil v ).
n n

In the special case where A = C(X). the algebra of the con-

tinuous complex-valued functions en the ccmpact Hausdorff space X, we

were interested whether or not there exists a gt~ictlY positive mooa" ...,o------- ,

~. a probability measure with the property t:hat every non-void open
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subset of X has positive measure. In this connection we got the fol-

loving result.

'Iheorem 2. ~ folleving assertions ~ eguivalent.

1. There exists !:. strictly positi ve probability measure E.!!. X;

2. !£!. every non-void regular open ~ 00 .!a. X there exists !:. bounded

regular positive measure \.1 0 ~ 00'~~ \.10(0) i:L positive !E£

every romen set 0, which is dense in ° , moreover, X satisfies _the
-~- - - 0

c. c. c. (~. every disjoint fami~ of non-void open sets is counta-

ble) •

In order to conclude 1. from 2. a slight~ weaker condition is suffi-

dent: X satisfies the c.c.c. and for every non-void regular open set 00

together with any subcollection £ of {O, ° open and dense in 00} with

the property that the interior of any countable intersection nOn' On in

£, again belongs to.s there exists a measure \.1 0 on 00' such that \.10(0)

is positive for every member ° of £.

In terms of Boolean algebras we proved the following.

Theorem 3. ~ B~ ~ canple~ distributive Boolean algebra. ~~

loving assertions ~ equivalenL

1. There exists ~ bounded strictly positive measure lJ on B (b.!.. p :f. 0,

P E B, implies lJ(p) > 0),

2. E2!. every element Po'!!!' B there exists ~ bounded posit!ve measure \.I

1_ , .L' ,_ 0- ..
\1-'i J ~ WUJ.l;lJ.

P = VPi' moreover, B satisfies the c.c.c ••
o -
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In what follows we assune that the representation

U: A - L(F).

where F is any locally convex vector space. has the property that for

every ideal I in A the projection

exists and is continuous.

Among others we proved the following results.

Theorem 4. ~ A • C(X). where X .!.!l ~ localJ,y ccmpact Hausdorff space.

which ~~ countable ~.!2!:. ili. topologY. ~ F ~ ~ normed vector

space !!!!i~ lli representation U: A - L(F) ~ faithful. ~ there

exists !!!l. element ~ £ F' •~~~ ideal {xe:A. <U(x) f .~> = a for

all f in F} reduces l2. {a}. provided~ .!2!:. every f e: F~ ~ £ F' • ~

mapping x'-' <u(x)f.~>. x e: A• .f!!. continuous.

Theorem 5. Assume~~ vector space F~~ wri tten ~~ topologi-

_cal ..=di...·-.r...e-.ct.... sum of complete metrizable vector spaces H • Let the spaces H
- -- - - 'V -- - V

~ minimal ~ 2 sense~ there £2.!!£i exist proper closed invariant

subspaces H of H for which the representation U _is faithful. Assume that- -v---- - - -

~ semi-prime algebra A satisfies ~ c.c.c •• ~.f2!:..~ \I there ~

ists a vector f • such that U(A) f is dense in H • Assume. _in addition.-- v ------ v - v

~~ spaces H\I ~ Banach spaces ~~ U(I)f = {a}, where f e: F ~

I ~ ideal in A .!2!:. which ICC = A. imply f = a. ~!2!:.~ \I there ex-

I ..... \.L; i ... \ .. U"I , ::;Ucll thai; li(A):<jl is w--dense inv- ... -- v- -
1l#\I



vi

TABLE OF CONTENTS

ABSTRACT •• . . . . . . . . . . . . · . . . . · . · . . iii

CHAPTER I. L1iTRODUCTI ON . . . . . . . . . . . . . . . . . . . . 1

CHAPTER II. BOOLEAN ALGEBRAS AND IDEALS

1. A Boolean algebra of a certain class of ideals in
a ring . • • . • . . • . . . · • · · • · · · • · · 3

2. Regular ideals • • . • • • . · · • · • · · · · · · 7
3. The countable chain condition · · · • · • · • • • 15

CHAPTER III. SCtofE CCt.fMENTS ON STRICTLY POSITIVE FUNCTIONALS

1. Preliminary remarks ••••••••••••••• 23
2. Regular 1\mctionals and normed algebras ••••• 25
3. Strictly positive functionals •••••••••• 31
4. Boolean algebras and strictly positive measures 40

CHAPI'ER IV. GENERALIZED GELFAND TRIPLES

1. Representations of semi-prime algebras ••••
2. The general situation •• • • • • • • • •••
3. The situation where U(I)F is dense in U(ICC)F

· .· .
46
46
65

BIBLIOGRAPHY . . . . . . . . . . . . . . . . · . . · . . . . . • • 73



1

CHAPTER I

IN'ffiODUCTION

In the present work we shall generalize the so-called Gelfand

triples for Hilbert spaces to arbitrary local~ convex vector spaces. In

terms of a given operator (or a fami~ of operators) defined on a Hilbert

space H, one often arranges for a triple

H
O
~ H '- H~,

where Ho is a certain locally convex vector space (which m83' be a nuclear

space, a Banach space, etc.), which is dense in H and for which certain

invariance conditions hold. The space H~ is the topological dual of Ho•

For concrete examples see ~. Ju. Berezanskii [2], I. Gelfand and others

in [10] and [11], R.A. Hirschfeld [14], K. Maurin [18].

We shall consider a representation

U: A -- L(F),

where A is a commutative semi-prime algebra (Le. a 2 = 0 implies a = 0)

over the complexes, F any locally convex vector space and L(F) the alge-

bra of all continuous endanorphisms of F. In A we consider a certain

Boolean algebra of ideals. Many of the properties present in case A is

generated by a Boolean algebra of idempotents remain valid or can be for-

mulated in tenns of this Boolean algebra of ideals.

Our ultimate aim is to arrange for

F' C-..+- F'o and F <-+ F'
o '

where F0 is U-invariant (i:.!.. U(x)F0 C F0 for all x c A) and the im

bedding J: F 0 -~ F' has the property that U(x) I Jf = JU(x) f for all f c Fa

In Chapter II we shall investigate the properties of semi-prime rings.
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More specifically we are interested in the class of the so-called regu

lar ideals; see Definition 2.1.2. In Chapter III we closeq examine the

"simple" situation, where A l:I F I: C(X). the algebra of a.ll continuous

functions on a canpact space X, and U: A -+ L(F) is defined by U(f)g

= fg for all f. g £ A. In order to obtain the injection F -+ F' • we need

the n,tion of a strictl,y positive measure; see Theorem 3.2.3. Finally,

in Cha).: ter IV we shall consider the gene:l:'al 8ituation.

The measure-theoretical tools we need are taken fron [9] and

[ 13]. For the theory of locally eonvex veetor spaces we use [16] and

[23], where a great many results en (partiall,y) ordered vector spaces can

be found too. We employ the standard properties of Banach algebras as set

forth in [21] ,'Uld [22]. A treatment of locally convex algebras can be

found in [20] and [26]. For a survey of the properties of Boolean algebras

see (24J. For properties of (generalized) spectral and/or scalar operators

we mention [4]. [5] and [171 and the references given there.
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CHAPTER II

BOOLEAN ALGEBRAS AND IDEALS

1. A Boolean algebra of a certain class of ideals in a ring.

Throughout the sequel A stands for a canmutative ring (with

or without identity). The present section is devoted to the construction

of a "canonical" Boolean algebra! of ideals I in A. No topology on A

wi 11 be needed for the time being.

Given any set SeA, we will write SC = {ae:A, as = {a}} for

the annihilator of S in A. (The superscript c is reminiscent of set

theoretical canplementation.) It is clear that SC will be an ideal in A

(posl:,ibly improper) and that S C SCC. We now impose the following

standing hypothesis on A: For every ideal I in A we have I~Ic ={OJ.

Recall that a commutative ring is semi-prime if it has no nilpotents 1 o.

Proposition 2.1.1. ~ following properties ~ equivalent:

(i) .E2!:. every ideal I 1!!. A~~ lAIC = {a};

(ii) ~ every ideal I in A, 12 = {a} implies I = {a};

(iii) ~ eveEY element b ~ A, b2 = a implies b = O.

Proof.

(i) => (ii). If 12 = {a}, then I C Inlc = {a}.

(ii) => (i). For any ideal I in A, we have (InI C}2 = {a}, so Inlc = {a}.

(i) => (iii). Suppose b2 = O. Consider I =bA. Then ba belongs to

lAIC = {a} for all a £ A and so bA = {a}. Hence b £ AAAc = fOl.

(iii) => (i). If b C I~Ic, then b2 = 0, gO b = O.

For more information on semi-prime rings, see ~. [191.

We now adopt the following de fini tions •

Dennition 2.1.2. An ideal I in A for whic.~ I = ICC is called regular.
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Definition 2.1.3. ~ 2ll2!:..~ family of~ ideals I (proper .2!.~) in

A, which ~ regular.

We show that all annihilators belong to ~.

Proposition 2.1.4. !:2!:. any subset SeA ~~ SC e: B; {a} ~ A belong

~~.

Proof. 'ole must prove that SC = SCCC. The obvious inclusion S c. SCC, im-

plies SC c sCcc. Conversely for any b e: SCCC we have bS cC = {a},whence

bS = {a}, so that b e: SC. The remaining statements are obvious.

Before we introduce operations in ~ we agree upon some nota-

tion. If {Iv' v £ r} is a family of ideals in A, then EIv stands for the

ideal of all finite ccmbinations E~=l ai' where ~ e: UIv for i = l, ••• ,n.

If I and I are ideals in A, II:S is the ideal of all finite combinations
1 2

n
of the form Ei=l ~b i , where a i e: II ' bi e: 12 for i = 1,••• ,n. A similar

notation is used for the "product" III2" .Im of ideals II , ••• ,~.

In B we introduce two operations:

For an arbitrary family (Iv), where v wanders over some index set (which

will not be mentioned) and where all ~ belong to ~~ we define

III.,; = Iv,

VIv =(~)C = (EIv)CC.

It will be seen that for these operations ~ becomes a complete Boolean

algebra. Moreover we will notice a striking similarity with ordinary set

theory. In order to show these properties we will neen the following lemma.

Lennna 2.1.5. ~ II , ••• ,In~.!. finite number 2! ideals in A. Then

(II :s ...I) cc :.. (lin ••• nln ) cc = -;CCrL.••."~I~C•

~ second equality need~ hold f9.!: infinitely~ ideals.
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Proof. It will be sufficient to prove the statement for n = 2. Since-
always, 1

1
1

2
c 1

1
,,1

2
c I~CrU~C, we have {I

I
I

2
)CC c {I

l
f"lI

2
)CC c

{I~c"I~C)CC. By the equality I~c"I~C = {I~ + I~)C and by Proposition 2.1.4.

we get {ICC"Icc)cC = {I C + IC)cCC = {I c + IC)c = Icc"Icc• So there remains
1 2 1 2 1 2 1 2

to show that It:(\I~C c{I
I

I
2

)CC, or equivalently {I
I

I
2

)C C(I~C"I~C)C.

Let a £ {I1 I
2

)C. Then all C I~ and so {all )f\I~C = {OJ. For b any element

of III~C we have ab is an element of {all )f"lI~C = {Ole So a £ (III~C)C,

cc c (CC) cc {l cc ICCwhence aI2 c II. Thus aI
2

nIl = O. Next let b belong to II 11 2 •

Then ab E {a.I~C)III~C = {Ol. From this we finally infer a £ {I~cf\I~C)C.

Next we will give an example in which we will see that the assertion

(OIn)CC = llIgc ,

does not hold for countably many ideals In in A. I,at A = C[ 0,1], the ring

of all continuous complex valued functions on [0,1]. To each rational num-

ber r, 0 < r < I, we assign the ideal

I r = {fEA, f{r) =OJ.

Then

nlr = {fEA, f{ r) = a for all rational numbers r} = {a }.

So

(Or )CC = {a}cc = {O }.
r

But

I
C = {gEA, gf = 0 for all f£Irl = {a }.
r

Hence, 1::::::- At from which we see nIce = A.r - r

In the following statement we collect some of the properties

of B.



Theorem 2.1.6. ~ operations A~ V satisfy~ following rules:

( i ) (n~ E!!. canplements")

!2!:. (I) !!!. arbitrary subset £!~~~

(a) AI
c

VIc £E: ~, (AI) = !,
" "

(b) VI" £ ~, (VI)C c= AI" £ B.

(ii) ~ "Distributive lavs")

:E2!:. (I)!!!. arbitrary subset .2!. ~~ I £ ~, ~~

(a) Iv (AI) = A( IvI) ,

(b) IA(Vl) = V(lAI).

~ family ~ 1.:!. ~ Boolean algebra, .!2!.~~

(iii) Q (= {O}) ~ 1. (= A) belong l2.!.

( i v) .E.2!. every e lemen t I £ B there exis ts !:. uniquely determined element

I o £ ~, namely I o = I C, satisfying IAl o = Q.~ IVlo = 1.

Proof.

(i)(a). We will prove that AI" = (EI~)c. In virtue of Proposition 2.1.4,

this will show AIv £ B. For a £ AI" = nlv we have, since I" = I~C,

C c
aIv = {oJ for all ". So a(rlv ) = {oJ, whence a £ (EI~)c. Conversely, let

a £ (El~)c. Then a(EI~) = {oJ and so bI~ = {oJ for all ". Hence

a £ I~c = Iv for all v, whence a £ nr v = Alv •

(i)(b). The first property follows from Proposition 2.1.4, the second is

an application of (i) (a).

~u -..-ii""t-uc uf' U.}( 8.J, (0 J it is sufficien~ ~o prove one of the

equalities. Let us prove the second one. Let I and (I ) belong to B.v

Then it is easy to verify that

6
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Upon taking second annihilators we get:

An appli cati on of Lemma 2.1. 5 to the le f't-hand side yie Ids :

ICCn{~Iv}CC = {~{IIv}c}c.

Applying the same lemma again we see:

{IIv}c = {IIv}cCC = {Icc~I~C}C = {I~Iv}C.

Hence

implying (ii}{b).

Assertion (iii) is obvious.

From 1111 = I hI = a we infer Io 0 0

clude ICtU~ = {ICrU~}CC = AC = {O} and thus

{iv}. Given any I € ~. let 1 0 € ! be such that IAI o =2.. IVI o = 1.

e I C• Fran {IcflIC}C = IVI = 1 we con-o 0

I C c I~C = 1
0

, Hence 1
0

= I C•

Remark 1. In terms of lattice theory ~. together with the operations A and

V. is called a Brouwerian lattice. See [3] for this and related topics.

Remark 2. We did not use the fact that elements of A have negatives.

For example. we may apply the results of this section to a cone A of pos-

i tive functions.

2. Regular ideals.

In the present section we first shall associate the regular

ideals (I = ICC) of an algebra A of functions on a point set X. to a cer-

tain Boolean algebra of subsets of X. We next address ourselves to the

main topic of the present work. ~. the regular ideals belonging to a

Boolean algebra of idempotents. The results are useful in the spectral

thcc:'".r ~ls.ted to a Dool€-ail alg~br&. or projections defined on a vector

space.
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Our starting point will be the observation that any subset °
of a canp1etely regular space is open if and only if for every x£:O

there exists a bounded continuous real-valued function f on X such that

(i) f( x) # 0, (ii) f =° outside of 0.

Now let X be some point set, K a field, and A a ring of K-va1ued func-

tions on X. Using this idea, we will define open sets in X. A subset °
of X is said to be hk-open if for every x £ 0, there exists a function

f £ A such that

(i) f(x) # 0, (ii) f = a outside of 0.

It is easy to veri fy that an arbitrary union of hk-open sets is again

hk-open. Moreover the intersection of finitely many hk-open sets is hk-

open. Let a ,••• ,0 be hk-open sets and x £ nO.• Since for each i, O. is
1 n ~ ~

hk-open, there exists a function f, such that f.(x) # 0 and f. vanishes... ~ ~

off 0i. Let f = fl •• ' f n • Then f( x) 'f 0 and f =° off no
i

• It is also easy

to verify that for each f £ A, the set {x£X, f(x) # O} is hk-open.

Moreover if L is an arbitrary subset of X then the hk-c10sure of L consists

of all points x £ X, for whi ch f( x) = 0 for all f whi ch vanish on L.

In a formula:

L = {x£X~ f(x) = 0 for all f£A for which fl L = a}.

The hk-topology is reminiscent of the classical hull-kernel topology on

the maximal ideal space of a commutative Banach algebra; see [15]. In

fact. if the ab ave fun ct.; on ,..; "!e; _t._ 0!2 x: b e.ppe!'2S '"Q.."_,, l-. _, __'1-.. __
_ !o.Ao ......~'- t.J.4 U

wi th X as its maximal ide al space, then the hk-topo10gy introduced above

is readily verified to coincide with the hull-kernel topology (whence the

notation hk-topology).
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Following standard terminology' (cf. P.R. HaJmos [12]) a subset ° <: X

will be called a regular open set for the hk-topology if ° = interior O.

As shown g. the family of regular hk-open sets is a Boolean algebra

for the operations 01 A02 = °11"'1°2 • 01 V02 = (01v02) I I • where 0' is the

canplement of ° in X. In the next sequence of lemmas and theorems we

will establish a one-to-one correspondence between regular ideals in A

and regular hk-open sets in X.

Lemma 2.2.1. ~ P ~!!; subset EL A~~ U =

u .!.:!. hk-open.

(ii) flu = ° <=> f € pc.

(iii) U· = U {X€X. g(x) ~ ol.
g£PC

Proof.

U {X€X. g(x) ~ a}.
g£PC

(i) The set {x£X. g(x) ~ o} is hk-open for g € A and the arbitrary

.mion of such sets is open.

(ii) =>: Let flu =° and g £ P. For x € U. we have f(x) =° and so

f(x)g(x) = 0. For x t U. ~. g(x) = a for every g € P and again we have

f(x)g(x) = 0. Hence f € pC.

<=: Let f € pC and x € U. ~. g(x) 1 a for same g € P. Then. since

f € pC. f(x)g(x) =o. So. since g(x) ~ O. f(x) = 0.

(iii) By the above remarks U = n{XEX. f(x) =a}. where the intersection
f

is taken over all f for which flu = o. By (ii). U= n {XEX. f(x) = a}.
fEP C

Thus U' = X\u = U hEX. f'(y) '! oL
fEP C •

~ 2.2.2. ~ P ~~ subset of A. Then P = pCc <=> P = {fEA. flo = a}.

where °~~ hk-open subset of X.

Proof. =>: Consider a = U {XEX. g(x) 1 a}. Then ° is a hk-open subset
gEP C

of X and flo = 0 if and only if f E pCc = P.
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Let P = {fe:A, rI 0 = O}, where 0 is a hk-open subset of X. For every

x e: 0 there exists a function f e: A such that f(x) :I- 0 and f = 0 off O.

So if I denotes the ideal I = {fe:A, f = 0 off ol, 0 = U {xe:X, f(x) :I- ol.
fe:I

Thus, by (ii) of Lemma 2.2.1, flo = 0 if and only if f e: IC. Hence

P = IC. Thus, by Proposition 2.1.4, P = p Cc •

Lemma 2.2<3. ~ subset 0 2! X !!. ~ regular hk-open~ II~~ g

there exists ~regu1ar ideal I such that 0 = U he:x, f(x):1- ole
-- fe:I

Proof. (sufficiency) Let 0 = U {xe:X, f(x) :f. Ol' where I = ICC.
fe:I

Then, by Lemma 2.2.1, 0" = U {xe:X, f(x) :I- o} = O.
fe:r cC

(necessity) Let I = {te:A, {xe:X, f(x) :I- O} cO} where 0 is regular hk-

open. Since 0 is hk-open, 0 = U {xe:X, f(x) :f. a}. By Lemma 2.2.1,
fe:I

I C = {fe:A, f = 0 on O}. It follOW's that I C = {feA, f = 0 on a} =
= {fe:A, {xe:X, f(x) :I- ol cX\O}. Since X\O is hk-open, we get

X\O= U {xe:X, f(x):1- O}. Again, by Lemma 2.2.1, f e: ICC if and only if
fe:r c

f vanishes on X\O. Hence ICC = {fe:A, {xe:X, f( x) # 0 leo}. Since for each

f e: A, {xe:X, f( x) :I- a} is hk-open, we infer

cc ~I = {fe:A, {xe:X, f(x) :f. O} c::. Int(OJ}.

Since 0 is regular hk-open, 0 = Int(O), whence I = ICC.

Incidentally we also proved

Lemma 2.2.4. A subset P .£! A~ ~ regular ideal in A if~~ II there

exists ~ regular hk-open subset 0 2f. X~~

As a consequence, we obtain (notation frcm [12])
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Theorem 2.2.5. ~ X~~ point ~, K !!. field~ A !!. ring .2!. K-

valued functions £!!. X. ~ X~ supplied~~ hk-topologY. ~ li~

~ Boolean algebra 2! ill regular ideals!!!. A~ 13 ~~ Boolean~

gebra ..2!. ill regular hk-open~ .!ll X.

-
~, there exists .! mapping u: li ~ B~ !!. mapping v: B ~ li,~

~ you = identity m.li~ uov = identity .Q!!. B. Mgreover if I, II and

1
2

belong ~~,~ u(I
1

Alz) = u(I
1

)AU(I
2
), u(I

1
VI

2
) = u(I

1
)Vu(I2 )

~ u( I C
) = u(I)'. Similarly, v ~ !!!£ properties:

v(OIA02) = v(OI)AV(02)' v(OlV0
2

) = v(OI)vv(0
2

} end v(O') = v(O)c,

where 0, ° and 0 are regular hk-open sets in B.
1- 2- - ---

Proof. Define u: ~ ~ B by u(I) = U {X£X, f(x) ~ OJ, where I £ ~, and
f£I

define v: B ~~by yeO) = {f£A, {X£X, f(x) # o} cO}, where 0 £ B.

Then, indeed, by Lemma 2.2.3, u maps ~ onto Band vou(I) = I for all

I £ B. By Lemma 2.2.4, v maps B onto ~ and uov(O) = 0 for every 0 E: B.

By virtue of these facts and since B and B are Boolean algebras, it will

be sufficient to prove that u(I
1

AI
2

) = u(I1)AU(Iz) for all 1
1
,1

2
£ B

and that u( I C
) = u( I)' for all I E: lie

By definition

It is easy to veri fY that

U {XE:X, f(x) # O} =
fE:I{'1I z

wLlenee

U {xE:X, f(x) ~ oJ.
f£I1()I Z

U {XE:X, f(x) # O}n U {XE:}', f(x) # oJ,
fE:I} fE:lry

This holds for all II and 12 E: B.
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If I £ ~. then by definition u(I) = f~I{J(f;X. f(x) '# O}.

So. by Lemma 2.2.1. u(I)' = ~IC{X£X, f(x) :I- O} = u(I
c
).

Notice that if A = C(X). the algebra of all continuous can-

plex valued functions on the compact Hausdorff space X. then the hk-

topology for X coincides with the usual topology.

Next we shall. in a natural way. construct an algebra of

"simple functions" belonging to a Boolean algebra. Let B be a Boolean

algebra under the operations A. V and '. Its elements will be denoted

by P. q •••• Let K be a field wi th members A. ~ •••• Let "5 be the set of

all formal finite canbinations of disjoint elements in B. Le. an element

f e: 5 is of the form f = L. n A. p; •
~=l ~ ...

where A1 •••••An e: K. Pl •••••Pn £ B and PiAPj = 0 whenever j f i.

Formally. we define a scalar multiplication. a multiplication and an

addi tion as follows:

+ L m 1J qj Ap' A•• lip I •
j=l j 1 n

if Ai f 0 implies

+ r. n A.p.Aqt'·Aq'
~=l :l. 1. m

We call an element f = Lin A.p. e: ~ trivial=1 ~ ~ J

Afl = Li~IAAiPi' for all A e: K.

n m
f l f 2 = Li =IL j =IAi 1J j Pi!l.qj.

and f l + f 2 = Li~lrj~l(Ai + 1Jj)Pi Aqj

then

Pi = 0 and if Pi :I- 0 implies Ai = 0 for i = l •••••n. An element

f l = Li~IAiPi is said to be equivalent to f 2 = rj~l~jqj' notation f l ~ f 2 •

if the element

Li~lrj~l(Ai - ~j)PiAqj + Li~lAiPillqlA ••A~ + Lj~I(-1Jj)qj P~II •• IIP~

is trivial. This relation is an equivalence relation indeed.
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If we do not distinguish between elements in -5 and their equivalence

classes. the (scalar) multiplication and addition, defined above, makes

S 2 ~ I.v into an algebra over K. The class of the trivial elements will

become the zero element in S and (-1) f will be the negative of f for each

f E: S. Upon identifYing p and (the class of) l.p for each element p E: B,

B is in a natural wa:y a subset of S.

Under these identifications we have for instance:

pq ::: pAq, p + q - pq = pVq. p + p' ::: e.

where p, q E: B and e is the identity in B.

Example 1. If B is a Boolean algebra of projections defined on a vector

space over K. Then S is the algebra of operators spanned by B.

Example 2. If B is a Boolean algebra of subsets of sane point set X, then

S is (isanorphic to) the algebra of all simple K-valued functions spanned

by the characteristic functions of members of B.

Example 3. Let B be the Boolean algebra of the regular open sets of a

topological Hausdorff space X. Let ~ be the collection of all K-valued

functions of the form r n AiXO.' where ~or every i. 0i is an open set in
i=l ~

its characteristic function and where all Ai belong to K. 'I'w'o func-X, Xo
i

tions f 1 and f
2

in S are said to be equivalent, denoted by

they coincide on scme open set. which is dense in X. Then it is readily

verified that S = -S/", is iscmorphic to the canonical algebra. as construc-

tea above. belonging to B.

A Boolean algebra B is said to be complete if for every de-

creasing family (Pa) c B, its meet Ara. exists. It is called distributi'fe

if for every decree..sing f~ily (Pa ) and evc'i".i element pCB. pVj\Pa
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We will prove that. for complete distributive Boolean algebras. an ideal

I C S is regular (i.e. I = ICc) if and only if I is of the form I = pSt

where p belongs to the underlying Boolean algebra.

We first prove the following lemma.

Lemma 2.2.6. ~ B ~!. complete distributive Boolean algebra. S as

above. ~~ (Pa) ~!. decreasing family .£!. elements in B.

Then np S = (Ap )S.
- a a

'!henA. ". 0 for all i.
~

Ei~lAiA(Pari). Since

= ~PePa = ~Pa = Po· So. if f £ S. then pof = PePo f for all e. whence

PoS c np S. Conversely let g = E.nlA.r. £ nPaS. We will show that pog = g.a ~= ~ ~

whence n(p S) cPOS. We may assune that
a

pog = Ei~lAiPOri = Li~lAi(Ap )ri =
a

g = Ei~lAiri £ nPaS, we certainly have that g £ PaS. Hence. there exist

a a
qjqk = O.

a a
= lJ jPaqjri •

whence P r. = r .•a ~ ~

j = l •••••m together with elements qj. j = l •••• .m such

m a a
= Ej=llJ jpaqj and such that j ". k implies

= O:i~lAi ri hi =
m a

r i = Lj=lPaqjri'

A· r·
~ ~

Thus

constants lJj.

that L n Lr.
i=l ~ ~

a a
Multiplying both sides by r i and by qj we have Ai ri qj

'f a ~ h a ,Hence. ~ Paqjri r O. we see t at 1J j -. I\i and so

m a a _ m a
Ej=llJjPaqjri - Lj=lAiPaqjri·

So we have that pog = Li~l AiA(Pari ) = Ei~lAiAri = Li~lAiri = g.

Theorem 2.2.7. ~ B~ S ~ ~ iE. Lemma 2.2.6. An ideal I C S is regular

g ~~ g I = pS !.£!:.~ P £ B.

Proof. (sufficiency) Let I = pSt where p £ B. Then f £ Ie if and only if

fp = 0. or equivalently. f = f(e - p) = (e - p)f. Thus (pS)c = (e - p)S.

whence (pS)cc = ((e _ p)S)c
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(necessity) We will apply Zorn's lemma. Consider a f~ily of increasing

idem.potents (Pa ) c I = ICc. Since B is a canplete Boolean algebra. we

have ~(e - P(l) = e - Po' for sane Po £ B. Thus by the previous lemma we

have that nee - p )8 = (e - p )S.
a a 0

We will prove that p £ I and that p p = p for all (I.o a 0 a

We have I :;) U{pS, P £ I, P £ B}

and solc c n{( pS )c, P £ I, p £ B}

zn{(e - p}S, P £ I, p £ B} (as above)

c n( e - P }S =a

for which we see that P I C =o
that p(I(e - po) = 0 or PaPo

(e - p }S,o
cc{O} and so Po £ I = I. Moreover it follows

., Pa for all (I. Consequently we may apply

Zorn r S lemma, to the effect that there exists a maximal element p £ It\B.

SuPpose there exists an element f £ I, f ipS. Then, by assumption, the

element f is of the form f c ri~lAiPi' where Ai ~ 0 and PiPj = 0 when

ever j ~ i. Since, for every i, p.f = A.p. it follows that every Pi £ I,
111

since f t pA, at least one Pj ipS. Consider q =pjVp =Pj + P - PjP.

Then q £ I and q :f p and pq = p. Hence P is not maximal, which is a COI'-

tradi ction.

3. The countable chain condition.

In the following chapters we will need a certain countabili ty

property of the ring A. We aim to generalize the results on Boolean &1-

gebras of projectjons in locally convex sp8~e~ R~ ~~t fo~~ !~ [lJ ~~d

[25]. It will be convenient to give five seemingly different conditions,

which turn out to be equivalent.
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Lemma 2.3.1. ~ A E..~!. semi-prime ring~ I !!£ arbitrary ideal ~ A.

~ there exists .!. family (b) c I~~~ following conditions

~ satisfied;

(i) ~ family (b) ~ mutually disjoint: b\l\l =0, if \I :; lJ,

(ii) ~ family (b)~!!.2i trivial: ICC = (~b\lA)cc.

Proof. Consider the collection of all subsets of I, which satisfY the

condition that any two distinct elements have product O. An application

of Zorn I s lemma applies to the effect that there exists a maximal subset

~ = (b) having this property. 'We claim that the family ~ also satisfies

(ii). Upon letting I\I = b\lA, we i:.ave to prove that ICC = (EI) cc. Since

cc ( )cc ( c)cto show that I c ~I\I = nr\l or, equivalent-

amounts to Iccnnrc
={ Ol, Which, by Lemma 2.1.5,

\I

Illnr
c

•

"

~I\I C I, we only need

c n cly, I ::> I\I i the latter

c
in turn is equivalent to I"nI" = {Ol. Now coosider any b

o
in

c c
:r~or every lJ we ha.ve bOIlJ c IlJ"nI" C IlJl'tIlJ = {Ol. Hence, b o e: I annihi-

lates all members of ~, and so b o = O.

For a more conci~~ furmulation of +'he next theorem we shall

adopt the following terminology: a. family of ideals [ring elements] is

said to be disjoint if any two distinct pair has zero intersection

[product]. Furthermore, we shall say that an intersection nla of ideals

is countably accessible if there is a countable subfamily of indices (~)

for which OIa = nr a •
Cl n n

we now are aole to Cieri ve the following result.
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'lbeorem 2.3.2. ~ A~ ~ commutative semi-prime ring. ~. the follow

ing assertions ~ equivalent.

(i) ~ disjoint family £!. arbitrary non-zero ideals .!!. countable;

(ii) ~ disjoint family £!. arbitrary non-zero regular ideals ..!!. countable;

(iii) Any disjoint family £!. non-zero elements !!!. A !.!!. countable;

(iv) !h!:. intersection £!. any decreasing family £!. regular ideals is

countably accessible;

(v) ~ intersection 2!. !!!. arbitrag family .2!. regular ideals is counta-

£.!l. accessible.

Proof. We will show (i) => (ii) => (iii) => (iv) => (v) => (i).

(i) => (ii). Trivial.

(ii) => (iii). Let ~ = (ba ) be a familY of non-zero elements in A such that

bSb a = a for S ~ a. It is to be snown that 11 is at most ~ountable. Consider

cc cc cc cc
the ideals I a = baA. By Lemma 2.1.5 we have I a nIs = (IaI S) = {a} =
= {a} for B :; a. Thus ~ is at most countable, since by (ii), the familY

(Ia ) is so.

(iii) => (iv). Let ~ = (Ia ) be a familY of decreasing regular ideals. We

have to prove that there exists a countable subfamilY (1'11) such that

ora = nI
Cln

• Consider the ideal I = n~. By the previous lennna there exist

elements b v c I such that

(a) bvbu = 0

(b) ICC =
for v:;u ,

By (iii) the family (b v ) is at most countable, say (b
n

). Since the family

(I ) is decreasing,a the f~.iI:." is increasing, so we may assume that

for every n, bn e: I~. for s:me CXn •
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Thus Eb A
n

It follows that nIa ::> nra • We have
n

'!his proves the assertion.

(EbnA)CC c (EI~n)cc = (nI~)c.

trivially that nI~:::> nIa.

The implication (iv) => (v) follows from the next general re-

suIt, which has scme interest of its own.

Lemma 2.3. 3. ~ X ~!!:. point~~ C a collection of subsets of X

which is stable under countable intersections and which~ the following

property: ~ intersection !?!~ decreasing family ~ C~ countably

accessible.

~, every intersection .2! members of C~ countably accessible.

Proof. Given any subcollection r of C, we must exhibit a countable subset

~ off, such that n¢> = n1: Let'~ be the collection of all finite inter

sections of members of 1. Consider the family of the countable subsets ~
,-;;/

of f o• We shall write t
1

'" ~ whenever n ~ = n ~ • It is easy to veri fy'
2 1 2

that this does define an equivalence relation. Denote the class containing

-
~ by ~. We now define a partial order in the set of these equivalence

- -classes: 4>1 > ~2 if for representations we have n~l c n~2. Again it is

readily verified, that this relation defines a partial order. Next, let

(~) be a descending family and write ~ =v v

stahle under countable intersections, ea~~

{Lv n' n e: N}. Since,
nLv n belongs to C.n ,

C is

~iil(;e the ra.wll;y '*' .I.::> c.lt:::>cl::Ilding, there exists, by assumpt;ion, a counta-
v

ble subset {~v } C {~v} 9 such that
n

The right-hand side features an .intersection of count!:'_bly !!'.!!...'!y !!'.<>mbe!"S of

fa', Let 4> be the set of these elements.
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- -nten, clearly, ~ is greater than ~", for each ". Hence, by Zorn's lemma,

-there exists a maximal equivalence cless 41 •max

Claim:

Suppose not, then, since nfL, L £ t max} certainly contains nfL, L £ fi,
there exists an element Lo £1such that

f1{L, L e: cfl }nL::;' nfL, L e: ~max}.max 0

Let ~o = {LnLo' L £ 4lmax}, then to is a countable subset of ~ for which

lo > ~max and $0 # ~max· This violates the maximallty of i max , whence

the statement.

In order to shOW' the implication (iv) => (v) we need only to

remark that the set of regular ideals is stable under countable intersec-

tiona. (We even know that it is closed under arbitrBL~ intersections.)

(v) => (i). Let ~ = {Ia } be a family of arbitrary non-zero ideals satis

fYing ISnl
a

= {OJ for B ::;. a. It is to be shown that this family is

countable. Consider the family of regular ideals {I~}. By (v) there exists

c c
a countable set {Ia } such that nla = nIa. Claim: cfl = {Ia }. If not, cfl

n n n

would contain I o with I o # I~ for all n. Then, IonIan = {OJ and so

c c c c
I o c: I

CXn
for all n, whence I o c nl

an
= OIa • Hence I o c I o and 60 Ie = {OJ

in the semi-prime ring A. This proves the assertion.

Remark 1. As the proof shows, the theorem remains valid if everywhere the

the expression "countable:' is replaced by "of cardinality \-\", where

'>..1 \. r,,,;, f'i.
o

Remark 2. Condition (iii) enables us to ccmpare our results with results

of varl ous authors [1] and [25].

Remark 3. Condition (v.) will freq,1.lentl:,' be used in this sequel.
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We are nOW' ready' to define the countable chain condition.

Definition 2.3.3. ~ canmutative semi-prime ring n~\tisfies the countable

chain condition (c.c.c.) if it satisfies one of the five conditions of-- ----

Corollary 2.3.4. ~ X~~ completelY regular topological space ~ A

~ algebra £!~ bounded complex-valued functions E!!. X. !!!!;. following

assertions ~ equivalent:

(i) A satisfies ~ countable chain condition;

(ii) Every disjoint family .2!. non-empty open ~.:i!!. X k cotmtable;

(iii) Every family 2.!.~ subsets (Oa) £! X contains !. cOtmtable~

family (0Cln) ~~UO~ ~ dense !E. UOa •

Proof. We vill shOW' (i) <=> (ii), (i) <=> (iii).

(i) => (ii). Let (Oa) be a family of mutually disjoint open subsets of

X. Then, since X is completely regular, there exists for ea.ch a a bounded

continuous function fa such that fa "I 0 and fa = 0 off 0a. By the counta-

ble chain condition for A, the family (fa) is at most countable and so is

the family (Oa).

(ii) => (1). Let (fa) be a disjoint family of non-zero functions in A. We

viII show tha.t (fa) is countable. Consider the family of the open sets

0a = {xeX, fa(x) :# Ol. Then, S :# (l implies 0allOS is empty, '",hence the

result.
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(i) => (iii). Let (0 ) be a familY of open subsets of X.
a

Consider the set of ideals {Ia; I a = {fEA, f = 0 on 0an.

Then, by Lemma 2.2.2, I a is regular for each a. On account of the

previous theorem item (v), there exists a countable family (Ia ) such
n

that nI~ = nIa.

Whence, {fEA, f ". 0 on UOnn}= {fEA, f = 0 on UOa }.

If UOa were not dense in UOa , there would exist a point Xo E UOa and
n

an open neighbourhood U of Xo

Since X is canpletely regular

such that (UOa )f\U = ~ and Xo E UnUOa •
n n

there exists a function f E A such thato
fO(XO) :I 0 and f o = 0 outside of UflUOa • Thus f o E m~ and fl· ma , a

contradiction.

(iii) => (i). Let (Ia ) be an arbitrary family of reg.ular ideals. We will

show that there exists a countable subfamilY (Ia ) such that rna = nIa •
n n

By Lemma 2.2.2, we know that for every a there exists an open subset 0a

of X such that I a = {fEA, f = 0 on 0a}.

Then rna = Q{f£A, f = 0 on 0a} = {fEA, f = 0 on U0ell.

But there exists a countable subfamily (Oa ) such that UOa is dense in
n n

UOa. Hence rna = {fEA, f = 0 on UO~} = nran •

Coronary 2. 3.5. ~ X ~!. completeq regular topological space which

satisfies ~ countable chain condition~~ °be !!!!. open subset of X.

~ there exists !. countable increasin[ family .2! open~ (On) ~
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Proof. Since X is completely regular and 0 an open subset of X, there

exists for each x e: 0 a bounded non-negative continuous function f such

that f(x) 'I 0 and f = 0 off O. Hence the set 0 can be written as

o = U{xe:X, f(x) # O},
f

where the union is taken over all bounded non-negative continuous rune-

tions f, which vanish outside of O. By the previous corollary there

exists a countable subfamily (fn ) such that

~{xe:X, fn(x) # O} is dense in O.

Without loss of generality we may assume that 0 ~ fn(x) ~ 1 for all x

CD -n
and all n. Define fo(x) ~ E 2 fn(x) , then f o is bounded, continuous

n=l

and non-negative. Moreover ~{xe:X, fn(x) 'I O} = {xe:X, fo(x) # O}.

Finally let On = {xe:X, fo(X) > n- l }.
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CHAPTER III

SCME CCMMENTS ON STRICTLY POSITIVE F1JNCTIONALS

1. Preliminary remarks.

This chapter is entirely devoted to an existence problem on

positive measures. Let A be a commutative C*-algebra. A positive func-

tional ~ E: At = (A, 11·11)' is said to be strictly positive if f E: A, f:;' 0

implies <f*f,~> :;. O. Does A possess a strictly positive functional?

EquivalentJ.y, let X be a canpact Hausdorff space. Does there exist a

strictly positive probability measure, i.e. a regular positive Borel

measure lJ such that lJ( X) = I and such that, for every non-void open set

0, we have lJ(O) > 07

There are a few well-known cases for which the answer is

affi rmative.

~ = 2-nr r • h .First. if X is separable, we may take ¢l = £on=l un' where un 1S t e p01nt

thevaluation at the n element of a dense sequence in X.

Second. if X is the closure of an o~n subset of a canpact group, one may

take the Haar measure; see e.g. [13]. Chapter XI.

Let A be a commutative C*-algebra. '!hen the existence of a

strictly positive functional ~ E: At implies that A satisfies the count~

ble chain condition. Let {fy • y [; f} be a famiJ.y of positive elements in A

for which 1/ fyli = I for all y E: r and f
Yl

f Y2 = O. whenever Y1 :;. Y2. We will

show that r is countable. Let 0 be any positive number and consider the

set
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Claim: ro is finite. In f'act. if not. then ro would contain at least

countably many distinct elements Y1' Y2 •••• '!he sequence {gk}. defined

by

gk = ri~lf y . ' kEN
1

would have the properties: Jlgkll = 1 for every k and

<~,~> = ri~l<fy. ,~> ~ kO.
1

We may suppose that 114>/1 = I, whence

for all k, which is impossible.

Hence, r o is finite and thus r = U{rl.' n = 1. 2, •• } is countable, indeed.
"

We also have the following easy proposition.

Proposition 3.1.1. ~ 4t ~.! positive f\mctional ~~ cOOlll1utative

C·-algebra A. ~ following assertions ~ equivalent:

(i) ~ functional 41 !!. strictly positive;

(ii) .E2!. every non-zero ideal I iE. A, dA,4» 'I {Ole

Proof. (i) => (ii). Let a # f E I, then f*f E IA and <f*f,41> 'I a.

(ii) => (i). Let f E: A, f 'I a. Consider the ideal I = fA. Then

<IA,~> 'I {a},~ there exists an element h E: A such that <fb ,4» 'I a

and so by the Schwartz inequality:

a 'I l<fb,~>12 ~ <f*f,4»<h*h,4»,

whence <f*f,~> 'I a.

It, therefore. seems natural to consider ideals of t'.h". f,,!'!!!

14> = {fEA, <fg,4» = a for all gEA},

where </l is any element of A' •
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Notice that if A has an identity, then I~ is the"larsest"ideal in the

kernel of ~. Then the task will become to prove the existence of func-

tionals ~ for which I~ a {Ole As pointed out above, it is necessary to

impose the c.c.c. on A. This, however, does not seem to be sufficient.

The reason is that the c.c.c. essentially says something about regular

ideals: I nI ... {OJ implies Iccnlcc = {OJ, or in terms of open sets
12·12

o nO ZlI ~ implies Int{O )I)Int{O ) • ~, where I , I are arbitrary ideals
1 2 1 2 1 2

and 0 , 0 are arbitrary open sets, respectively.
1 2

2. Regular functionals and normed algebras.

In this section we will consider a topolo~ical algebra which

is commutative and semi-prime. Moreover we will assume that for every

ideal I c: A the "projection mapping" p: IA + I C A -+ lA, defined by

cp(a + b) • a, a £ lA, b £ I A, is continuous. Remark that a C*-algebra

satisfies all these conditions. By A' we will mean the totality of all

continuous functional~ defined on A. We will say that a functional ~ £ A'

is regular if I~ is regular"(~. I~C = I~).

Example. Let A· C[O,I], equipped with the supremum norm and g E A. Then

the functional f -.. f1f(t)g(t)dt is regular.
o

One of the problems we face will be whether or not there exist regular

functionals. The following lemma gives sufficient conditions in order

that the regular functionals separate the points of A.
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Lemma 3.2.1. ~ lli. topological ccmmutative semi-prime algebra A satis-

.!Z.~ fo11eving conditions:

( i ) ~ topology !! locally convex;

(if) !2!. every ideal I, ~ mapping

p: IA + ICA -+ A.

defined El.

p: a + b -+ a,

~ continuous;

(iii) !2!:. every regular ideal I O' I o ~ {O}. there exists !. functional <flo

~~ <rA.cf! 0> ~ {a} • .!2!:. every closed ideal I .!2!: which

ICC = I •
o

~ MI<fl. , regular} .. {a}.

Proof. Let 1
0

= n{I<fl' ~ regular}. By Theorem 2.1.6 10 =Ig
c

• We first

cc cc ~prove that ~ e A' implies IljI ~ 1
0

, Suppose not. i:.!.. assume 11/1 Al o T I o

for some !P.

Consider the functional

defined by

Wo: a + b -- <b .lJi>

Then ljIo is continuous on its domain. Let lJi0 be a Hahn-Banach extension

of li
o

to all of A. Then clearly I~c C IlJio. For the converse conclusion

we have by dennition

11JJ = {xeA. <xy.tPo> = a for all yeA}
o

c {x£A. <xb.~> =a for all bCI~}

fer- _" ...... Al
u...&...J". J ""'.M.J
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We conclude that I~c = I
wo

• Our above indirect assumption now becanes

= { cc 1 cc oJ10 I~, I~ = I~ = IonI
wo

= IonI~ T la,

which is impossible. Consider now the ideal I", {'II , where ~o is an ele
'/'0 0

ment in A' for which <lA,eIlo> :I {ol holds for every closed ideal I c: A

with ICC = 1
0

• 'Ihen, by the definition of I~ , we have
o

<( I ell ('\1 )A,~ > = {o}.
o 0 a

On the other hand, by the property of 41
0

and assuming that 1 0 :I {O},

we have

«1cjlO~10)A,$O> :I {Ol.

Thus, I = {ol.a
The proof of the next lemma is rather technical.

Lemma 3.2.2. ~~ topology !2!: A ~ defined £z.!!:.~. ~ again A be

semi-prime, commutative ~M (il) .2f.~ previous lemma £!:. satisfied.

~ (41n ) ~!!:. counts.ble family 2! regular f'unctionals in A'. ~ there

exists an element 41 e: A' such that I", = rrr"'n.
- 0 -- If' "o

Proof. We will construct a sequence of regular functionals (lfIn ) such that

for all n:

(i)

(if )

(iii)

IItJ1n li < 2,

I = n I ,"'n mSn 4ln
<b,tJln > :: <b,lfIn+l > for all b e: 1$ A.

n

We will assume that 1/41n ll < 1 for all n. The construction employs by in-

duction. First, let WI = 4>1. Nov let the functionals lfI
1

, •• ,tJln be con

structed in such a way that

(a) Ii wkll ~ 2 - e:, k = 1,•• ,n 1 > e: > 0,

(b) I - n T all k ~ n,
Wk - lSk"'$1'

(c) <b,1Jk> = <b,Wl >, n ~ k ~ I, b e: I~lA.
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We will construct a regular f'lmctional Wn+
l

such that IIwn+
l
ll ~ 2 - 2-~

and the familY 1jIl ' •• 'Wn+
l

satisfies (b) and (c) with n replaced by n+l.

By (ii), there exists a constant cn such that, for all a e: I1jI A and
n

b e: 1$ A, the inequality 118011 ~ Cz1ila + bJi is valid.
n

Define

by

where a e: Ill! A, b e: Ie; A.n 1JIn

Then 1<80 + b'~+l>1 = 1..£ <a,4ln+l > + <a + b,ljIn>1
2cn

5 e: /I all + (2 - e:) 1/80 + b /1
2cn

~ £.£n 1/80 + b II + (2 - e:) lia + b 1/
2cn

= (2 - 2-1 e:) 1180 + bll.

Let lPn+l be a Hahn-Banach extension of 'Wn+l to all of A, so that

I<x,tPn+l> I < (2 - 2-1e:) II x 11

for all x e: A.

Then, the familY lP l , •• ,lPn+l satisfies (c). Let us prove (b); then lPn+l

is automaticallY regular.

By definition

Ill, = {ae:A: <AX_tlI__ .'> = 0 f')'!' "" .,,~A\

'n+1 • • LJ'T'.L --- ............ J

C {ae:A, <aby,lPn> = a for all be:I~ , all ye:A}
n

{ae:A, c
C 1lJJ }= aI wn n

{ae:A,
c c {a}}= aI ID C 1 1" I1I~1 =
'n 'n n

= ICC = I lP •1jJ
n n
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Hence ItSJ :: 1tP n1"41
n+l n n+l

(by definition) = {aE:!1P , <8X,l/In+l> = 0 for all x£A}
n

(definition of ~n+l) = {a.£l" , <ax'~n+l> = 0 for all XE:A}
n

(induction hypothesis)

= 1l/In1~
n n+l

c 1~ () tU~ I'lI~ •
1 n n+l

The sequence (tPn ), obtained in this w~, clearly satisfies the following

conditions

(i) II ~ II < 2 for all n,n

(H) lIP c I... for m ~ n,
m "'n

(Hi) <b,1/Im> :: <b"n> for m > n and b £ r~ A,
n

claim that I~ = nl",. We shall again
o n

prove that I. C ItSJ • If a E: I~ , then
o 1 0

£ A, so certainly <abY,4'o> = 0 for all b £ I~1 '

nlljI :: nr, •
n n

= E .. 2-n ". WeDcl 'l'n·

(iv)

<8X,~ > = 0, for all xo

Finally, let ~

o
use induction. First, we

all y £ A. But, by the properties of the sequence ("'n), we have

and so

whence

We next

cc
a £ I ,I. = I1P •

'1'1 1

shcrw that I. c. 1.,. imr>Hp.5 I.L
'PO "'n '+'0
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By definition, we have

(by the fact that

(by definition of

<ax'~o> = 0 for all xe:A}

Ek~12-k<ax,~> = 0 for all xe:A}

14>o = {a.£Itjln'

= {8£I1fI ,
n

I"L.. C I, c c:I,)
'I'Il n-l 1

= {8£I
1fI

, Ek=~+12-k<ax,tI'k> = 0 for all xe:A}
n

{8£I1jJn' Ek=~+12-k<abX,1I1t>=O for all be:I~+l' all xe:A}

1/Jn )

= {ae:I1jJ ,
n

= {8£I1fI '
n

= {8£I1jJ ,
n

= I ICC
1jJ: 1fIn+l

for all be:I~ , all xe:A}
n+l

{o}}

It follows that r.l. C nr1jJ • The reverse inclusion nltjI C I~ follows
'+'0 n n 0

directly frem the definitions.

Theorem 3.2.3. 1!;!.~ topological commutative semi-prime algebra A satis-

!1..~ following conditions:

(i) ~ topology ilL defined ~!!.~;

(ii) !:£!:. every ideal I, ~ mapping p: IA + rCA -+ A defined ~

c .
p: a + b -+ a, vhere a e: lA, b e: I A, ~ continuous;

(iii) ~ algebra A satisfies ~ countable chain condition.

!h!:!:..~ folloviM assertions ~ equivalent:

..
CPa E }\.-

~~ <IAt~o> " {oJ f2!:. every closed ideal I f2!:. which ICC = 1
0

,

(b) There exists a functional 1jJ ~~ 11jJ = {O}.
o 0
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Remark. The word topological m8\Y be emitted if in assertion (a) "every

closed ideal I for which ICC = I " is strengthened to "every ideal I for
o

which ICC = I ".
o

Proof. (b) => (a). Let 1
0

be a non-zero regular ideal (that is,

I~c = 1
0

# {O}) and let ICC = 1
0

, Then <IA,~o> # {Ole In fact, if

<IA,tJi > = {O}, then I C ItJi = {O} and so {O} =
o 0

(a) => (b). By Lemma 3.2.1 we have {a} = fl{I4>'

ICC = I •
o

I~C = 14>}. Frem the

c. c. c. , we infer that the intersection is countably accessible and so

there exists a countable family (4)n) of regular functionals such that

{a} = nI4>n' But, by Lemma 3.2.2, we know that there exists a functional

~ 0 E: A' such that IljI = nI4> •
o n

3. Strictly positive functionals.

In this section we shall apply the preceding results to a

commutative C*-algebra. We follow standard terminology in calling an

element ljI £ A' hermitian if the functional ljI*: x -+ <X4,w> coincides

with ljI or, what is equivalent, ljI takes real values on the hermitian ele-

ments of A. A functional ~ E: A' is called positive if it takes non-

negative values on the positive elements in A. It is well-known that a

positive functional is hermitian. Every cf> in A' can be written in the

form ~ = 1jI + i ~ , where ~ and ~ are hermiti an: simply let
I 2 I 2

WI = (cf> + <P*)/2 and W2 = (4) - 4>*)/2L We also know that every hermitian

W £ A' admits of a Jordan decomposition ~ = WI - ~2' where WI and ljI2

are positive functionals in AI and jlljlll ::I IiwIIi + "'1'2 11 (See [7](2.6.4);

according to Grothendieck: this decO!!!positio!!

whether or not A is commutative).
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It follows that any tfl e: A' can be Wliquely represented in the form

4 n
tfl = En=li tfln ,

with ~l '~2 ' tfl 3 and tfl 4 all positive.

The contents of the next lemma is that for suitable chosen positive func

tionals ~l' ~2' '3 and '4 for which, = En;lin~n ~ we have lei> = n1'n·

It then easily follows that for

4'0 = 1:n=l'n

we have

14>0 = 14>.

We als 0 need the fact that, for any two pas i ti ve elements a and a. in A,
I 2

we have

{he:A, 0 5 h s a
l

+ a2 } = {he:A, 0 5 h 5 all + {he:A, 0 s h 5 a
2
}.

It then follows that for ~ any hermitian functional the mapping

a -- s up{ <h, ljJ>, 0 5 h 5 a}

is linear on the cone of the positive elements in A.

For more details on vector lattices see~. [23].

Lemma 3. 3.1. ~ A~ ~ commutative C*-algebra~ let ¢ e: AI. Then there

exists a positive functional ~ e: AI such that I ... = I ....
- - 0 -- 'f 'f0

Proof. We first prove that, if a e: A and 0 :s h 5 aa*, then h belongs to the

closure of aA. Since A is a commutative C*-algebra, we know that a closed

ideal I is the intersection of the maximal ideals containing I. It follows

that, if ~ denotes the maximal ideal space of A, the ideal aA is dense in

n{Kero, ee:~, <a,e> = a}.

So, if 0 S h ~ a.a*~ then <a~e> = 0 implies <h:o> = O. Hence h belo!!es to

the closure of aA.
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Next we write ~ = ';:1 ;. i1ll2 t where ~1 and $2 are hermitian functionals.

By definition we ha¥e

I~ = {ae:A, <ax,~> = 0 for all xEA}

= {ae:A, <ax,~ + illl> = 0 for all xEA}
1 2

C {aEA, <aa*x,llI + i~ > = 0 for all xe:A, x = x*}
1 2

= {aEA, <aa~x,$ > = 0 for all xEA, x = x*}
1

1\ {ae:A, <aa*x, $ > = 0 for all %e:A, x = x*}
2

(since the hermitian elements span A)

= {ae:A, <aa*x,~ > = 0 for all xEA}
1

l\{aEA, <aa*x,~ > = 0 for all xEA}
2

= {ae:A, aa· e: I~ I'\I~ }
1 2

(since 1111 f"II, is closed)
1 2

= 1$ f"ItIJ •
1 2

The reverse inclusion I~ f'\ItjI c 14l is trivial, whence I~ = IljJ 1"101, •
1 2 1 ~2

Nov let 111 be a hermitian functional. Define its "posieive variation" tP
l

'

First for positive elements in A:

<a,ljJ > = sup {<h ,1jJ>, 0 5h 5 a}, a ~ O.
1

(!;,:.£. see [23], p.2ll)

Since A is a vector lattice,~ is linear on A+, the cone of the positive
1

elements. For arbitrary a E A, write a = I:n~lin~, where ai is positive

for i = 1, 2, 3, 4 and a
1

a 3 = a 2a 4 = O. Define <80,111
1

> by linear extension.

Then .pI is a positive continuous functional on A. Let 1jJ2 = 1jJ1 - 1jJ. Then

for every element a e: A+ we have

~d. .;)u ~ is positive.
2
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Next we prove that I, z I'l~W2. Let a £ I,; that is <&A,,> = {a}.

If a ~ h ~ aa*, then, by the reasoning at the beginning of' the proof,

h belongs to the closure o~ the ideal aA. It follows, by continuity, that

<h,1/!> = O. Hence <&&*,1/11> = sup{<h,t/1>, aSh S &&*} = O. Since '1 is pos

itive, we conclude a £: I, • Similarly we may show that a £ I, •
1 2

Hence I, = I~{'lI~2' the reverse inclusion, I!ppI
llil

C I,t being trivial.

This method can be employed for the hermitian functionals !Pl and "'2 in

4> =, + HI t providing us with four positive functionals ~1' ~ t '3 and
1 2 2

~It t so that I, = OI lfln •

We now write down a result which is similar to Theorem 3.2.3.

Theorem 3.3.2. ~ A ~!:!; cc:mmutative C*-algebra. ~ following assertions

~ equi valent:

(i) There exists !. strictly positive functional ~ A';

(ii) There exists !. mapping T: A -- A', which .!!. ~-l2:"one • .!2!:. which

<ab ,Tc> = <b ,Tea> .!2!. ill a, b, c !E. A; moreover (i!. A~~ possess an

identity) A satisfies ~ e.e.c.;

(iii)

i2. A'

!:.2!: every regular ideal I
o

' 1
0

:; {a}, there exists !. functional ~0

such that <I,~ > :; {a}, for a.ll closed ideals I for which ICC = 1
0

;
......-..-- 0 --

moreover A satisfies the c.c.c.

Proof. (i) => (ii). Let ~ £ A' be strictly pos~tive. Define T: A -+ A' as

follows: if a £: A, then Ta is the functional which assigns to x the number

<ax,4». Thus <x,Ta> = <ax,et» for all at x £: A. It is readily verified that

<ab,Te> = <b,T(ca» for all a, b, e in A. We show that T is one-to-one.

If a is an element of A for which Ta = 0, then <x,Ta> = a or <ax.et» = a

for ~ll A ~ A. Iu particular, <aa~,~> = 0 and so aa- = 0, or a = O.



35

(ii) :> (i). Let T: A -+ At be as in (ii). Define. for every a E A. the

functional "'a on A by <x.el>a> = <x.Ta>. It is a matter of routine to veri-

fy that the ideal Iel> is equal to
a

I", 2 {x£A, ax =oJ.
a

Hence, by Proposition 2.1.4, I~c = I~ •
a a

If A has no identity, we know, by the c.c.c., that the intersection

n{Iel>. a£A} is countably accessible and hence there exists by Lemma
a

3.2.2 a functional el>o such that Icjlo = nUel>a' aEA}. Fran the fact that

Icjla = {xEA, ax = a}. we see that Iel>o = {Ole By the previous lemma we

may assume without loss of generality that el>o is positive and so

I~o = {xEA. <x*x.el>o> = a} = {OJ,

showing that el>o is strictly positive.

If A does have an identity e, the functional ~e: x -+ <x.Te> has the

property Iel> = {a l. Again we may assume that el>e is positive and it follows
e

that cjle is strictly positive.

(i) => (iii). Let cjl be a strictly positive functional on A. Then.

<I.Ijl> ~ {oJ for every non-zero ideal I. Hence, if ICC = I • where
o

ICC = I # {a}, then <I,cjl> ~ {Ole
o 0

That A satisfies the c. c. c. has already been proved above.

(iii) => (i). This is a straightforward application of 'Iheorem 3.2.3 and

the previous lemma.

Remark 1. If cjlo £ At is a strictly positive functional, then the mapping:

{a,b} - <ab* .<1>0> , defined on A x A, is an inner product which makes A

into a. Hilbert algebru; see [6], p.330.



Remark 2. A somewhat weaker form of (iii) is sufficient to conclude (i).

For every non-zero regular ideal I C A together with any collectiono
cc.£ c:. {I, I = I

O
} of closed ideals with the property that every countable

(and every finite) intersection

n{In' n = I, 2,.. l, In e: £'.

belongs to £, there exi~ts a functional ~o e: Al such that <I,~o> ~ (OJ

for all ideals I e: £; moreover A satisfies the c. c. c.

Closely related to this remark is the problem at the end of this chapter.

In the light of Theorem 3.3.2(iii), the existence problem for

strictly positive functionals can be reduced to the following one. Let I o

be anon-zero regular ideal!.:.!;.. I~c = 1
0
~ {Ole As in (iii), we consider

the collection of those closed ideals I for which ICC = I • Now select in
o

every such ideal I a non-zero positive element XI and look at the family

:f= {xI l.

Claim. 'Ibere exists a strictly positive functional on A if and only if

the family of can be chosen in such a manner that there is a positive

functional cPo e: A' which does not vanish at a:ny point of 1.
.--r

In fact. suppose, indirectly, that for each choice of "1 every

positive cP e: Al the set ~ = {x e: ~ <x,cP> = O} is non-empty. Since, for

( ) )
• ex> -n

every sequence cPn C A' , ~n ~ O. lI¢nl i 1, the funct~onal cP = L: n=12 cPn

has again these properties, it folloW's that for any countable collection
f-~ - ... ~s-

( f cP ), the intersection n jcP (= J
cP

) is non-void. 'Ibis is impossible if
n n

A = C(X), where X is compact and separable. Neither is it possible in

case 1-is weakly compact (= weakly countabJ.,..v canpact accordi!lg to

'C"'\... ., ~ . r.-. - ., 1><5 'J
~Ver.Le ... l1, st:t:~. lcjJ, p. u •

However, we .....ere not able to construct such a weakly compact family r.
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As another consequence of the theorem we have

Theorem 3.3. 3. ~ X~ A compact Hausdorff space. ~ following asser-

tions ~ equivalent:

(i) There exists .!. strictly positive finite Borel measure 1.1 ~ X;

(li}!h!t space X satisfies ~ c.c.c. ~,!2!: any non-void regular open

~ °0 , there exists .!. bounded regular positive measure lJo .sm. 00

such that )J (O) > 0 for every ,2E.e.a. set 0 which is dense in 0 •
-- 0 - - - - - 0

Proof. We consider the algebra A ~ C(X} of all continuous ccmplex-valued

functioos on X. Recall the one-to-one correspondence between regular

ideals in A and regular open sets in X; see Theorem 2.2.5.

The mapping

I -+ U {xEX, f(x} ~ O}
fEI

is a bijection between the collection of closed ideals I

topology of X: the collection of the open subsets.

Its inverse is given by

0-+ {fEA, {XEX, f(x} i- O} c e},

where e is any open subset of X.

A and the

The restriction of these mappings to the regular ideals and regular open

sets respectively establishes a one-to-one correspondence between the

regular ideals and the regular open sets.

Consider a pair (I , 0 ), where e is a regular open set belonging to the
o 0 0

regular ideal I o• Then under the above mappings the collection of ideals

{I A I 1 d I CC -- I } is i t d' th hc::, c ose , n one- o-one correspon ence V1. t e col-
O

lection of open sets {a c X, a open and dense in a~}.
v

After these preparatory remarks we nov proceed vith the proof of the thee-

rem.



38

(i) => (ii). Clear.

(ii) => (i). By virtue of Theorem 3.3.2 it is sufficient to exhibit a

functional satisfying condition (iii) in that theorem. Let 1
0

be any

regular ideal in A = C( x) and 0
0

its corresponding regular open set. By

(ii) there exists a measure lJ o
open subset 0 of 0 • Given any

o

on 0 such that lJ (0) > 0 for every dense
o 0

closed ideal I for which ICC = 1
0

, the

set

o = U {XEX, f(x) ~ o}
fEI

is open and dense in 0
0

• Since lJ o is regular there exists a compact sUb-

set K C 0 such that lJ (K) > O. ~t f be any function satisfying the
o 0

folleving conditions: fo(X) ~ 0 for all XEX, fo(X) = 1 for all xEK and

have lJ (f ) ~ O.o 0

C(O ) and I is ino 0

f (x) = 0 for all x off O. Such a function exists, since X is compact
o

(and so normal). The function f 0 belongs to I and we

Since lJ o may be viewed as a continuous functional on

a natural way a subspace of C(Oo) , the measure lJ
o

on 0
0

defines a con

tinuous fun::tional on I • Let cjl be any Hahn-Banach extension Oi.' lJ too 0 0

all of A, then ~ does satisfy condition (iii) in Theorem 3.3.2.
o

Again, let X be a compact Haus dorff space, Take a non-empty

regular open set 0
0

in X and consider the following hypothesis on 0
0

•

Hypothesis (*). There exists a family fUr' YEf} in A = c(X) & together

with a family of points {xy' YEf} c X, such that the following conditions

are satis fied:

(ii ) r'\no'P"'l....r- ...... set 0 there exists an element y £ r

such that {XEX, u,/x) ~ O} CO;
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(iii) The functional

~o: ri~l~iuYi -+ ri~IAiUyi(Xyi)

is well-defined and continuous on the vector space spanned by the

family {u , YEf}.
Y

Remark 1. '!be closure of {xy, YEf} has non-void interior.

Remark 2. Whereas the collections {Uy} and {xy} can always be chosen in

such a way that (i) and (ii) are satisfied, (iii) is the crucial condi-

tioo.

Remark 3. A motive for looking at this type of conditions is furnished

by the fact that if instead of the family {Uy, ye:f} we would have taken

the collection of characteristic functions

{Xc' ° open and denae in 0o}'

then the functional

n n
ri=lAi XCi -.. 1:i =lAi

has property (iii), if we take the supremum nonn for defining the topology.

Theorem 3.3. 4. ~ X~ !:. ccmpact Hausdorff space. ! sufficient condition

!2!.lli. existence 2!. ~ strictly positive measure !!.~ every non-void

regular open set ° satisfies hypothesis (*) and that X satisfies the
- - 0 - --

countabl~ chain condition. Moreover, i!. X i!. connected~ these condi-

tions ~~ necessary.

Proof. (sufficiency) We will check assertion (iii) in Theorem 3.3.2. Let

I O be any regular ideal and 00 be the corresponding regular open set. If

{Uy, ye:f} and {Xy' ye:f} are as in hypothesis (*) for the set 00' then the

functional 4>0' which is defined on the vector space spanned by the family

{Uy, ~~r} ~~its a H~~n-Bwiacll extension to all or c(x). 1bis extension

satisfies the ~onditions put forth in Theorem 3.3.2 item (iii).
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(necessity) Assume X to be connected. Let I be any regular ideal and a
o 0

the corresponding regular open set. Select, for every open dense sUbset

a of 0
0

, a function 11o such that lIuOIl = 1, 1 ~ u
O

( x} ~ a for all x in X

and {x€X, uo(x} i a} c O. Let Mbe the subspace of C(X} spanned by the

family {uo' a open and dense in 0
0

, a i 00}. Let~: C(X} -- C be a

strictly positive functional on C(X} originating from the strictly posi-

tive measure lJ on X. We m~ assume that 1/4111 = 1.

Thus, for every such 0, we have

a < <uO'~> ~ /lual/ = 1.

Since a i 0
0

, a COO' there exists a point Xl £ X such that uO(x1 } =a.

In addition, since /lua lf = I, there exists a point x
2

£ X such that

uO(x2 ) = 1. By the assumption that X is connected, there exists a point

Xo in a such that <Uo'~> = uo(xo}. Hence the functional ~o: M -+ £, de

fined by

~O(Ei~lAiuOi} = ri~lAiuOi(xOi}

is continuous on M. And so the family {ue} together with the family

{xC} and ~O does satisfY the conditions (i), (ii) and (iii) in

hypothesis (*).

4. Boolean algebras and stri ctly positive measures.

In this section we shall consider a Boolean algebra B to-

gether with a. "canonical" algebra S of "simple functions". As in

Chapter II section 2, S consists of all formal linea.r ('nmhi!1.~til)!1.~

f = ri~lAiPi' AI, •• ,An £ C, PI, •• ,Pn E B, PiApj = a whenever j # i,

modulo the set of all "trivial sequences" ~. all fonnal cooi"uinations

of the fonn f = ii~lAiPit where Ai # a implies Pi = a and Pi ¥ a implies

Ai = a.
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We made ~_ S into an algebra by defining (scalar) multiplication and

addition in the following manner:

n m
If f = Li=lAiPi, g = Lj=l~jqj and A £ C,

n n m
then ~f = Li=IA~iPi' fg = Li=lLj~IAi~jPiAqj and

f + g = Li~ILJ~I(Ai + ~j)PiAqJ + Li~IAiPiAq~A __A~ + Ej~I~JqjAPiA __ AP~;

here pVp' = e and pAp' = 0 for all p £ B.

These definitions coincide with the usual Boolean operations:

pAq = pq, p' = e - p, pvq = p + q - pq, for all p and q in B.

In the algebra S we de fine a norm

and 811 involution

n n -
(Li=IAiPi)* = Li=IAiPi -

Except for cClllpleteness, (S,/1 /I) has the usual properties of a

C·-algebra_ There is a natural way to introduce a partial order in S:

an element f = Li~IAiPi is said to be positive (f ~ 0) if Pi ::I 0 implies

+Ai ~ O. Consequently f ~ g, if f - g ~ O. 'Ibe cone S = {fe:S, f ~ O}

is generating in the sense that every element f e: S can be written in the

form

f= f 1 - f 2 + i(f3 - fit)'

+
where f , f , f , f e: S and f f = f f = O.

1234 12 34

A measure on B (or a functional on S) is defined as an element of

(s,n II)·. Aill~a.sure is said \;0 be positive if it is positive-valued

(or 0) on B. AB in the general case, I<jl is the largest ideal in the ker

nel of ¢ and ~ is said to be regular if I~c = Ief>-



We need two technical lemmas.

Lemma 3. 4.1. ~ S, B ~.!S. above ~m ~ £ S'.

~ /I~II = sup U:i : l I<Pi ,4I>I}, where ~ supremum k taken ~!.ll.mutu

~ disjoint sequences (Pi) C B.

n
Proof. Let f = Ei=lAiPi £ S. Then we have

I
nn n

<f,4I> 1 = I Ei =lAi<Pi'4»! S E~.:ZlIAi!I<Pi,4»I..5 fEi=l!<Pi'4»I·

Hence 1/4>/1 = sUPtl<f,4»I, f£S, Ilfll:z 1} ~ SUP{E i : l !<Pi,4»!}'

Conversely let (Pi) C B be a mutually disjoint sequence.

n
Let f n :: Ei=lAiPi' where

= {~<Pi .•>I
if <Pi ,4» :: 0

Ai
'!if <Pi ,~> o.

<Pi ,4»

Ilfnll oS 1,
n

Then and <f n ,4» :: Ei=ll <Pi ,~>! •

This holds for all n and for all mutually disjoint sequences (Pi) c B,

'"'whence 1I4dl ~ SUP{Ei=ll <Pi ,4»1 }.

Analogous to the above C*-algebra situation we have

Lemma 3.4.2. ~ S, B~ ~ above ~~ 4> £ S'. Then there exists a

positive functional 41 £ S' Z11Ch that IAo. = I,j, •
- 0 -- 'I' "'0

Proof. Basically the proof is the same as for Lemma 3.3.1. The only

problem is that S is not complete. We shall outline the proof. First de-

fine hennitian functionals 1/J resp. tJ!
1 2

<f,ljJ~> = «f.4» + <f*:~»/2 and ,1'.111 ...- • 2-

on S as follows:

We claim that an element p £ B belongs to

By definidon P belongs to I~ if and only

I. if and only if P E: I 1'\ I .
'I' WI tJ!2

if <pq,W
l

+ iw
2

> = 0 or~ since

liI
l

and liI2 ere hermitian, <pq,1PI > = <Pq,l/J2> = 0 for all q in B.



Hence P e: 1cjl if

1~, then \Pi =

and only if P e: I ljJ f\ I ljJ •
I 2

and so if ~i ~ 0, we

43
n

Now let f = Ei=l~iPi belong to

have Pi e: Icjl and thus

p. e: I",nI'h. It f'ollows 1.1. cI r\I • '!he converse inclusion is trivial.
1 't'1 '!'2 't' 1/11 W2

Next, let t/J be a henni tian functional. Define 1/1
1

: S -+ C as follows;

for P any element of B

<P,1/I1> = sup{<pq,1jJ>, qe:B}.

Using the fact that for disjoint elements p and p in B the equality
I 2

PIB + P
2

B = (PI + P
2

)B is valid, we easily infer that for such elements

<p + P ,1/1 > = <p ,$ > + <p ,1/1 >. The latter enables us to define
121 II 21

1JJ : S -+ C by linear extension.
I

Elementary estimations show that

sup{Ei:l<Pi,1JJI>} ~ sup{E i : l l<Pi,1JJ>I},

from which we conclude that /I '41
1

11 ~ '.I1/dl.

Similarly we define !P2: S -+ C. If P belongs to B , then

<P,ljJ2> = sup{-<pq,ljI>, qe:B}. By linear extension we define W
2

on all of S.

It is readily verified that t/J = ljIl - ljJ2 and that 1l!J = 1ljJlfl11jJZ =

As a consequence of Theorem 3.2.3 we obtain the result.

Theorem 3.4.3. 1£i B, S be !!:? above. ~ following assertions ~ equiva-

lent:

(i) There exists ~ functional which ~ positive :f2L every P e: B;

(ii) ~ Boolean ale;ebra B satisfies ~ c. c. c. ~!s2!:. every regular

ideal 1
0

c. S there exists ~ functional cjl 0 e: S' ~~ !2!. every

mutually disjoint sequence (P
1
") c B, 1£r which (Ep.S)cC = 1

0
, we have

1 --
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Proof. (i) => (ii). Obvious.

(Ii) => (i). We first prove that for any regular ideal 10 there exists a

functional 4l
0

• such that <I.~o> '# 0 for every ideal I for which ICC = 1
0

•

By Lemma 2.3.1 there exists for every ideal I, for which ICC = 1 0 , a

mutually disjoint family (Pi) C B. such that (EPiS) cc = 1
0

, (Pi) c 1.

Assuming that B satisfies the c.c.c., this family is necessarily counts.-

b1e. Since there exists a functional ~o £ S'. such that for every se

quence (Pi) for which (EPiS)CC = 1
0

, we have E
i
:

1
!<P

i
.4l

0
>1 '# 0, it fol

lows <I.~ > '# {a} for any ideal for which ICC = I • Theorem 3.2.3 applies
o 0

to the effect that there exists a functional ~o £ S' so that I~o = (Ole

By the previous lemma we may assume that q,o is positive and so, if P £ B

and <P.~ > = O. then P £
I ell 0 •

whence P = O.
0

Remark. If B is complete and distributive ccndi tion (ii) may, by virtue

of Theorem 2.2.7. be replaced by:

(ii') The Boolean algebra satisfies the c.c.c. and for every element

Po £ B there exists a measure 41
0

£ S' such that for every mutually

disjoint sequence (Pi) C B for which VPi = Po' we have

Ei : 1 1<Pi.cjlo>1 '# O.

We conclude this chapter by mentioning the following open problem.

Problem. Let C be a collection of dense open subsets of the ccmpact

Hausdorff space X, for which Oro, O£C} is void and which is closed under

countable in~ersections in the sense that for every countable subco11ee-

tion (On) the open set Int(nO ) is again a member of C. Does there exist
n -

such a collection? If so. does there exist a regular positive Borel

measure lJ on X suc.l}. thn.t 1l( 0) #- 0 for eyer-:j 0 in C7
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If there exists a regular positive Borel measure lJ with the latter prop-

erty, then there exists a regular positive Borel measure lJ on X such
o

that lJo( O} = 1 for every ° t .£. To see this, consider the equality

inf{J.I(O}, OE:'£} = inf{lJ(Oi}' i = 1, 2, •• }

for a suitable countable subcollection (Oi) C .£. Let O~ = Int(nOi }. Then

the open set O~ belongs to .£ and lJ( 0"01.l} = lJ ( 0lJ) for every ° in .£.

Finally define

for every Borel set B. Then lJ o is a regular Borp.l measure on X with the

property that lJo(O} = 1 for every ° E: C.

Also notice that, by the assumption n{O, OtC} is void, the space X can-

not possess isolated points. See [8], Lemme 8, for a situation reminis-

cent to the above one.



CHAPl'ER IV

GENERALIZED GELFAND TRIPLES

1. Representations of semi-prime algebras.

In this chapter we shall consider a commutative semi-prime

algebra A. a locally convex topological vector space F and a faithful

representation U of A into L(F). the algebra of all continuous linear

operators in F. In section 2 we investigate the general situation. More-

over we specify to the case where A satisfies certain strong countabili-

ty conditions; see Lemma 4.2.3. In section 3 we consider the situation

where U(I)F is dense in U(Icc)F for each I belonging to a certain class

of ideals. Our purpose is to arrange for the situation

F' -+ F'o'
in such a w8:j' that

(i) Fo is an invariant dense subspace of F;

(ii) there exists a mapping

T: F 0 - F' (or F 0>

such that for every a [: At U( a) 'Tf = T(U( a) f) t for all f £ Fo.

2. The general situation.

First let us agree upon the notation. The vector space F is

equipped with a locally convex Hausdorff topology t defined by a family of

semi-norms r; L( F) denotes the algebra of all continuous linear operators

in .!". The topological dual of F is designated by F' and if 8 belongs to

L(F), then 8' is its dual. We shall deal with a faithful representation

U: A -' L(F)

o~.; .: __
--~-.t_'... ..&..wc alg€:ura. A.
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A subspace H c F is said to be invariant if U(x)H c. H for all x £ A.

similarly a subspace HI c FI is called invariant if U(x) IH' c HI for all

X £ A. If I is an ideal in A and H a subspace of F. U(I)H vill denote

the vector span of all elements of the form U(a)h. a £ I. h £ H. A defi-

nition of the same type is used for subspaces of the dual space F'. 'We

adopt the folleving definitions.

Definition 4.2.1. ~ topoloftY .2!!. F !!.~ 1£~ U-ccmpatible i!!2!.

every regular ideal I (equivalently' !2!:. every ideal) ~ mapping

P: U(I)F + U(Ic)F -+ F.

defined &

P: f
l

+ f 2 -l" f p

f
l

E U(I)F. f
2

: U(ICjF. ~ vell~defined~ continuous.

Similarly. !. semi-norm p £ r k ~ II E!:. U-ccmpatible g .!2!. every

ideal I in A there exists !:. constant c = c
I
~~

p(f
l

) ~ cp(f
l

+ f
2
)·

for f £ U(I)F and f £ U(Ic)F.
- 1 - 2

Example. Let A be the algebra generated by a complete distributive

Boolean algebra B of projections in L(F). Then by Theorem 2.2.7. an

ideal I is regular if and only if I = uA for sane projection u £ A. If

U(a)f = a(f) for f £ F and if I = uA. then U(I)F :: uF and

U(Ic)F :: (e - u)F so that the projection u: U(I)F + U(Ic)F -+ F is con-

tinuous. indeed. If. moreover. B is equicontinuous. then by [25] we may

assume that every semi-norm in the calibration f' of F is U-canpatible.

As a matter of f~ct B. ¥.el~h prove~ a much stronger compatibility in

this case; see [25]. Proposition 2.3,2.4.
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Unless stated otheNise, A will be equipped with the following week op-

erator topology. A subbasis at 0 is given by open neighbourhoods of the

form {8£A. 1<u(a)f,~>1 < I}, where f £ F, ~ £ Ft. This locallY convex

topology in A is the inverse image under U of the weak operator topology

in L(F); since U is faithful, it is a Hausdorff topology. We are inter-

ested in the following types of closed ideals:

those of the form If = {8£A, U( a) f = O}, where f £ F,

those of the form I~ = {ae:A, U(a)'ljl = O}, where ~ £ F' and

those of the fom ~ = {8£A, U( a)F C N(p)}, where p is a semi-norm in r

and N(p) = {f£F, p(f) = OJ. An element f £ F (~£ F', P £ r resp.) is

said to be regular if If (I~, I p resp.) is a regular ideal in A.

Example. Let A = F = C( R), the algebra of the canplex-valued continuous

functions on R, equipped with the topology defined by the family of semi

norms r .. {PK' PK(f) = sup£! f(x)I, x£K}, K c IR cccnpact}. Then, every

f £ F is regular; every semi-nom PK is U-compatible; and, if 0 is a

bounded open subset of R, the functional f -- JOf(x)dx is regular.

Finally t a semi-norm PI( is regular if and only if there exists an open

subset 0 c R such that 0 is dense in K.

The theorem we want to prove reads as follows.

Theorem 4.2.2. Let A~ !! semi-prime algebra, which satisfies ~ c. c. c.

k!. (F, '1~) !2s.!!. locally convex vector space, U: A -- L(F) ~ algebra

hanomornhJ.sm. Assume there exists !i family .2f. closed invariant subspaces

H..., f\cl( E H ) = {OJ, (va £ td
o v~O

v

H..., + el( E H) = F, (v
o

£ A)
0 v:fv

0

(ii) They span F:

{~t V £ Il} .!2!:. which ~ following conditions ~ satisfied.

(i) ~ spaces Hv ~ disjoint:
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( iii) ~ mapping

P" : F .. F,
o

defined by

U-compatible for all " e: A.

is continuous~~ v 0 e: A.

~ topology ~, restricted~ Hv ~

Every Hv 2:.:. ~ "copy~ A" ~~ sense~ there exists ~ ideal

Sv (proper ~.::~) ~ A together ~.!: mapping Uv : Sv ~ Hv '

~~ (1) Uv(Sv) ~ dense ~ Hv '

(2) U(a)Uv(b) =Uv(ab),

(iv)

( v)

~~ a e: A, b e: Sv.

(vi) ~ representation U restricted to Hv~ faithful: U(x)Hv = {a}

implies x :: o.

(vii) For every V o e: A,~ family ~ regular functionals

~ ~ cc;) = {4> e: (E Hv ) , I ~ = I... }
Vo v,#v o ...

~~ property

n{I4>' ep £: ~o} = {ol-

(viii) For every v e: A _and every countable increasing family (I ) of
n -

regular ideals~ which (UIn)CC = A,~ subspace Uv(S"rUIn ) ~

dense in H •_____ v

Then there exists a family 2! .invariant locally convex~.2!:

(a) ~~ v, Fv .!:. densely imbeddable into (Hv ' 1 F ).

(b) The locally convex direct~ (F 0' J:) =~ (Fv ' :() is densely im-
/

beddable~ (F, 'J ).

(c) The space F' = (F, 'JF ) I ~~ considered~ .!: subspace .s!

Fo= (F 0' 'J 0) , •
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(d) There exists ~mapping

T" F -.. F'
"0 '

~~ !2!:. every v :; v 0 '

<Fv,T(Fv » = {a}.
o

(e) !:2!:. every v e: A, T( F) li invariant under U( x), .f2!:. all x e: A. In

U(x)'T(f) = T(U(x)f)

.!2!:. .ill. f e: F0 •

Before we prove this, we like to make a few cCIIlII1ents. This type of the-

orem is proved by W. Bade [1] in the special case that F is a Banach

space and A an algebra of measurable functions on a Stone space Xt for

every simple function a E: A, a = ri~lAiXBi' U(a) = ri~r\iU(XBi)'

where {U(XB.)} is a Boolean algebra of canmuting projections in F. In
~

this case the spaces l\, are cycli c in the sense that l\, = U( A) f v ' for

scme fv E: F. The family (fv ) can be chosen in such a wey that U( a)rv = 0,

a E: A, implies a = O. Under these circumstances one can show that, if Hv

is w*-dense in ~~ and the mapping

there exists a functional

that U(A) '4> v
J.

T: H." -.. Ri '

admits a topological complement H in F, then
1

.l.
4>v e: 1) ~ F' such

defined by

T: U( a)t:v -+ U( a) '<pv ' a e: A

is one-1;o-one, .Linear and satis ries

TV(a)g = U(a)Tg,

for all g E: Hv.

We try to exhibit a. similar construction in our



51

Upon imposing more conditions on A (~. C·-algebra, vector lattice)

and/or more conditions on F one can strengthen considerably the above

result. Condition (v) is readily verified if Hv is of the form

The following lemma gives sufficient conditions in order that condition

(vii) of the theorem is fulfilled.

Lemma 4.2. 3. ~ Ho ' H~ subspaces 2!.~ locally convex vector space F

~~ H
o

H = {O} ~~ projection mapping

ho + h -- ho ' ho e: Ho ' h e: H

is continuous. Moreover, let H be invariant under U.
- 0

In order that the ideal J = {xe:A, U(x)Ho-- 0

mxe:A, <U( x)Ho ,~> = {On,

= {O}} ~ equal to

.1
where the intersection is taken~~ elements <fl e: H , for which the

ideal {X£A, <U(x)Ho ,<flo> = {On ~ regular, either ~.2!.~ following

conditions is sufficient:

(i) !2!. every closed ideal I c A, U(I)Ho ~ dense i!!. U(ICC)Ho;

(ii) !2!. every regular ideal 10 c A, ~ which 1
0

J Jo ' 1
0

=I Jo ' there

exists ~ continuous semi-norm p .9n. F ~!:. countable family .2!. ele

ments (a ) C A such that both
n ---

(a) p(U( ~)Ho) ". {O} ~~ n.

(b) every closed ideal I for which

b&A, p(U(x)H ) = {OnnI c I c I ICC =o 00'

~ element 8n.

Ie contains !!:i least

!.foreover~ tonology of F. restricted !.2. Ho '~~ U-compatible.
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Proof. Sufficiency of (i). By definition,

J
o = bEA, U(X)H

o
.. {o}}

= {xe:A, <U(x)Ho'~> .. {O} for all ~EF'}

C {xEA, <U( x)Ho ,+> = {OJ for all +£rr1.

We claim that the converse inclusion is also true. Let <U( x)Ho ,+> :II {O}

...L
for all ~ £ H and take ~o E F'. We are going to show that

<U(x)H o "0> :II {O}.

First, define the functional

-
~ : H + H - C,1 0

by

By the Hahn-Banach theorem there exists a continuous functional 411 de

fined on all of F, which is an extension of i
1

• So, if x is en element in

J.
A such that <U(X)Ho'~> = {OJ, for all ~ £ H , then

<U(X)ho'~o> = <U(x)ho"I> + <U(X)ho'~o> - <U(x)ho,.l>

= 0 + <U(X)ho'~o> - <U(x)ho'~o>

=o.
.1.

'Ibis shows that J = n(xe:A, <U(x)H o"> = {oJ, ¢lEH }.
° 4'

To canplete the proof it suffices to show that for every
.l..

~ e: H , the

ideal I~ defined by I, = {xEA, <u(x)Hot~> = {oJ} is regular. From the de

finition of I~ it follows that <U(I~)Ho'~> = {ole Since U(I~)Ho is dense

in u(I~c)no' we have <U(l~~)Ho'~> = {OJ. Hence, since I~ is the largest

ideal I for which <U(I)Ho'~> = {oJ, it follows I~ ::> I~c, whence

I -IcC
~ - ~.
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SUfficien~ of (ii). Define again. for any ~ £ H = {~£F'. <H.~> ={O}}.

the ideal I, by I~ = {x£A. <U(X}Ho.~> = {a}} and let

1
0

:0: n{Iljl. ,£ HJ.. I, = I~C}. We first prove that for every 1/J £ H.i.

ICC I = (I AI }cc = I Since we alwA-vs have that (I AI }CC = IccrticC
IP f'\ 0 '4' 0 O· "'" IP 0 IP o·

it is sufficient to prove that both 1 0 = I~c and I$Crti
o

= 1
0

• The fact

that I = ICC is a consequence of Theorem 2.1.6. Next. let there existo 0
1. cc ~an element 1/J £ H for which I~ nI o r 1

0
•

Define the functional

by

1/Jo : he + hI + h - <hI.tII>.

where h o £ U(I~C}Ho. hI £ U(I~}Ho. h £ H.

Then. since the topology on F restricted to He is U-canpatible. it fol

lows that ~o is continuous on its danain and hence. by the Hahn-Banach

theorem. admits of a continuous extension 1jJe to all of F. Notice that

.1.
IP e £ H and that I~C C I~o. We must prove that the converse inclusion is

valid. too. By definition. we have

lIP = {xE:A.. <u(x}H o• iii0> = {O}}
o

C{xeA. <u(x}U(I~)Ho.tVo>= {O}}

= {xeA. <U(xI$)H o.1/I> = {a}}

= {xeA. xI~ C 11jJf'I!~ = {o}}

= ICC
\II •

fran which the desired conclusion I
tlJo

= I~c folloW's. Hence it follows

IllI.."'I o I- I c. However this is impossible ~ since: by d.efini tio!l, I tjJ con=
u 0
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Next. consider the space G =Ha + H. equipped with the topology ot F.

Let G' denote the dual space o~ G end let. ~or each semi-norm p in the

calibration r of F. H~ be the subspace of G' defined by

H~ = {$e:G'. there exists a constant c = c$' such that

l<h o + h.~>1 ~ cp(h
o

) for all hoe:H
o

' he: H}.

Endowing H' with the normp

II$I'P = SUP{I<h
o

+ h,~>I. p(ho) < 1, he:H}.

it becanes a Banach space.

Again. iet for ~ e: G', I~ denote the ideal

{x£A, <U(x)Ho'.> = {O}}.

Notice that every functional ~ e: G' can be extended to a continuous

functional defined on all of F. Moreover, if ~ e: G' and <H,~> = {OJ,

then every extension ~ of ¢l to F has the property that I~ = I¢l. In other

words, if • £ G', then Ilfl is closed in the weak operator topology. By the

above remark we even have that for every lfl £ G', ~ £ H.L IicN = I •
, 'I' 0 0

We shall prove that the space H' can be written asp

H~ =U{~£HP' <H,¢l> = {OJ, I. ~ I},
I

where the union is taken over all closed ideals I c A for which both

{X£A, p(U(x)H )
o

Recall that 10 is the ideal defined by 1
0

= n{ Itjl, I¢l = I~c, ~e:H~, where

1-
H = U£F' , <U ,tjl> = {O}}.

If ~ is an element in ap, then I<ho + h ,4» I ~ cp(ho) for all ho £ Ho '

h £ H, and so <H ,tjl> = {O}. Also if a e: A belongs to

11' = {X£:A, P(U(X)Ha ) = {O}}; then' <U{a)ho ,$>' ~ cp{U(a)ho) = 0 lor all

ho e: Ho ' whence I p C Itjlo
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By the previous comments it follows that the ideal I = I.~IO is closed

and has the properties IptUo C I c 10 and ICC = 1 0 , We have to prove

that 10 = J
o

' where J
o

= {aEA, U(a)H
o

::I {O}}. We clearly have 1 0 :> J
o

and 1 0 is regular. Suppose, indirectly, that 10 'f J
o

' By condition (ii)

there exists a semi-norm p and a countable family (80) of elements in A

for which

(a) p(U(an)Ho ) 'f {a} for every n, and

(b) every closed ideal I for which Ipl'\I o C I c Jo' ICC = 10 , contains at

least one element 80'

Let H' be the subspace belonging to this semi-norm. Then, by what has
p

been proved above, the Banach space H~ can be written as the countable

\mion

H.j, = UUe:H~, <H,41> = {O}, 8ne:I
41

}.

It is readily veri fied that for each n, the sets

{~e:H~, <H,~> ::I {O}, 8ne:I~},

are closed subspaces of Rj,. A Baire category argument applies to the ef

fect that at least one of the subspaces

{~e:Hp' <H,~> = {O}, 8ne:I 41 }

contains an open neighbourhood and, therefore, coincides with H'. It fol-
P

lows that there exists an element 80 e: A for whiC'h p(U( 8n )Ho ) 'f {O} and

<U(8n)Ho,H~> = {Ole However, this is impossible as the next argument

:>IIOWS. Let P(U(8n)ho) = 1 and define ¢: CU(an)ho -- C, by

'$: AU( ~)ho --+- A. By the Hahn-Banach theorem ~ can be extended to all of

H in such a way that I<hi ,~> I < p(h ) for all h e: H • Finally defineo - 1 1 0
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A Boolean algebra B is said to be complete (a-complete) if

for every (countable) increasing family (Pa ) C B, its supremum VEa ex

ists as an element of B. It is said to be distributive (a-distributive)

if for every (countable) increasing family (Pa ) and every element P £ B,

PAVp = V(pAp ).a a

Example 1. Let B be a complete (a-complete) distributive (o-distributive)

Boolean algebra of continuous projections defined on a topological vector

space F. Let, for every (countable) increasing famiJ.y (Pa) C B, UPaF be

dense in (Vp )F (and let B satisty the c.c.c.). Let A denote the algebra
a

of all finite ccmplex canbinations of projectioos in B and define

U: A -+ L(F) by U(a)f = af for a £ A and f £ F. Then, U(I)F is dense in

U( ICC) F for every ideal leA. (The proof of this hinges upon the fact

that ICc"" (VPa )A, for a suitable chosen increasing family in BtU. If A

satisfies the c. c. c., then this family can be chosen to be countable, see

Lemma 2.3.1.)

Example 2. Let X be a 10calJ.y compact Hausdorff space, which has a

countable base for its topology. Let A denote the algebra of all complex-

valued continuous functions on )~ and assume A to be equipped wi th the

topology of uniform convergence on compact subsets of X. Let U: A -- L(F)

be a faithful representation. Then there exists a countable family of

functious (fn ) C A, f n =F 0, such that every closed ideal in A contains at

least one rn and in particular, if the functionals

are continuous on A for all f £: F and all ~ E: F I
, property (ii) in
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The next exemple shows that (i) and (ii) in the previous lemma need not

go together.

Exsmple 3. Let A = e[o .1J, the algebra of all ccmplex-va!ued continuous

functions on [0,11, F = L2[O,lJ, the Hilbert space of all square integ-

rable functions and U( f)g = fg for f e: A, g e: F. The triple (A. F. U)

has the properties of the previous example; we will show that there

exists a closed ideal I in A, for which ICC =A and for which U(I)F is

~ dense in U( A)F = F. Let U c [0,1] be an open set. dense in [0,1], of

Lebesgue measure less than e:, I > e: > O. Let I be the ideal defined by

I = {fe:A, {X£[O,I], f(x) ~ O} c U}. Then ICC = A, but U(I)F is not dense

in F. To see this, consider the function h = I - Xu in F. If f ~elongs to

U( I)F, then IIf - hl/ 2 = llfll2 + IIhJl2 ~ IIhl1 2 ~ I - e:.

Such an open set U exists: following G. Heltnberg, Math. Zeitschr. 83.

261-266 (1964), we

-n-l
Vn = (rn - e:2 ,

th
define for r n the n rational number in R, Vn by

-n-l
r n + e:2 ). Let 0 = UVn and U = (0,1)110. Then U is

dense in [0,1] and the Lebesgue measure of U is less than e:.

For the proof of Theorem 4.2.2 we need one more technical

lemma. Lemma 4.2.4 is in fact a generalization of Lemma 3.2.2.

Lemma 4.2. 4. ~ A E!. ~ semi-prime algebra, F ~ locally convex vector

space, U: A -+ L(F) ~ representation. ~ in~ previous lemma, ~ Ho
~ H :2!;.~ subspaces !.2!:. which ~ projection mapping ho + h -+ ho '

no e: Eo' n e: H, ..;:.e_xi-..,;.s...ts-. and is continuous. Assume that H is invariant and
- -- - 0

.L
~~ topoloQ' ~ F restricted ~ Ho .!.:!. U-compatible. ~ (4)n) c H ~

~ countable family ~ functionals for which {xe:A, <u(x)H~,~_> = {a}} is ~
u u --
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J.
~, there exists !i countable family ~ functionals (tjI ) c H ~~

n

~ following condi tions ~ satisfied:

n {XEA, <U(x)H '~k> = {O}} ={XEA, <U(x)Ho ,1jI > = {O}}, !2!:.!:!!. nj
k< 0 n_n
<U(b )ho ,tPm> =<U(b)ho,tPn> .f2!:. ill elements

c
b e: {xe:A, <U(x)Ho ,1IJn> = {O}} ,.!!! he e: He ~ ill. m ~ n •

.!E.. particular .!.! follows ~, .f2!:.~ n,~ ideal

{XEA, <U(x)Ho ,Wn> = {O}} ~ regular !!!!.!!~

n{xe:A, <U(x)Ho'~n> = {OJ} = n{xe:A, <U(x)Ho ,t/1n> = {OJ}.
n n

Assume, !!!. addition,~

(a) there exists a fixed semi-norm p whose restriction ~ He is

U-campatible j

(b) ~ family (~n) ~~ property ~, fQ.!:~ n, there exists a

constant c such that I<he ,el> >I 5 c-p(h ), for all he e: Ho'n-- n -n 0 --

~, ~ fami ly (t/1n) ~~ chosen .!.!!.~ .!~ .!:h!lll~~ 2!l,]y,

properties (i) ~ (ii), £&~ satisfies ~ following:

I<ho ,Wn>I ~ p(ho)' .!2!:. &1 h o e: He ~~ integer n. II easily follows

~~ Hahn-Banach extension ..po of~ functional

ljJo: Ho + H -+ C,

defined ~

00 -n
ljJo: h o + h -+ En=12 <hO'tPn>,

~~ property~

{Xe:A, <U(X)H
O

,1JJo> = {O}} = n{xe:A, <U(x)Ho,cl>n> = {o}}.
n
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Proof. We first prove the second assertion. So, let A, F, HO' H, U be as

in the lemma and let there exist a countable family ('n) of functionals

.1
in H , and a semi-norm p which restricted to Ho is U-campatible, such

that for each n we have' <ho ,!fln>I ~ cnP(ho ) for all h o E H
O

and a suit

able chosen constant en. We must prove that there exists a countable

family (lPn ) such that the conclusions of the lemma are valid. Upon di-

viding by an appropriate constant we m~ assume that for each n,

I<ho,if>n>1 ~ p(ho )' h o E Ho •

The construction proceeds by induction. First, let '1 = ~l. Now, let the

.1
functionals ~l , •• ,lJIn in H be constructed in such a w~ that

( a) I<ho ,11k> I So (2 - E)p(h o )'

(b) {xEA, <U(X)Ho'~> = {a}} =
( c) <hl'~> = <h1,Wl>, n ~ k ~

all h o E Ho ' k = l, •• ,n, 1 > E > 0,

n {xEA, <U(x)Ho'~l> = {a}}, for all k ~ n,
l<k- c
1, all hIEU({XEA, <u(x)Hot~l> = {oJ} )Ho •

Upon writing I k for the ideal I k = {xEA,

refonnulated as <h 1 ,1/.k> = <hI ,1lI1>' n ~ k

<U(X)HO'~> = {oJ},

c
~ 1, hI E U(Il)H o•

(c) m~ be

By the ccmpatibi lity of p there exists a conet ant do, 5 uch that

p(h l ) ~ dnP(h l + h2 ),

for hI E U(In)H
o

and h
2

E U(I~)Ho.

Under this induction hypothesis we shall construct a functional

1jJn+l E H.l., such that I<ho'~n+l>l S. (2 - 2-
1

E)P(h O), for all h o £ Ho '

and for which the family 1JJ1 , •• ,I/In+l' satisfies conditions (b) and (c)

above with n replaced by n+l.
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Define

by

t/ln+1: hI + h 2 -- ~ <hI,1jI +1> + <h2 ,!I'n> ,
2~ n

where hI e: U( In )Ho and h 2 £ U(I~)Ho.

'!be functional 1/In+1 is well-defined on its domain. In fact, if hI ' h~ are

in U(In)H
o

and h 2 , h~ are in U(I~)Ho' then hI - hI £ U(In)Ho and

h 2 - h~ e: U(I~)Ho and so 1<h1'~n+1> - <h~'~n+l>1 = 1 <hI - h;'~n+l>1

S p(h l - h~) ~ ~p(hl - h~ + h 2 - h~) = ~p(o) = o.

Hence £ <h',. +1> + <h; "n>- I n2d
n

=~ <hI '.n+l> + <h' +h' $>

2~
1 2' n

= ~ <hI '~o+l> + <hI + h ,lin>
2dn

2

= ..!:. <hI '~0+1> + <h 2 ,t/ln>·
2~

Moreover, we have

= 1..£ <hI ,4>0+1> + <h2 ,t/ln>1
2d

n

= 1~<hI,4>O+l>+ <hI +h 2 ,1/In>!
2~

~ -£ p(h l ) + (2 - e:)p(h
l

+ h 2 )
2dn

< -£ dnP(h l + h 2 ) + (2 - e:)p(h l + h 2 )
2dn

= (2 - 2-1 e:)P(h i + h
2
),

ior all hI e: U( In)Ho and h 2 e: U( I~)Ho.
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Let ;n+l be any Hahn-Banach extension of Wn+l to all of H
o

' so that

I<ho'~n+l>1 ~ (2 - 2-
l

e:)P{h o)' for all h o e: Ho'

and define

tln+l: F -+t,

as being any Hahn-B8l1ach extension to all of F of the functional

h a + h - <h a ' Wn+1 >, hoe: H0' h £ H.

Then, the functional ljIn+l satisfies (a) and the family ljIl , •• '~n+l satis

fies (c) with n replaced by n+1. Let us check (b).

Consider the ideal {xe:A, <tI( x)H 0' tPn+l > = {O}}, denoted by In+l. We clear-

ly have I n+l c {xEA, <U(X}U(I~)Ho'~+l> == {O }}

= {xe:A, <tI(XI~}Ho''n> = {O}}

= {xe:A , xIc C In}n

Hence I n+l == ~",In+l' which is by definition,

= {xe:~, <u(x}H o,1Pn+l> = {O}}

= {xe:In , <U(x}Ho,cjln+l> = {O}}

= be:In , xe:I If> }
TY1+1

= IntU4l ,
n+l

fran whi ch (b) follows.

The sequence (1JJn), obtained in this way, has the following properties:

( 1) I<h a' tjJn> I < 2p (h o) , for all hoe: H0 '

f::\ T _T ~

\ ...... J "'m <.. "'"n' J. ur m ~ n,

( iii)

(i v)

<U(b)h o,1J!m> =
In = n h:::e:A,

ksn

c
for all b e: In' all h O e: Ho ' all m ~ n,
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Upon dividing by 2, we m~ assume that for every n, I<ho ,l/In>I < p(ho )'

for all h
o

E: Ho• There remains to be proved that, if "'0 is any Hahn

Banach extension of the functional

co -n
h o + h -+ 1':n=12 <ho,l/In>'

then ~o has the property that

{x£A, <U(x)Ho,l/Io> = {oJ} = ~{X£A, <U(x)Ho,l/In> = {oJ}.

This will be done by induction again. If <U(x)Ho'l/Io> = {OJ, then

<U(x)U(If)Ho'~o>· {oJ and so rn:12-n<U(xI~)Ho,VI> = {oJ, or xI~ ell

~. x E: Ifc = II. The remaining part of the proof is exactly the same as

in the proof of Lemma 3.2.2 and m~ be anitted.

In the general case we, again, proceed by indui:;tion. First, define,

WI = ~1· Suppose that the functionals ljII , •• ,l/In are constructed in such a

w~ that

.1tPk E: H , k = 1, •• ,n ,

(ii) {x£A, <U(x)H ,Ilk> = {O}} = n {x£A, <U(x)H '~l> = {OJ}, k = 1, •• ,n,
o lSk 0

(iii) <U(b)h ,l/Ik> = <U(b)h '~l>' h £ H ,b £ II, n ~ k ~ 1.o 0 0 0

(Again, as above, II denotes the ideal II = {Jf£A, <U(x)Ho,ljIl> = {O}}.)

Let 1/In+l be any Hahn-Banach extension to all of F of the functional,

1/In+l: U(In)Ho + U(I~)Ho + H -+ C,

Jefined by

l/In+l: hI + h2 + h -.. <hI '~n+l> + <h
2

,l/In> ,

where h E U(In)tl ,h £ U(Ic)H and h £ H.
1 0 2 n 0

Then by the same argumentation as above the family l/I1 , •• ,l/In+l satisfies

(ii) and (iii) with n replaced by n+l.
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The construction of $n+l in this manner is possiblp by the facts that

the topology of F. restricted to H
o

' is U-campatible and that the pro

jectioo h o + h -to h o ' h o £ H
o

and h e: H. is continuous. Clearly. the

family (ljIn) obtained in this way satisfies the conclusions of the lemma.

Proof of Theorem 4.2.2.-

ideal

1.
(l: Hv) }.
v=lvo

I<jl denotes the

the propertyftmctionals

By assunption (vii) we know that for every Hv • the family of regular
o

where by definition for every $ e: F'.

For brevity we

Then. the pal r

shall write Ho = Hv • H = cl E Hv •
o V:1V o

H
o

' H satisfies the conditions of the previous lemma.

Since A satisfies the c.c.c. we know that there exists a countable fami-

I
cc _
$ -
n

we may suppose that the sequence of ideals

Iefl }.
n

(14> )
n

By the previous lemma.

has the following prop-

erties:

UI~ and let Fv be the subspace
n 0

is the mapping of assumption (v). Then. by

I~ C Iefl. for all m ~ n.
m n

( ii ) <U( b )h 0 • 41n> = <U (b )h 0 • ¢n> •

(iii) ICC = I~. for all n.
$n 'fn

Denote by Kv the ideal Kv =
o 0

Fv = Uv (Sv I"\Kv ), where Uvo 0 0 0 0

c
for all m ~ n. all hoe: Ho ' all b e: I <t> •

n

(-.-iii). :::'v
o

:i.::. ut:u~e in Ho• Define '1''1
0

(1"). for f of the form f = Uvo ( avo)'

where 8.v e: SVI"\I~ • by Tv (f) = U( av ), ¢n. Then Tv is a well-defined.
o 0 n 0 0 0

linear and one-to-one map defined on Fvo and taking its values in F'.

~1oreover~ it has the following invari e...'!ce property.
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If x £ A and f £ Fv as above. then U(x)'Tv (f) = U(x)'U(Bv )lfIna a a

= U(xBv )'~n = Tv (Uv (xBv » = Tv (U(x)Uv (av » = Tv (U(x)f).
a a a a a a a a

We can follow this procedure for every v £ It.. thereby providing our-

selves with a family of invariant subspaces (Fv.~) as described in the

theorem. Let (Fo'~) = @ (Fv ' ~) and define TO: Fa -+ F' as follows:

a general element in Fa being of the form fa = }:fv ' where f v £ Fv and on

ly finitely many terms are non-zero. To(f
o

) is by definition

To(fo ) = }:Tv(fv ). Then To satisfies (d) and (e) of the theorem.

A simple example featuring the situation of the theorem is

the following one.

Example. let A = F = C(R). the space of the complex-valued continuous

functions on R and let U(f)g = fg for all f £ A. g £ F. In this case

there is only one invariant space Hv involved, namely F itself.

If Uo: A ....... F is the identity map. then the conditions of Theorem 4.2.2

are readily verified. We may take for Fa the space of all continuous

functions of cOOlpact support. For the sequence of regular functionals

(lfIn) we may take <f.epn> = !+nf(t)dt, where f £ F end r. is a positive in-
-n

teger. For the map J 0: F0 ....... F' • we take the mapping defined by

+0:>
<f,Jo(fo» = !-mf(t)fo(t)dt

for all f E F. fa £ Fa.

Corollary 4.2.5. Assume. !E. addition ~ (i) - (viii) • .<2!. Theorem 4.2.2.

~~ topology .<2!. F. restricted 1£ Hv ~ given £L!!:. ~.!2!. ~

V £ A. ~ Fa !E.~ theorem~~ taken (Fa. J 0) =~ (uvC s). ~).

where ~I ~ t?e to~ology .£!:!. F restricted ~ U'/S\).
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Proof. This result is a consequence of the second assertion in Lemma

m~ be defined byU (S ) __ F'
Vo Vo

f o = Uv (a), a £ Sv •
o 0

situation where U(I)F is dense in U(ICC)F.3. The

4 2 4 In fact for every v £ A, there exists a functional ~o in• •• 1.' 0

(r Hv ) for which I~ = {OJ. Then To:
v1-v o 0

To(fo ) = U(a)'~o'

In this section we examine the situation where, for every

ideal I C A, U(I)F is a dense subset of U(ICC)F. We shall prove the fol-

loving result.

Theorem 4.3.1. ~ U: A -- L(F) ~~ faithful representation.2!~semi-

prime algebra A, which satisfies ~ c.c.c •• Assume, there exists !. famiq

£!. closed invariant subspaces {H
v

' vEA}~~ (i) - (iv) 2f. Theorem

4.2.2 ~ satisfied. ~.foreover, ~ every subspace Hv £.!:. minimal, ia.~

sense~ there~~ exist ~ proper closed invariant subspace H c:. Hv ,

.!£;: which ~ representation U, restricted ~ H, ~ faithful. Finally,~

.!2!:. every f £ F ~ ideal {x£A, U( x) f = O} £.!:. regular. ~~~~

elusions ~~ drawn ~ 1!l Theorem 4.2.2.

For the prLof ;te need the folloving lemmas. Lemma 4.3.2 justifies the

title of this section.

Lemma 4. 3.2.~ Ho~ ~ minimal subspace, ~ which U~ faithful, and

2::..:~ topology ~ F, restricted ~ H
o

' ~ U-cc:mpatible. Then

(a) For every ideal I c A, H
o

= elU(I)H
o

+ clU(IC)H
o

;

(b) For every ideal I C A, U(I)H
o

is dense in U( rCC)H
o

; U(A)H
o

is dense

~ Ho•

Proof. Let I be an arbitrary ideal in A. Consider the subspace
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Thus, by the minimality, Ho = cl(U(I)Ho + U(IC)Ho). By the U-compatibil

ity, it follows that Ho = cl(U(I)Ho) + Cl(U(Ic)Ho). This proves (a).

It follows U(ICC)Ho = U(ICC)Cl(U(I)Ho). Hence U(ICCnI)Ho is dense in Ho•

So, certainly, the same holds for U(I)Ho• Since U(x)U(A)H
o
~ {a} implies

x = a and since Ho is minimal, we conclude U(A)Ho is dense in Ho'

Lenuna 4.3. 3. ~ Ho ~.!!-. closed invariant subspace .2!. F~~ hI and

hz~.E2. vectors.!!!. Ho• Denote Ez. I ~ ideal I = {xe:A, U(x)h
l

= {oncc
,

~ Ho = clU(I)Ho + ClU(IC)Ho~~~ projection Ho -- clU(I)H o exist

~~ continuous.~ there exist .!. vector h e: Ho~~

{xe:A, U(x)h = {a}} = If\{xe:A, U(x)h 2 = {a}}. Moreover, h ~~ chosen 1E.

~!: ~ ~.!.9.!:!!l x e: I C, U(x)h l = U(x)h.

Proof. Let Pcc ' Pc denote the projections on clU(I)H o and clU(Ic)Ho resp.

and define h = PCCh2 + PchI' It easDy follows that x e: I implies

U(x)h = U(x)hz and that x e: I C implies U(x)h = U(x)h
l

• Consider the ideal

{xe:A, U(x)h = {a}}. This ideal is contAined in {xe:A, U(x)U(Ic)h = {a}}

C C= {xe:A, U(xI )h = {a}} = {xe:A, U(xI )h
l

= {O}} =

= {xe:A, xI c C {YEA, U(y)h
l

= {a}}} C{xe:A, xI c C I} = {xe:A, xe:I} =I.

Hence, {xe:A, U(x)h = {a}} = {xe:I, U(x)h = {a}} = {xe:I, U(x)h 2 = {oJ}

= I~{xe:A, U(x)hz = {a}}. This proves the lemma.

Recall that a vector f £ F is called regular if the ideal {xe:A, U(x)f =a}

is regular.

~ countable family .2! regular elements .!!L HO' ~, !2!: every ideal I C A,

H = clU(I)Ho + clU(IC)H and the projection H -- clU(I)H be continuous.o 0 -- 0 0 _.=~;.;;.;:;;.;;.;;:;:;.
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~ there exists .!! sequence (~) .2!. elements !a. HO' ~~~~

lli..2f. ideals (In)' where In = {xcA, U(x)gn =a}, ~~ ..p..ro,..p..,e;,,;rt......,i...e...s:

(i) In = I~c, nIn = n{xtA, U(x)hn = a};

(ii) x E: r; implies U{x)~ =U(x)~ !2!:.illn ~m;

(iii) In = n {xE:A, U(x)hk =a}.
kSn

Proof. B.Y induction, using Lemma 4.3.3.

Lemma. 4.3.5. ~ H
O
~ .!!!l invariant subspace. Assume, there~~

exist !!!lelement hE: Ho' h::f 0, ~~U(r)h = {a}, !2!:~ideal

cc
rcA, .!.2!. which r = A. ~ every h E: Ho !!. regular.

Proof. Let I III {x£A, U( x)h = a}, where h is an arbitrary element in HO'

'!ben, U(I + rC)U(Icc)h = {a} and so, since (r + I'::)CC z: A and

U(rCC)h C H
o

' U(Icc)h = {a}. Since I is the largest ideal J for which

U(J)h = {Ol, it follows r ~ ICc.

Proof ~ Theorem 4. 3.1.

We shall prove, with the additional kDov1edge, that (v) - (viii) of Thee

rel:l 4.2.2 are satisfied too. Condition (vi) is valid by assumption: U re-

stricted to H" is faithful for every" E: A. Condition (vii) is an appli

cation of Lemma. 4. 3.2(b) and Lemma 4.2. 3( i). So (v) and (viii) reme.in to

be checked. Let H" be one of the minimal invariant subspaces.

'!ben {xe:A, U(x)H" = {oJ} = n{x£A, U(x)h = a} = {oJ, where the intersection

is taken over all elements h in H". By assumption, each of the ideals

{xEA, U(xjb = O} is regular. Hence, since A satisfies the c.c.c., we m~

assume that there exists a cotmtab1e family (hn ) C Hv , such that

{oJ = fl{xEA, U(X)hn z: a}. By Lemma 4.3.4, we may assume that this family

(b) U(x)hn = U(x)hm for x £ r~ and m 2 n.
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Define S" c Ul
c

and U • S - H by U (x) = U(x)h , for x e: I
C

• In order
n "." "" n n

to complete the proof, it is sufficient to show that U,,(S,,~(UJn)) is dense

in H"9 for every increasing countable family of regular ideals (In ) for

which (UJn ) cc = A. It suffices to prove that the representation U, re

stricted to U,,(S,,~(UJn))' is faithful. Since the sequence (I~) is in

creasing and the same holds for the family (In ), it easily fol1evs that

S",,(UJn ) = ~ (I~Nn). So, if U(x)U)S",,(UJn )) = {a}, then for every n and

every a e: I~ncJn' U(x)U,,(a) = O. By the definition of U", it follows that

U( x)U( a)hn = a for all a e: I~!"Jn. Recalling the definition of In' we get

x(~I\Jn) C In for all n, and hence x(I~I\J'n) = {a}. From which x(U(I~(lJn))

= x«UIC)A(UJm)) = {a}. Thus x e: «UIC)A(UJm))c. We prove that
n n

«UI~)A(UJm))C = {a}. From Lemma 2.1.5, it follows that «UI~)A(UJm))C

= «UI~)A(UJm))ccc = «UI~)CC~(U~m)CC)C = «nI~C)CA(UJm)CC)C.

Since I~C = In for all n, nln = {a} and (UJm)CC = A, it follows

«UI~)A(UJm))c = ({O}C~A)c = AC = {Ole

Corollary 4. 3.6. ~.i!l Theorem 4.3.1, Hv ~ complete metrizab1e. ~

there exists !!:!!. element f v e: H"~~ Hv = c1U(A) f v • f!. the topology

!2! F makes H"~ .! Banach space,~ there exists ~ element ~" i!l
~ ~

( r HlI ) such that U(A)' ~ is w*-dense in ( r HlI ) , provided that there
lJ-:fv" - - v - - lJ-:fv" - -

does not exist an element h o e: H ,h -:f 0, for which U(I)h = {oJ for
-- - v 0 - 0-

"d a1 I" A ICC = A.~~ e ~,

r!"t.JOl. In oruer to show tile rirs't assertion, it is sufficient to con-

struct, for a countable family (hn ) C H with the properties

(In = {xe:A, U(x)hn = a}): (a) I~c = In for all n, (b) 1m C In for m ~ n,

(c) U(x)h: = U(x)~ for m ~ n. x e: I~» an ele~ent h e Hv ' ~uch th~t
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Let (~) be an increasing countable family of semi-norms. which defines

the topology of H •v

Then. since for n. m > s. 10 £/In 2.

1_______ h.

+ Pn (h
n

)) n

n. m > 1 -

Define h by h = r
n=l 2n (l

h belongs to Hv •

By induction one m~ show that {x£A, U(x)h = a} = nIn0

The second assertion is a consequence of Lemma 4.2.4. lemma 4.3.5. the

w~ Theorem 4.3.1 is prove~ and the following proposition. which has scme

interest in its own.

Proposition 4.3.7. ~ U: A -- L(F) ~!!. representation.2!.~semi-prime

algebra A. ~ Ho~ H~ closed invariant subspaces for which

Ho"'H = {a}. H
o

+ H = F ~.!2!:. which ~ mapping

h O + h -+ h o' h o £ Ho' h £ H.

is continuous.

~~ following assertions ~ equivalent:

(a) ~ space Ho ~ ~ minimal ~<! invariant subspace f.2!:. which U~

faithful; moreover. if U(I)h = {a}. h o £ H • for scme ideal I c A,
- 0 0--

for which cc = O.I = A.~ h o
(b) ~ space HJ. . .. 1 in the that there does not exist a~ mJ.n~ma • sense-- --,

w=-closeci. invariant subspace He c H-. for which U( x) 'H~ = {a}. x £ A.

implies x =0; moreover. !2!.. evezz. ideal I C A, for which ICC = A.

U(I)H
O

is dense in H •
- - 0
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Proof. (a) => (b). Let I be an arbitrary ideal in A for which ICC = A.

Then U(x)U(I)H
o

= {a},

follows that U(I)Ho is

X £ A, implies x =

dense in H • Next,o

o. ay the minimality of HO' it
.L

let H' c H be a v*-closed ino
variant subspace, for which U(x)'H~ = {a}, x £ A, implies x = O. We shall

l.
show that H~ = H • Let H

l
be the closed invariant subspace defined by

Hl = {h £ Ho' <h,HO> = {OJ} and let I denote the ideal
1

I = {X£A, U(X)H
l

= {oJ}. Then, since H~ is w*-closed, H~ = (H + HI)

= glflHt. Consider the subspace G = U( I)Ho + U( IC)H
l

• We first prove that

G is dense in Ho' By assumption (a), it suffices to prove that U(x)G ={O},

x e: A, implies x = O. Let x e: A, for which U(x)G = {a}. Then both

U(xI)H
o

= {a} and U(xIC)H
l

= {a}. It easily follows that xl = {a} and

xl c C I, from which x =O. Since Ho and H are topological complementary

subspaces in F, we infer that the space

J..
{¢e: H , <U(I)Ho + U(IC)HI ,~> = {oJ}

reduces to {a}.

Hence,

from which

Or, e~uivalently.

J..
{cj>e:H , U(I)'<jl = {a} and U(IC)'~ C H'} = {a}.

- 0

Since U(IC)'H' is contained in the left-hand side of the e~uality, weo
have U(Ic)'H~ = {Ole Hence, since U(X)'H~ = {a}, x £: A, implies x = 0, we

get IC = {OJ. By the definition of the ideal I, we have U(I)H1 = {a}; this

together ':!i th the fo.ct that ICC = A illlplit::s, by assumption (a). that

H
l

= {OJ. Hence, H~
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(b) => (a). First, let I be an ideal in A for which ICC = A and let h
o

be an element in H
O

for which U(I)h
o

= {a}. Since U(x)'U(I)'H1.= {a} im

plies x e: I C = {a}, it follows, by the minimaL"!.ty of H
l

, that U(I) 'Hi. is

w*-dense in Hi.. So, since U(I)h
o

= {a} implies <ho,U(I)tH.i> = {a},

<ho'W> = {a}. Since H
o

and H are topological complementary subspaces in

F, it follows <ho,F'> = {a}, and so h
o

= O.

Next, let HI C Ho be a closed invariant sUbspace for which U(X)H
I

= {a},

x e: A, implies x = O. We shall prove that HI = Ho ' Consider the

L ~
w*-closed subspace H~ = {<jle:H , <HI ,ell> = {a}} = (HI + H) together with

the ideal I = {xe:A, U( x) tHo = {a n. We first prove that the space

Gt = U(I)'H.L + U(IC)'Ho
is a w*-dense subspace of H".l. By the minimality of H.i, it is sufficient

to prove that U(x)'G' = {a}, x e: A, implies x = O. So let x e: A be such

that U(x)'G' = {a}. Since U(xI)tH
k

= {a}, we get xl = {a}. Since

U(xIC)'Ho= {oJ, it follows, by the definition of I, that xl c c: I. From

these remarks ve easily infer that x = O. Since G' is a w*-dense :sub

space of wI., it follows that the space {he:H o ' <h ,G' > = {a}} reduces to

{O}. Equivalently,

{he:H
o

' <U(I)h,H.l> = {a} ~ <U(Ic)h,Ho> = {O}} = {a}.

1-
Since HI + H is a closed subspace of F and Ho = (HI + H) , it follows

{he:Ho' U(I)h = {a}~ U(Ic)h C HI + H} = {a}.

"'"- --
.LU U.:> ,

Since the space U(IC)H I is contained in the left-hand side of the equal

ity; we h!'\ve U(IC)H 1 = {OJ. Since U{::dHI '" {a}, ~ c A, implies x:;;;; 0, it

follows Ie = {a} and so ICC =A.
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By the definition of I we have <U(I)Ho,H~> = {Ole Since ICC = A, it fol

lows, by assumption, that U(I)H o is dense in H • Hence, <H ,HI> = {Ole
o 0 0

~ .
Thus, since H~ cHand F = Ho + H, H~ = {O}. So. HI + H 1.S a dense sub-

space of F; whence HI = Ho•

Remark. Proposition 4.3.7 shows the symmetry between the representation

U and the "dual" representation. defined by x -- U(X)Icf>, x e: A, ~ e: F'.

The results in the third section show that the theory is

nice. if we assume that, roughly speaking. F can be decanposed into a

direct sum of closed invariant subspaces, which are minimal in the sense

of Theorem 4.3.1. In this case we necessarily have that U(I)F is de~se

in U(ICC)F for every ideal leA. It seems to be worthwhile to develop a

theory of spectral operators along the lines of this chapter. In particu-

lar. it might be useful to assume that the representation U has the above

property, ~. U(I)F is dense in U(Icc)F for every ideal leA. One might

call an operator S A-spectral, if it commutes with U(a) for every element

a in A; one might say that it is A-scalar, if S = U(a) for sOIIle element a

in A. We mention the following two open problems.

Problem 1. Let U: A -4 L(F) be a faithful representation of the semi-

prime algebra A. Assume that for every ideal I in A, U(I)F is dense in

U(ICC)F. Do there exist minimal closed invariant subspaces for which U is

faithful?

Problem 2. Assume that F can be decomposed as a direct sum of Banach

spaces, which are minimal in the sense of,Theorem 4.3.1. Assume that A is

a ve~tor lattice. Is it possible to choose the "cyc:'ic" vectors f'J and ~\)

of Corollcu-~ 4.3.6 in such a w~, that the expression <u(a)fv,~v> is pos-

itive for every element a in the positive cone of A?
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