
SECURITY INVESTIGATION OF DRONE CONTROL
ALGORITHMS

A DISSERTATION SUBMITTED TO THE
GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I AT MĀNOA
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

JULY 2021

By

Wenxin Chen

Dissertation Committee:

Yingfei Dong, Chairperson
Gürdal Arslan
Galen Sasaki
Yao Zheng

Edoardo Biagioni

We certify that we have read this dissertation and that, in our
opinion, it is satisfactory in scope and quality as a dissertation
for the degree of Doctor of Philosophy in Electrical Engineer-
ing .

ii

DISSERTATION
COMMITTEE

Chairperson

iii

Copyright 2021 by

Wenxin Chen

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Yingfei Dong, for his guidance, patience, and help

throughout my research and study at Department of Electrical Engineering, University of

Hawai‘i.

I also would like to thank the members of my dissertation committee: Dr. Gürdal

Arslan, Dr. Edoardo Biagioni, Dr. Galen Sasaki and Dr. Yao Zheng. Thanks for your

advice and support.

In addition, I would like to thank Dr. Zhenhai Duan and Mr. Jianqiu Cao. They have

collaborated with me in my dissertation research project.

Finally, my deep and sincere gratitude to my family for their continuous and unparal-

leled love, help and support.

v

ABSTRACT

While more and more autonomous vehicles and devices are deployed in our society, the

security of these systems has raised serious concerns. Although many efforts have focused

on their performance and reliability, more systematic research on their security becomes

urgent and critical. Therefore, we explore this direction and select consumer drones as our

subjects because we can access open-source drone systems (i.e., ArduPilot systems) such

that we are able to conduct in-depth investigations of their control algorithms in both theory

and practice.

As consumer drones have been abused in many incidents, protecting critical assets from

consumer drone invasions has become increasingly challenging. While existing methods

can interrupt an invading drone, none of them is able to accurately guide it to a desired loca-

tion for safe handling. By exploiting the weaknesses identified in common state estimation

methods and navigation algorithms of drones, and utilizing existing sensor attacking tools,

in this research, we develop generic methods to compromise drone state estimation and

position control in order to make malicious drones deviate from their targets. In general, an

autonomous drone can be attacked at three levels: its onboard sensors, its state estimation,

and its navigation algorithms.

Our first focus is to accurately manipulate a drone’s state estimation by utilizing existing

sensor attack tools. We propose several False Data Injection (FDI) attacks to quantitatively

control the EKF-based estimation of 2-dimensional horizontal position, altitude, and mag-

netic states, and conduct comprehensive analyses on the proposed attacks. Our simulation

results show the effectiveness of such attacks. We also propose countermeasures to deal

with such attacks.

Furthermore, we focus on the navigation algorithms and develop the Drone Position

Manipulation (DPM) attack based on the ability of precisely attacking drone sensors and

vi

state estimation. DPM is able to accurately manipulate a drone’s physical position and help

us guide an invading drone away from its target to a redirected destination. In addition,

we formally analyze the feasible range of redirected destinations for a given target. The

proposed attacks are validated on the popular ArduPilot flight control system to show its

effectiveness. This unique method of exploiting the entire stack of sensing, state estima-

tion, and navigation control together enables the quantitative manipulation of flight paths,

different from all existing methods. We also discuss countermeasures to deal with such

attacks and illustrate potential solutions.

Because the weaknesses of common control algorithms investigated here are popular in

many autonomous systems, the proposed attacks may also pose serious threats to the secu-

rity of these systems. Utilizing different resources available on these autonomous systems,

we are further investigating unique vulnerabilities and countermeasures in these environ-

ments while ensuring system performance.

vii

TABLE OF CONTENTS

Abstract . vi
List of Tables . x
List of Figures . xi
1 Introduction . 1
2 Related Work . 6
3 Background and Research Outline . 10

3.1 Attack Model . 10
3.2 Related Background . 12

3.2.1 Control Loop . 12
3.2.2 Sensor measurement manipulation 12

3.2.2.1 MEMS Barometer and Magnetometer measurement ma-
nipulation . 13

3.2.2.2 GPS Spoofing . 13
3.2.3 Common State Estimation Algorithms 14

3.2.3.1 Kalman Filter (KF) and Extended Kalman Filters (EKF) . 15
3.2.4 Common Navigation Algorithm 19

3.3 Outline of the Research . 21
4 Manipulation of Drones’ State Estimation . 23

4.1 Proposed Attacks for Horizontal (2D) Position Estimation 23
4.1.1 Attacks on EKF-based 2D Position Estimation 24
4.1.2 Attack with Coarse Manipulation of GPS 26
4.1.3 Countermeasures . 28

4.2 Proposed Attacks for Altitude Estimation 29
4.2.1 Models . 30

4.2.1.1 EKF-based altitude estimation Methods 30
4.2.1.2 Altitude Estimation based on Accurate Sensor Noise Mod-

els . 31
4.2.1.3 First-order Low-pass Filter Model for Altitude Estimation 33

4.2.2 Countermeasures to EKF-based Altitude Estimation 33
4.2.3 Attacking Accurate Sensor Noise Models based Altitude Estimation 35

4.2.3.1 Attacks by Modifying Barometer Readings 35
4.2.3.2 Attacks by Blocking GPS 37

4.2.4 First-order Low-pass Filter . 38
4.2.5 Performance Evaluation for Altitude Estimation 39

4.2.5.1 Attacks on EKF-based Altitude Estimation 39
4.2.5.2 Attacks on Sensor-model-based Altitude Estimation . . . 41

4.3 Proposed Attacks for Magnetic State Estimation 42
4.3.1 EKF-based magnetic estimation Methods 42

viii

4.3.2 Attack Methods . 44
4.3.3 Realistic Attack Scenarios . 45
4.3.4 Simulation Studies for Magnetic State Estimation 46

4.3.4.1 Simulation Settings . 46
4.3.4.2 Estimation of Magnetometer Data 47
4.3.4.3 Estimations of 𝑅𝑜𝑙𝑙, 𝑃𝑖𝑡𝑐ℎ and 𝑌𝑎𝑤 47
4.3.4.4 Attack Results in Realistic Scenarios 50

4.4 Conclusion . 52
5 Manipulation of Drones’ Physical Position . 53

5.1 Basic DPM (bDPM) Attack . 53
5.1.1 Theoretical Foundation of bDPM 54
5.1.2 bDPM Attack . 56
5.1.3 Feasible Range of Redirected Destination 58

5.2 Practical Measurement-based DPM (mDPM) 60
5.2.1 Identifying a Practical Injection Method 61
5.2.2 mDPM Attack . 67
5.2.3 Feasible Range of Compromised Destination 68

5.3 System Instrumentation and Performance Evaluation 69
5.3.1 System Instrumentation . 69
5.3.2 Evaluation of basic DPM (bDPM) 72

5.3.2.1 Simulation Settings . 72
5.3.2.2 Accuracy of bDPM . 72
5.3.2.3 Injection limitation and Feasible range 73

5.3.3 Evaluation of Measurement-based DPM (mDPM) 75
5.3.3.1 Settings . 75
5.3.3.2 Accuracy of mDPM . 75
5.3.3.3 Injection limitation and Feasible Range 78

5.4 Conclusion . 79
6 Conclusions and Future Work . 80
Bibliography . 81

ix

LIST OF TABLES

5.1 Notations in the bDPM. Each notation may have a subscript 𝑁 or 𝐸 repre-
senting its North or East component. 54

5.2 Notations in mDPM. 62
5.3 bDPM Attack error under different Injection rates. 73
5.4 bDPM Attack error under different attack directions (1). 73
5.5 bDPM Attack error under different attack directions (2). 74
5.6 bDPM Maximum Redirection Size (1). 75
5.7 bDPM Maximum Redirection Size (2). 75
5.8 mDPM Attack error rate under different 𝑋 𝐼 76
5.9 mDPM Attack error rate under different attack directions (1). 77
5.10 mDPM Attack error rate under different attack directions (2). 77
5.11 mDPM Max Redirection Sizes for different directions (1). 77
5.12 mDPM Max Redirection Sizes for different directions (2). 78

x

LIST OF FIGURES

2.1 Common Drone Control Loop. 6

3.1 Restricted Area around a critical asset. 11
3.2 The linear-track-based algorithm. 20

4.1 Altitude estimation before attack. 40
4.2 Altitude estimation after attack. 40
4.3 Innovation before attack. 41
4.4 Innovation after attack. 41
4.5 The altitude estimations before and after the attack (Sensor-model-based

Altitude Estimation). 42
4.6 Attack results in terms of estimations of magnetometer data. 48
4.7 Attack results in terms of estimations of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤. 49
4.8 The amplification of variances in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 after attack. 50
4.9 The total rotation angles in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 before and after

attack. 51
4.10 The number of switching times of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 before and after

attack. 51

5.1 Relationship between the drift velocity and the injection rate. As the injec-
tion rate increases, we can see the drift velocity increases proportionally,
and the attack coefficient 𝐶𝑎 stays roughly constant. 57

5.2 Illustration for the bDPM attack. 57
5.3 Feasible Range of the redirected position in one cycle. 60
5.4 Crafting GPS position inputs based on measured drone positions with con-

stant injection sizes. 61
5.5 bDPM Demo in ArduPilot SITL. 70
5.6 Feasible ranges of redirected destinations under different attack durations

in bDPM. 76
5.7 Feasible ranges of redirected destinations under different attack durations

in mDPM. 79

xi

CHAPTER 1
INTRODUCTION

In recent years, we have witnessed many new applications of consumer drones [69],

including search-and-rescue, aerial imaging, environmental monitoring, infrastructure in-

spection, and package delivery. Unfortunately, consumer drones have also been abused

in many incidents [44]. For example, a drone crashed into the White House grounds in

2015 [58]; malicious drones disturbed 1000+ flights with 140,000+ passengers around

the UK’s second largest airport (Gatwick) for three days during 2018 Christmas season;

coalition forces faced many attacks by low-cost consumer drones in Iraq and Afganistan.

Therefore, it is urgent to develop effective drone countermeasures, especially when more

and more such autonomous devices are emerging in this IoT age. Note that we focus on

consumer drones because of their broad deployment, and we do not consider high-end

mission-critical (military) drones here because they have different resources and require-

ments. In the following, when we mention “drones”, we mean “consumer drones”.

Existing drone countermeasures are mostly developed by industry using direct physi-

cal methods, such as jamming a drone’s radio control channels to trigger a drone into its

fail-safe mode (e.g., landing when its control channel is lost), or shooting it down with a

projectile. While such brute-force physical methods work well in many cases, they have

serious limitations, e.g., not handling collateral damages well. If a drone carries a mali-

cious payload, we certainly do not want it to land in a protected area. The best solution for

this case is to guide the drone away to a designated area for safe handling. While several

projects [20, 34, 48, 66] have demonstrated the feasibility of such attack, none of them is

able to achieve concrete quantitative control, which is the focus of this research. Further-

more, as more robotic vehicles are developed for new applications, many similar security

issues become serious concerns. In this research, we propose to systematically address

1

such issues by investigating the entire control stack to achieve accurate quantitative control

for specific concerns, such as redirecting a drone.

Ideally, we like to gain complete control of an invading drone, e.g., by taking over its

control channel (by cracking its encryption) or hacking into its control software. While sev-

eral countermeasures have been developed to exploit specific drone settings, they required

to compromise drone software, sensors, or communication channels [20,25,35,45,56,59],

which are difficult to achieve in practice. While these methods may work well on weak sys-

tems with known vulnerabilities, we cannot solely rely on such methods to counter drones,

because the vulnerabilities may be easily patched.

Therefore, different from these methods, we will focus on a new challenge in this re-

search: we would like to accurately control a drone without depending on compromising

its software or hardware. To achieve this goal, we propose a holistic approach to explore

the entire stack of sensing, state estimation, and navigation together, as presented in the

following.

First, almost all consumer drones are dependent on guidance inputs, such as civil GPSs,

IMUs, magnetometers, barometers, etc. However, the designs of these sensors focus more

on the performance and cost rather than security-related issues. Recently, researchers have

identified the vulnerabilities of some sensors and proves that they can be easily spoofed

[34, 61, 66], which we name as the first-level attack. In this research, we assume that we

can manipulate the measurements of GPSs, magnetometers, or barometers remotely. In

particular, for GPS, we can utilize existing software-defined radio (SDR) tools to spoof the

signals. Although anecdotes on military GPS spoofing attacks have been reported (such as

the capture of US Sentinel drone by Iran [52]), the details have never been revealed. So, we

consider these attacks on military drones are beyond the scope of this research; our focus

is the civil GPS system on consumer drones. For MEMS magnetometers and barometers,

though no one has showed their abilities of precisely sensor reading manipulation remotely

2

for now, however, state-of-the-art work has proved the possibility of IMU measurement

manipulation. Due to the similar structures among these sensors, we believe these spoofing

approaches can also be applied for the modification of the barometer and magnetometer

readings. However, this is out of the scope in this research and will be our future work. Here

we just assume to have the ability to accurately modify the barometer or magnetometer

readings remotely.

Second, assume we can identify the type and model of an invading drone [9, 24, 37],

we can then find out its state estimation and control algorithms. A reliable control system

is critical to the successful operation of unmanned or autonomous vehicles such as drones.

The normal operation of control system of a drone relies on accurate information of critical

state variables (such as position, velocity, and attitude). However, the measurements of sen-

sors often contains inaccuracies and uncertainties. To solve this problem, state estimation is

introduced. State estimation is a process of providing relatively accurate estimations of un-

known states based on series of measurements containing noise and other inaccuracies. It is

an essential component of an (integrated) control system [31]. Kalman Filter (KF) and its

variants such as extended Kalman Filter (EKF) are the most widely used state estimation

algorithms employed by drone control systems. In recent few years, several researchers

have tried different estimation methods for estimations of a specific state (altitude) in drone

control systems, including First-order Low-pass Filter [70], MLE based on accurate and

detailed error models [76] and so on. For details, please refer to Chapter 4.2.1. In our

research, we aim at the vulnerabilities in these state estimation schemes in drone control

systems as our first attack target.

Moreover, based on the position estimation, a drone control system usually uses an

automatic navigation controller to manage its physical position in real time such that it fol-

lows a given flight path, and automatically guides it to a desired destination. Therefore, we

further investigate drone navigation algorithms to figure out generic methods to accurately

3

manipulate drones’ physical positions, which is our second target.

As these state estimation and navigation algorithms are designed mainly for control

without considering security concerns, we have carefully analyzed them and identified

their guidance inputs as the attack surface. Therefore, we focused on carefully constructing

spoofed GPS inputs to exploit both state estimation and navigation algorithms for manipu-

lating a drone’s state estimation and corresponding physical states.

First, assume existing tools can help us accurately manipulate a drone’s sensor measure-

ments remotely; we first propose several False Data Injection (FDI) attacks (also denoted

as the second-level attack) to quantitatively control the EKF-based estimation of 2D hori-

zontal position, altitude, and magnetic states, and conduct comprehensive analyses on the

proposed attacks.

Furthermore, based on the ability of precisely modifying a drone’s sensor measure-

ments and state estimation, we develop the Drone Position Manipulation (DPM) attack

(also denoted as the third-level attack), which is able to accurately manipulate a drone’s

physical position and help us guide an invading drone away from its target to a redirected

destination. In addition, we formally analyze the feasible range of redirected destinations

for a given target. The proposed attacks are validated on one of the most popular open-

source flight control systems, ArduPilot [1, 54] to show its effectiveness. Such a holistic

solution allows us to integrate the vulnerabilities at three levels together and achieve accu-

rate quantitative physical position control.

Although spoofing GPS to attack drones had been exploited in two other projects [34,

48], neither of them exploited the entire control stack as in this research. Their methods

indeed gained some control of the drone but did not achieve as the accurate control as the

proposed second-level FDI attacks and third-level DPM attacks.

In summary, our novel contributions in this research include: (1) We develop a theoret-

ical model to help us achieve accurate manipulation of a drone’s state estimation and phys-

4

ical position for specific concerns. In comparison, existing methods were able to disrupt a

drone’s mission but did not define a clear model or achieve quantitative control. (2) The

proposed attacks exploit the entire stack of sensing, state estimation, and navigation con-

trol, while existing methods mostly focused on one or two layers. (3) The proposed attacks

are validated on ArduPilot, arguably the most popular open-source flight control system

(compared to Paparazzi [50] and OpenPilot [49]), to show their effectiveness; while exist-

ing methods are mostly evaluated on theoretical platforms. (4) The proposed attacks are

not required to compromise the software or hardware of a drone as some existing methods

required. (5) Because the state estimation and navigation control algorithms on consumer

drones are also broadly used in many other autonomous systems, the proposed attacks may

also pose serious threats to the security of these systems.

The remainder of this research is organized as follows. We will first discuss related

work in Chapter 2. In Chapter 3, we will define the attack model, and provide background

knowledge related to required tools for the proposed attacks and drone control systems. We

will then present the second-level False Data Injection (FDI) attack in Chapter 4 and the

third-level Drone Position Manipulation (DPM) attack in Chapter 5. We will conclude this

research and discuss future research in Chapter 6.

5

CHAPTER 2
RELATED WORK

Autopilot
State

Estimation

Sensors Actuators

Figure 2.1: Common Drone Control Loop.

We will discuss the work related to our research in this chapter. As the flow chart of

an autopilot system in Figure 2.1 shows, attacking a drone may happen at three levels on

its onboard sensors [34, 61, 65, 66], its state estimation scheme [14, 15, 18, 30, 40], or its

navigation algorithms [16, 48].

(1) First-level attacks. A consumer drone often uses an Inertial Measurement Unit

(IMU) with MEMS sensors (e.g., rate-gyroscopes, accelerometers, or magnetometers) to

measure three-dimension angular velocities, accelerations, and magnetic readings, respec-

tively. Based on these measurements, a drone can estimate its system states including

position, velocity, and attitude [28, 60, 74]. Different from mission-critical systems (such

as military drones), consumer drones are usually equipped with low-end sensors with lim-

ited protection to reduce costs, which leaves many opportunities for hardware or software

attacks.

Hardware attacks include selectively jamming GPS and radio control channels [8, 62,

64], or compromising drone hardware components (such as MEMS sensors) via acoustic

approaches to disturb its normal operation [34, 61, 65, 66]. In particular, a high-accuracy

covert spoofer was built by manipulating the signal delays in the physical layer to spoof

GPS signals arriving at a drone GPS receiver [34]. The spoofer measures relevant delays

6

to the receiver within a few nanoseconds, and compensates for these delays by generating

a slightly advanced version of the official GPS signals that the spoofer receives. Then,

it gradually increases power to win the signal acquisition on the receiver over the official

signals. This covert GPS spoofer is a pioneer work that can also help us implement our

attack to manipulate GPS signals at the physical layer. [34] also defined a simple drone

control model of EKF estimators and built their own drone simulator. Although their idea

of spoofing GPS is similar to our approach, their work mostly focused on the manipulation

in the physical layer, while our work focuses on state estimation and navigation control. We

can use their physical layer solution for covert spoofing; our project is complementary to

their project. There are a few key differences at the higher level: First, [34] built their own

simple state estimator for analysis, while we exploit the mature state estimation schemes on

an open-source system broadly used on many commercial drones, which makes our method

more practical. Second, [34] did not consider the navigation control such that they do not

have accurate control where the victim drone will fly to, while we exploit the navigation

control and are able to accurately control the position of a drone.

(2) Attacks on State Estimation.

Attacks against state estimation have been examined in various control systems. In [40],

Liu et al. first proposed an FDI attack against the state estimation in power grids. In

particular, their schemes exploited the nature of state estimation and anomaly detection in

power grid to successfully inject malicious values into certain states while bypassing the

anomaly detector. However, the state estimation in a power system is usually simplified

from a AC model to a DC model and focuses on the static components of the system; it is

very different from the one we performed in drone systems. Following [40], several projects

focused on false data injection attacks against static state estimation in power systems [10,

11, 36, 51, 57, 75].

Compared with static state estimation, dynamic state estimation can achieve estimations

7

for a series of real-time states such as rotor angles in power grids or on drones. There

are also great efforts on dynamic state estimation and anomaly detection techniques in

power systems [19, 30, 41, 46, 67]. which usually use the Kalman filter to estimate the

states. However, only little efforts have been paid on FDI attacks against dynamic state

estimation. In [47], the authors presented limited analytical results on KF-based dynamic

state estimation in the presence of FDI attack. However, their methods require restricted

assumptions about the system models (such as LTI system), which cannot be applied to the

nonlinear EKF-based state estimation model in Chapter 3.2.3. In addition, they only give

analytical results under constant injections on measurements, while injections in our attack

schemes can vary. These approaches cannot be directly applied to the problems considered

in our research.

(3) Attack Drone Navigation Controls. By analyzing the practical navigation code

of ArduPilot, we identified weaknesses in the most popular path-following algorithms [63]

as introduced in Section 3.2. In this research, we utilize the vulnerability in the state esti-

mation and exploit the weakness of navigation to accurately manipulate a drone’s position

in order to guide it to a redirected destination. By carefully literature reviewing, we have

found one project with similar attack goals. In [48], Noh et al. focused their attack on the

navigation control on an earlier version ArduPilot 3.3. In particular, Noh et al. developed

an adaptive GPS spoofing strategy to hijack a drone’s position control. However, [48] could

only achieve flight direction manipulation, with a non-negligible angular error magnitudes

(around 9◦). In contrast, we develop complete algorithms to manipulate its position with

very small errors, and we also determined the feasible range of the redirected destination

relative to an original destination. In summary, the key difference between our method

with [48] is: while they can achieve some control over a target drone, they cannot achieve

quantitative control as the proposed DPM.

(4) Other Attacks against Drones. Several software attacks mostly aim at the vul-

8

nerabilities of drone firmware [20, 25, 35, 59], such as insecure communication channels

or software. For example, in [20], the authors developed several stealthy attacks against

Robotic Vehicles (RVs) including drones to disrupt their position control without being

detected. However, their attacks are depending on compromising RVs’ firmware, which

is impractical in real life. In addition, their attacks can only cause them to malfunction

rather than quantitatively control their positions. However, the requirement of compromis-

ing the software or communication channels is out of scope of this research. A few other

projects [8, 62, 64] showed the feasibility of various attacks to disrupt a drone’s mission,

but none of them is able to achieve as accurate position manipulation as the DPM. To the

best of our knowledge, this research is the first to explore the entire stack of sensing, state

estimation, and navigation control.

9

CHAPTER 3
BACKGROUND AND RESEARCH OUTLINE

While traditional control algorithms can handle most common system errors and ensure

the smooth control of the system, very little research has been conducted in understanding

their vulnerabilities under malicious attacks. Therefore, we focus our research on this di-

rection and investigate the potential issues in these common control algorithms. In partic-

ular, we would like to explore how to mislead the consumer drones by compromising their

sensors, state estimation, and navigation algorithms. To address this research problem, we

first define the attack model. Then we provide background knowledge related to required

tools for the proposed attacks and drone control system, including sensor measurement ma-

nipulation tools, popular state estimation and bad data detection techniques (especially the

Kalman filter (KF) and its variant extended Kalman filter (EKF)), as well as the common

navigation algorithm on drones. Finally we present the outline of the research.

3.1 Attack Model

To investigate the proposed problem, we first define the following attack model. As

shown in Figure 3.1, we set up a restricted area around a critical asset to protect it from

drone invasions. When we detect a drone invasion event using existing tools such as radars,

we need to redirect it away from the asset (its target destination) to a redirected destination

for safe handling, e.g., flying into a blast containment chamber. Because we can usually

recognize an invading drone with existing approaches (via radar, radio or traffic profiling,

or image processing [9,24,37]), we are able to identify its sensors (e.g., GPS) and firmware

(including its state estimation and navigation algorithms). Assume that we have obtained

the same model of drone and analyzed it ahead of time; we would like to propose a method

to change its flight path towards a redirected destination. To achieve this goal, we need

10

Figure 3.1: Restricted Area around a critical asset.

to carefully exploit the entire sensing, state estimation, and navigation control stack to

achieve quantitative control of state estimation and eventually the physical position of a

drone. Here the states we focus on include 2D horizontal position, altitude and magnetic

ones. In this attack, we do not depend on compromising its software or hardware as some

existing methods required.

Without loss of generality, to simplify our model, we assume that an invading drone is

on autopilot, because of two reasons: First, because the drone operator usually does not

want to expose itself, it has to turn off the control channel to avoid being triangulated based

on its control signals. Second, because the control channel can be easily disrupted by the

defense, the operator cannot depend on the channel to control the drone in the restricted

area. So, autopilot is a natural choice.

To achieve the attack goal, we first introduce sensor manipulation attacks against barom-

eter and magnetometer; then we focus on the tools of GPS spoofing (denoted as first-level

attack). With the help of sensor manipulation techniques, we propose FDI attacks on state

estimation to quantitatively manipulate the horizontal (2D) position, altitude, and magnetic

states (denoted as second-level attack). Finally, utilizing these attacks, and by identifying

11

the vulnerabilities of the common navigation algorithms, we design attack schemes to ma-

nipulate the 2D physical positions of a drone. We have considered the attack on altitude

and heading (related to magnetic states), and will investigate these direction in our future

work.

3.2 Related Background

Here we introduce the background related to essential tools for proposed attacks and

drone control system in detail.

3.2.1 Control Loop

As shown in Figure 2.1, the control loop of a drone contains four steps. Starting with

sensor measurements, the system estimates related states and then passes the states to its

navigation algorithms to determine how to adjust actuators for real-time control. Such a

loop is usually completed in a fixed period, e.g., the default state update on ArduPilot is

set to every 10 ms when IMU sensors generate new readings. We will introduce the sensor

spoofing methods, the most popular state estimation algorithms, and the most common

navigation algorithm in the following.

3.2.2 Sensor measurement manipulation

In the proposed research, we consider several attacks on different sensors, including

barometer, magnetometer, and GPS. We will first introduce different existing sensor ma-

nipulation attacks for barometer and magnetometer; then we will focus on the tools of GPS

spoofing.

12

3.2.2.1 MEMS Barometer and Magnetometer measurement manipulation

In this research, we propose some attacks on altitude and magnetic state estimation.

For these attacks, we assume that, after a drone has entered the no-fly zone, we are able

to manipulate the readings of MEMS barometer and magnetometer. We note that this is

a relatively strong assumption. However, there have been significant progresses in the

area of MEMS sensor reading manipulation recently. In particular, to maximize the de-

tection sensitivity, the MEMS micro-structure is designed to be oscillated at a resonant

frequency. However, this operation principle also brings an intrinsic vulnerability that the

sensor will be susceptible to external vibrations (e.g., sound noise) around the resonant fre-

quency [13, 22, 23]. In [61], the authors show that attackers can compromise the MEMS

gyroscopes of a drone, by generating crafted noise with the same resonant frequency to

degrade the performance of the gyroscopes. In [66], the authors makes further progresses,

by providing acoustic injection attack schemes on MEMS accelerometers. Due to the sim-

ilar structures among these sensors, we believe these attack approaches can also be applied

for the modification of the barometer and magnetometer readings, and the further develop-

ments of our attacks on state estimation.

3.2.2.2 GPS Spoofing

To attack the 2D horizontal position estimation and physical position of a drone, we

plan to craft well-designed fake GPS inputs with GPS spoofing tools. While a GPS message

includes position, velocity, and other auxiliary data, we focus on the position and velocity

data in this research, as other parameters usually have little impacts on the drone navigation

algorithms examined here. We selected GPS spoofing as our attack method based on the

following reasons. Because the 2D position estimation and navigation control of a drone

depends on many dynamic factors, we have tried to identify which factors are the most

13

influential in such a complicated system. Through analyzing the 2D position estimation

algorithms of ArduPilot, we identified two main factors among common drone sensors:

GPS inputs and IMU measurements. When operated in the active GPS mode, the state

estimator typically considers non-GPS navigation sensors as assistances to GPS data. This

is also confirmed as a common solution in related work [34]. We have also verified this

via both simulations and GPS spoofing on real ArduPilot drones. We have found that GPS

inputs dominate the IMU measurements on an ArduPilot drone [12].

While we assume we can use existing tools to achieve covert GPS spoofing such as [34],

we already conducted overt GPS spoofing on a SkyViper GPS drone for testing, whose

firmware is a variant of ArduPilot [6]. We overpowered the civilian GPS signals using a

BladeRF A9 card to transmit shifted GPS signals from a moderate distance [12]. The drone

gained a 3D fix on the spoofed GPS signals for its position control. We have verified this by

directly reading the GPS raw inputs from the drone via its MAVLink interface [42]. In our

SITL simulations for drone physical position manipulation, we switched the GPS input of

a simulated drone for a covert spoofing. In particular, we let the SITL drone take MAVLink

𝐺𝑃𝑆_𝐼𝑁𝑃𝑈𝑇 messages [43] as its GPS input, in the same way as it receives GPS messages

from a GPS-capable device. We then built a mission control program with the DroneKit

Developer tools [26] to obtain drone real-time states, craft 𝐺𝑃𝑆_𝐼𝑁𝑃𝑈𝑇 messages per

GPS cycle, and send them to the drone via MAVProxy [7], same as a common ground

control station (QGroundControl [53]) communicates with a real drone. With this method,

we can test our attacks on state estimation and navigation control, which are the focus of

this research.

3.2.3 Common State Estimation Algorithms

As sensor measurements may have errors, the navigation system deals with such errors

using state estimation methods. A consumer drone conducts state estimation based on sen-

14

sor readings from accelerometers, gyroscopes, magnetometers, GPS signals, and barome-

ters. Such state estimation methods enables low-cost sensors on drones to achieve required

performance and robustness such that: faulty sensor measurements can be detected; the

impacts of sensor noises and errors can be reduced; complementary sensing modalities can

be combined (inertial, vision, air pressure, magnetic, etc.) to achieve robust estimations.

While state estimation methods are critical to the reliable and accurate estimation of

vehicle states using low cost sensors, it is still the weakest link in the system reliability.

Especially, most common state estimation methods emphasize performance and reliabil-

ity, and do not consider malicious cyber attacks. State estimation mistakes can result in

unexpected mission changes and loss of control [33, 54].

Extended Kalman Filters (EKF) and its variants are the most commonly-used state es-

timation methods in current systems [29,60,68,72], providing fairly accurate state estima-

tions. A few enhanced methods are proposed for critical altitude estimations based on other

sensors (e.g., using images [27], differential GPS, or ultrasonic sensors [39]). However, be-

cause they usually need more resources that are not available on low-end consumer drones,

we focus on the common EKF-based state estimation in this work. In the following, we

will introduce how EKF works.

3.2.3.1 Kalman Filter (KF) and Extended Kalman Filters (EKF)

Before presenting EKF, we will first show its basic version - Kalman Filter (KF). The

KF and its variants are the most popular estimation algorithms used in navigation systems.

They estimate states based on time-series data. For example, for a flying drone, it needs to

know its precise position, velocity and other movement states at each time point to navigate.

Otherwise, inaccurate movement information may lead the drone to fall to the ground or hit

against a tree. The on-board MEMS sensors can provide information about these movement

states, but all contain various types of noises and other uncertainties. However, the position

15

and velocity states are actually correlated: we can predict the current position based on

the position and velocity in a previous time slot. This kind of relevance can give us more

information. By using this extra information, KFs reduce the inaccuracy within the raw

data and provide a better estimation of these states.

KFs work in an iterative fashion to estimate dynamic system states based on both the

new sensor measurement data and the predicted system states. In a KF, the system state

model is commonly defined in two iterative steps [60, 72]: Prediction step and Update

step. In the Prediction step, the KF predicts the estimation of current state based on its

relationship with previous states. In the Update step, the KF updates the state with the

current measurement based on the relationship between the indirect state and observable

measurements. The updated state is a weighted average between the predicted state and

the measurement, where the weight (Kalman gain) is calculated based on the covariance, a

measure of the estimated uncertainty of the prediction. The whole procedure is executed in

each time interval.

As an example, let us consider a drone that moves with a constant velocity in a one-

dimensional space. In this system, we define the state (variable) vector as:

x𝑇𝑟𝑢𝑒 (𝑡) =

𝑑 (𝑡)

𝑣(𝑡)

 , (3.1)

where 𝑑 (𝑡) and 𝑣(𝑡) are the position and velocity at time 𝑡, respectively. Assuming the

system states are updated at fixed time intervals of length 𝑇 , then, x𝑇𝑟𝑢𝑒 (𝑡) satisfies the

following equations:

𝑑 (𝑡) = 𝑑 (𝑡 − 1) + 𝑣(𝑡 − 1)𝑇 + 𝑤𝑑 (𝑡),

𝑣(𝑡) = 𝑣(𝑡 − 1) + 𝑤𝑣 (𝑡),
(3.2)

16

which can be represented in a matrix form:

𝑑 (𝑡)

𝑣(𝑡)

 =

1 𝑇

0 1

𝑑 (𝑡 − 1)

𝑣(𝑡 − 1)

 +

𝑤𝑑 (𝑡)

𝑤𝑣 (𝑡)

 , (3.3)

or

x𝑇𝑟𝑢𝑒 (𝑡) = Ax𝑇𝑟𝑢𝑒 (𝑡 − 1) + w(𝑡), (3.4)

where A is commonly referred to as the state transition matrix, and w(𝑡) is the process noise

following a zero mean normal distribution. The measurement vector z(𝑡) has the following

equation:

z(𝑡) = Hx𝑇𝑟𝑢𝑒 (𝑡) + v(𝑡), (3.5)

where H is the observation (or measurement) matrix, which maps system states to sensor

measurements; v(𝑡) is the observation noise, and also follows a zero mean normal distribu-

tion. With the above notations, the KF can be defined in the following two steps (here we

do not consider control signal u(𝑡 − 1)):

Prediction:
x−(𝑡) = Ax(𝑡 − 1),

P−(𝑡) = AP(𝑡 − 1)A𝑇 +Q(𝑡 − 1),
(3.6)

Update:

Δ(𝑡) = z(𝑡) −H(𝑡)x−(𝑡),

K(𝑡) = P−(𝑡)H𝑇 (𝑡) (H(𝑡)P−(𝑡)H𝑇 (𝑡) + R(𝑡))−1,

x(𝑡) = x−(𝑡) +K(𝑡)Δ(𝑡),

P(𝑡) = (I −K(𝑡)H(𝑡))P−(𝑡),

(3.7)

where the superscript − indicates the corresponding vector or variable is predicted based on

the estimated system states in the last time interval. In essence, in the Prediction step, the

17

KF predicts the state x(𝑡) based on the estimation of x(𝑡−1), while in the Update step, x(𝑡)

is updated based on the predicted value and the new measurement data z(𝑡). The Kalman

gain, K(𝑡), assigns different weights for x(𝑡) and z(𝑡), to correct the state estimation. P(𝑡) is

the covariance matrix. Q(𝑡) and R(𝑡) are the process and measurement noise covariances,

respectively, where w(𝑡) ∼ N (0,Q(𝑡)), and v(𝑡) ∼ N (0,R(𝑡)). In practice, Q(𝑡) and R(𝑡)

are tuned for desired performance. KF is an iterative process which is executed whenever

a new z(𝑡) is available.

KFs are mostly applied to linear systems. To deal with a non-linear system, an EKF

partitions the curve of differential functions into many small successive segments. As long

as these segments are sufficiently small, they can be approximated by linear segments,

which can then be processed by the KF. In an EKF, the system model can be rewritten as

x𝑇𝑟𝑢𝑒 (𝑡) = 𝑓 (x𝑇𝑟𝑢𝑒 (𝑡 − 1)) + w(𝑡),

z(𝑡) = ℎ(x𝑇𝑟𝑢𝑒 (𝑡)) + v(𝑡),
(3.8)

where the state transition matrix A is replaced by a state-transition function 𝑓 , and the

observation matrix H is replaced by a sensor function ℎ. Then the prediction and update

steps of EKF are generalized as:

Prediction:
x−(𝑡) = 𝑓 (x(𝑡 − 1)),

P−(𝑡) = F(𝑡 − 1)P(𝑡 − 1)F𝑇 (𝑡 − 1) +Q(𝑡 − 1),
(3.9)

Update:

Δ(𝑡) = z(𝑡) − ℎ(x−(𝑡)),

K(𝑡) = P−(𝑡)H𝑇 (𝑡) (H(𝑡)P−(𝑡)H𝑇 (𝑡) + R(𝑡))−1,

x(𝑡) = x−(𝑡) +K(𝑡)Δ(𝑡),

P(𝑡) = (I −K(𝑡)H(𝑡))P−(𝑡),

(3.10)

18

where F is the Jacobian matrix of the state transition function 𝑓 , which contains the

first derivative of the state transition function with respect to each state. Similarly, H is the

Jacobian matrix of the sensor function ℎ. P(𝑡), Q(𝑡) and R(𝑡) have the same meanings as

the ones in KF.

In practice, the implementation of EKF used in ArduPilot is a little different from the

above. In particular, it does not estimate the whole 24 states in one time; instead, it es-

timates the states one by one. Accordingly, the variables in eq. 3.9 and 3.10 are a little

different, e.g., for the estimation of each body magnetic field bias state 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌

and 𝑀𝑎𝑔𝑍 , K𝑀𝐴𝐺 and H𝑀𝐴𝐺 are 24 × 1 and 1 × 24 vector, respectively. However, this

implementation is equivalent to the EKF model introduced in eq. 3.9 and 3.10.

Among the 24 states for drone control on ArduPilot 3.6, we focus on the 2D position,

altitude, and magnetic estimation in this research. We will introduce the details of EKF-

based state estimation for these states in the next chapter. The EKF on ArduPilot uses a

common anomaly detection algorithm to determine if a sensor measurement is acceptable.

We will also introduce the details of the anomaly detection algorithm in the next chapter.

For estimations of a specific state, namely altitude, other estimation techniques are

also investigated, including First-order Low-pass Filters [70], MLE based on accurate and

detailed error models [76] and so on. We will introduce them in Chapter 4.2.1.

3.2.4 Common Navigation Algorithm

The default waypoint navigation of ArduPilot is the linear-track-based algorithm, which

is a Vector-Field (VF) based algorithm and also the most commonly-used path-following

algorithm on drones, more accurate than others [63]. Although a drone’s control loop ad-

justs quickly, it may still drifts away slightly from its scheduled flight track, due to various

factors (e.g., wind disturbances). In order to fly along the scheduled flight track, a drone

needs to constantly adjust its positions in small time intervals, e.g., the default fast-loop on

19

ArduPilot is 2.5 ms.

Track desired max

Track desired
Move back

𝑃𝐸𝐾𝐹(t)

𝑃𝐸𝐾𝐹(t-1)

: Flight track

𝑃𝑝𝑟𝑜𝑗
𝐸𝐾𝐹 (t)

Track leash length

Figure 3.2: The linear-track-based algorithm.

Figure 3.2 shows how the drone should move back to the flight track under the nav-

igation algorithm in ArduPilot. Assume a drone is scheduled to fly along the track from

bottom left to upper right. In each time step, the system will calculate a 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑 po-

sition for the drone based on its position estimation at previous time step and the scheduled

flight velocity. At time (𝑡 − 1), its position estimation is 𝑃𝐸𝐾𝐹 (𝑡 − 1). At time 𝑡, the drone

finds itself drifting away from the track and at the position 𝑃𝐸𝐾𝐹 (𝑡). Here we call the dis-

tance between 𝑃𝐸𝐾𝐹 (𝑡) and its projection on the track 𝑃𝐸𝐾𝐹
𝑝𝑟𝑜 𝑗
(𝑡) as the 𝑡𝑟𝑎𝑐𝑘_𝑒𝑟𝑟𝑜𝑟 . Now

the algorithm uses the 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ to determine how the drone should fly back to

the original track, where the 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ is determined based on the velocity, ac-

celeration, and current position of the drone. Specifically, the algorithm first determines a

position on the track called 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥. If 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ is larger than the

𝑡𝑟𝑎𝑐𝑘_𝑒𝑟𝑟𝑜𝑟, then 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 is the position on the track that has the distance

of 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ from the current position 𝑃𝐸𝐾𝐹 (𝑡) (there are two positions on the

track that have the distance of 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ from the current position; here we just

20

call the one closer to the destination as the 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥). If 𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑎𝑠ℎ_𝑙𝑒𝑛𝑔𝑡ℎ

is less than or equal to the 𝑡𝑟𝑎𝑐𝑘_𝑒𝑟𝑟𝑜𝑟 , then the 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 is the projec-

tion of the current position 𝑃𝐸𝐾𝐹 (𝑡) on the track. Now with 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥, the

algorithm can determine which position on the track the drone should fly back to: if

𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 is closer to the destination than 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑, then the drone will

fly back to 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑; otherwise, the drone will fly back to 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥. In

the figure, since the 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑚𝑎𝑥 is closer to the destination than 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑,

the drone will fly back to the 𝑡𝑟𝑎𝑐𝑘_𝑑𝑒𝑠𝑖𝑟𝑒𝑑.

3.3 Outline of the Research

By exploiting the weaknesses identified in common state estimation methods and nav-

igation algorithms of drones, and with the help of existing sensor measurement spoofing

tools, in this research, we develop generic methods to compromise drone position control

in order to make malicious drones deviate from their targets. In particular, we consider

attacking an autonomous drone in three phases: attacking its onboard sensors, attacking its

state estimation, and attacking its navigation algorithms.

Assume existing tools can help us accurately manipulate a drone’s sensor reading re-

motely; in Chapter 4 we propose several False Data Injection (FDI) attacks to quantita-

tively control the EKF-based estimation of 2-dimensional horizontal position, altitude and

magnetic states. In particular, we design two state estimation attacks against each type

of state: a maximum FDI attack that can maximize the deviation of state estimation, and

a generic FDI attack that can achieve accurate manipulation of the state estimation. We

conduct comprehensive analyses on the proposed attacks, and evaluate the attacks with

simulations on the popular ArduPilot flight control system. We also investigate attacks on

other altitude estimation methods.

21

In Chapter 5, based on the ability of precisely modifying a drone’s sensor measure-

ments and state estimation, we develop the Drone Position Manipulation (DPM) attack,

which is able to accurately manipulate a drone’s physical position and help us guide an

invading drone away from its target to a redirected destination. Utilizing available GPS

spoofing tools, we carefully craft the spoofed inputs to the flight control algorithms based

on the redirected destination and other parameters. Furthermore, we formally analyze the

feasible range of redirected destinations for a given target. The challenge here is: because

the maximum spoofing range in a cycle is limited by a bad data detection threshold and the

physical limitation of its GPS receiver, we have to carefully determine the spoofing signals

within proper ranges in order to shift the drone position as much as we can, without trigger-

ing GPS-failure alarms. The proposed attack is validated on SITL simulations of ArduPilot

to show its effectiveness in practical settings.

This unique method of exploiting the entire stack of sensing, state estimation, and navi-

gation control together enables the quantitative manipulation of flight paths, different from

all existing methods. Many other research problems still need to be investigated in the fu-

ture, such as accurate manipulation of physical altitude and heading (related to magnetic

states), or comprehensive countermeasures to stop the proposed attacks. We will introduce

the details of our attacks in the following chapters.

22

CHAPTER 4
MANIPULATION OF DRONES’ STATE ESTIMATION

In this chapter, we will present the second-level FDI attack on state estimation, in-

cluding horizontal position, altitude, and magnetic state estimation in detail. We will first

present the proposed attack schemes. Then based on the characteristics of the attack re-

sults, we design some countermeasures to these attacks. This work lays a solid theoretical

foundation for the third-level DPM attack presented in Chapter 5.

4.1 Proposed Attacks for Horizontal (2D) Position Esti-

mation

In this section, we focus on designing general methods to compromise a drone’s 2-

dimensional horizontal position estimation (simplified as 2D position estimation in the

next). A drone’s 2D position estimation provides information on its real-time horizontal

location, which is fundamental to its navigation control. Inaccurate 2D position estimation

may lead a drone to drift away from its original flight track, resulting in mission failure or

even a crash. Here our attack goal is to maximize the deviation of its position estimation,

or just precisely reset the estimation to a specific value, by feeding well-designed “manipu-

lated” data to drone position estimation algorithms. In the attack schemes, we assume that

we can access the real-time EKF-based estimated state and several related parameters for

theoretical analysis.

23

4.1.1 Attacks on EKF-based 2D Position Estimation

EKF in ArduPilot estimates the 2D position and altitude separately. The model for 2D

position estimation is described in Section 3.2.3, where

𝑓 (x(𝑡 − 1)) = x(𝑡 − 1),

ℎ(x−(𝑡)) = x−(𝑡).
(4.1)

Therefore F and H here are the identity matrix.

The EKF on ArduPilot uses a common anomaly detection algorithm to determine if a

sensor measurement is acceptable. For 2D position measurements, it checks if the follow-

ing condition is true:

𝑖𝑛𝑛𝑁
2 + 𝑖𝑛𝑛𝐸2 ≤ (𝑣𝑎𝑟𝑖𝑛𝑛𝑁 + 𝑣𝑎𝑟

𝑖𝑛𝑛
𝐸) · 𝜏, (4.2)

Here 𝜏 is a pre-set threshold, 𝑖𝑛𝑛𝑖 = z𝑖 (𝑡) − x−
𝑖
(𝑡) is the difference between a prediction

and a measurement (a.k.a., the innovation) for i= N, E (for the two dimensions North and

East), 𝑣𝑎𝑟𝑖𝑛𝑛
𝑁

and 𝑣𝑎𝑟𝑖𝑛𝑛
𝐸

are the variances of 𝑖𝑛𝑛𝑁 and 𝑖𝑛𝑛𝐸 , respectively. The values of

𝑣𝑎𝑟𝑖𝑛𝑛
𝑁

and 𝑣𝑎𝑟𝑖𝑛𝑛
𝐸

are calculated based on the covariance matrix of the EKF and the GPS

position accuracy information; they can be regarded as constants in a steady-state system,

based on our observations and many previous works such as [3,30,32,34,55,71,72]. Since

the drone is in a steady state, 𝜏 and (𝑣𝑎𝑟𝑖𝑛𝑛
𝑁
+ 𝑣𝑎𝑟𝑖𝑛𝑛

𝐸
) can be regarded as constant. Then,

assume we only attacking one direction N or E (in this case, the innovation of the position

in other direction will be close to 0), eq. (4.2) can be simplified as the following:

��z𝑖 (𝑡) − x−𝑖 (𝑡)
�� ≤ _, (4.3)

For i= N, E. where _ =

√︃
(𝑣𝑎𝑟𝑖𝑛𝑛

𝑁
+ 𝑣𝑎𝑟𝑖𝑛𝑛

𝐸
) · 𝜏 is a constant parameter. With the above

settings, our goal is to maximize the deviation of state estimations without being detected.

24

We call this attack a maximum False Data Injection (FDI) attack. As one realization of this

attack, the attacker can make the compromised estimation as large as possible.

To achieve this attack, in every time step 𝑡, the malicious measurements z′𝑖 (𝑡) is set as

follows:

z′𝑖 (𝑡) = x−𝑖 (𝑡) + _. (4.4)

This is a basic attack with a specific goal. In the following, we will analyze the attack

effects. Based on the analysis, we develop the second attack – generic FDI attack.

Since it has reached the steady state, K(𝑖) has converged to a constant. Then, in the

maximum FDI attack, according to eq. (3.6),(3.7), (4.1) and (4.4), we have

x𝑖 (𝑡) − x𝑖 (𝑡 − 1) = K𝑖 · _ (4.5)

Since K𝑖 · _ can be regarded as constant, x𝑖 (𝑡) will increase linearly. Therefore

x𝑖 (𝑡) = x𝑖 (𝑡0) + (𝑡 − 𝑡0) ·K𝑖 · _, (4.6)

where 𝑡0 is the starting time of the attack.

With this result, we can achieve a more general purpose attack – generic FDI attack: an

attacker usually has a specific goal, e.g., misguide a drone to a specific location. To achieve

such a goal, it may want to make a drone drift a little at a time, without being detected.

More specifically, in this attack, assume the attacker starts performing the attack at time 𝑡0.

Our goal is to make the state value x(𝑡0 + 𝑛) be a specific value b at time 𝑡0 + 𝑛, after 𝑛 time

cycles.

Following the previous analysis, we know that after 𝑛 time cycles, the compromised

position estimation will be in the range:

[x𝑖 (𝑡0) − 𝑛K𝑖_, x𝑖 (𝑡0) + 𝑛K𝑖_] . (4.7)

25

To set x𝑖 (𝑡0+𝑛) to be a specific value b at time 𝑡0+𝑛, a simple way is to divide b−x𝑖 (𝑡0)

into 𝑛 equal small values b−x𝑖 (𝑡0)
𝑛

and allocate it to each attack cycle. Based on the previous

analysis, to achieve the attack goal, we set the malicious measurement as:

z′𝑖 (𝑡) = x−𝑖 (𝑡) +
b − x𝑖 (𝑡0)
𝑛K𝑖

, (4.8)

for 𝑡 = 𝑡0+1, 𝑡0+2, . . . , 𝑡0+𝑛. We note that, using this method, an attack cannot be achieved

if the attack requires b to be outside the range [x𝑖 (𝑡0) − 𝑛K𝑖_, x𝑖 (𝑡0) + 𝑛K𝑖_].

If we would like to manipulate the 2D position estimation in any direction, we just need

to decompose the target position estimation b into North and East sub-components b (𝑁)

and b (𝐸), then apply the above generic FDI attack respectively. What calls for special

attention is that such b should not alert the bad data detector.

4.1.2 Attack with Coarse Manipulation of GPS

In the above attack schemes, we assume that we are able to manipulate the GPS data

precisely so as to achieve the desired attack objectives. However, such a requirement may

be too costly or unrealistic. Fortunately, it is still possible to perform the attacks even with

coarse manipulation of the GPS data. Though in practice, a noise is generally normally dis-

tributed, to simplify the analysis, here we assume that a desired value z′
𝑖
(𝑡) is always with a

noise which is uniformly distributed between [−𝑏, 𝑏], where 𝑏 is a constant parameter. We

acknowledge that this is a strong assumption, but here our goal is to introduce the general

idea of how to reduce the impact of GPS manipulation noise. We will investigate the attack

with coarse manipulation under normal distributed noise in the future. In addition, we still

require that the manipulation will not trigger the anomaly detector.

26

Generic FDI attack In our generic FDI attack, our goal is to set x𝑖 (𝑡0 + 𝑛) to be b at

time 𝑡0 + 𝑛. Since coarse manipulation has noise, we need to make compensations for

the "coarse" compromised estimation at the next time cycle. In particular, if the actual

malicious measurement at time cycle 𝑡0 + 1 is x−
𝑖
(𝑡0 + 1) + b−x𝑖 (𝑡0)

𝑛K𝑖
− r𝑡0+1(𝑖), where r𝑡0+1(𝑖)

is a random noise added to the desired measurement data, then the injected measurement

at time cycle 𝑡0 + 2 should be set to x−
𝑖
(𝑡0 + 2) + b−x𝑖 (𝑡0)

𝑛K𝑖
+ r𝑖 (𝑡0 + 1), which compensates

the noise r𝑖 (𝑡0 + 1) from the previous time cycle, but may bring another noise r𝑖 (𝑡0 + 2).

Similarly, the measurement at time cycle 𝑡0 + 3 will compensate the noise brought at cycle

𝑡0 + 2. Generally speaking, to perform the generic FDI attack under coarse manipulation,

the compromised measurement at time 𝑡 should fill up the gap caused by the noise in the

previous time cycle: z′𝑖 (𝑡) = x−
𝑖
(𝑡) + b−x𝑖 (𝑡0)

𝑛K𝑖
− r𝑖 (𝑡 − 1). In this way, the noise contained

in the estimation at time cycle 𝑡0 + 𝑛 will be at most 𝑏K𝑖. Note that the malicious value

at each time cycle cannot be set very large in order to avoid alerting the anomaly detector,

which means all values should be within [x−
𝑖
(𝑡) − _ + 𝑏, x−

𝑖
(𝑡) + _ − 𝑏] when attacking one

direction.

Maximum FDI attack For the maximum FDI attack with the noisy manipulation of

GPS data, we cannot directly apply the method outlined above, with which the magnitude

of injected value could be large enough to trigger the anomaly detector. To perform the

maximum FDI attack under noisy manipulation of GPS data, a straightforward way is to

set the malicious measurement z′𝑖 (𝑡) to be x−
𝑖
(𝑡) + _ − 𝑏 instead of x−

𝑖
(𝑡) + _. However,

the cost of noisy manipulation is that the magnitude of the compromised estimation will be

reduced.

27

4.1.3 Countermeasures

As discussed in the above, the anomaly detection algorithm in ArduPilot cannot detect

the proposed FDI attacks on the EKF-based 2D position estimation. Another advanced

detection method - chi-squared test, has been widely applied to defend against FDI attacks

on KF-based estimation. This type of detector may work well against the proposed FDI

attacks. However, it usually requires significant computational overheads and makes it

impractical to be applied in simple drone flight control systems. In this subsection, we

propose a novel detector that can effectively detect the proposed FDI attacks against EKF-

based 2D position estimation with low computational overheads, which can then prevent

the attacks on autopilot algorithms.

The new detector is designed based on the statistical characteristics among the innova-

tions in different time steps. In particular, we know that the innovation Δ𝑘 in time step k

follows a Gaussian distribution:

Δ𝑖 (𝑡) = z𝑖 (𝑡) − ℎ(x−𝑖 (𝑡)) ∼ 𝑁 (0,R𝑖,𝑖 (𝑡)), (4.9)

where R(𝑡) is the measurement covariance matrix (the innovation Δ(𝑡) under the FDI at-

tacks, however, usually does not follow this distribution). In addition, the innovations in

different time steps can be regarded as independent. Then by the Chebyshev’s Inequality,

for each dimension in Δ(𝑡), we have:

𝑃(
�����
∑𝑡
𝑗=1 Δ𝑖 (𝑗)
𝑡

����� < 𝜖) ≥ 1 − R𝑖,𝑖 (𝑡)
𝑡2 · 𝜖2 , (4.10)

for i=N, E (which corresponds to two dimensions of the innovation vector Δ(𝑡), respec-

tively). If we let 𝜖 be 𝜏𝑝𝑑
𝑡

, then eq. (4.10) becomes:

28

𝑃(
�����
∑𝑡
𝑗=1 Δ𝑖 (𝑗)
𝑡

����� < 𝜏𝑝𝑑

𝑡
) ≥ 1 − R𝑖,𝑖 (𝑡)

𝜏2
𝑝𝑑

, (4.11)

where 𝜏𝑝𝑑 is a threshold. As long as 𝜏𝑝𝑑 is large enough, 𝑃(
����∑𝑡𝑗=1 Δ𝑖 (𝑗)

𝑡

���� < 𝜏𝑝𝑑
𝑡
) ≈ 1. Based

on this observation, we let the proposed detector check whether the following statement is

true:

�����
∑𝑡
𝑗=1 Δ𝑖 (𝑗)
𝑡

����� < 𝜏𝑝𝑑

𝑡
. (4.12)

To implement this detector, in each time step in the estimation procedure, we need to

calculate an additional variable - the mean of the innovation Δ̄𝑘 as:

Δ̄𝑖 (𝑡) =

Δ𝑖 (1) if 𝑡 = 1;

Δ̄𝑖 (𝑡−1)∗(𝑡−1)+Δ𝑖 (𝑘)
𝑡

if 𝑡 ≥ 2.
(4.13)

In this implementation, the computational overhead increases very little.

In the following, we use the maximum FDI attack as a simple example to test the

effectiveness of the proposed detector. According to eq. (4.4), Δ(𝑗) = _ for 𝑗 = 1, 2,

Then at time step 𝑡, the proposed detector checks whether the following statement is true:

�����
∑𝑡
𝑗=1 Δ𝑖 (𝑗)
𝑡

����� = _ < 𝜏𝑝𝑑

𝑡
. (4.14)

In this case, when the time 𝑡 ≥ 𝜏𝑝𝑑
_

, the detector will be alerted.

4.2 Proposed Attacks for Altitude Estimation

In this section, we present our ideas for attacking three popular altitude estimation

methods -1): EKF-based altitude estimation; 2): altitude estimation based on accurate sen-

29

sor noise models; and 3): First-order Low-pass altitude estimation in drone navigation sys-

tems. We focus on designing general methods to compromise the drone altitude estimation,

by exploiting the weakness of common altitude estimation approaches.

4.2.1 Models

4.2.1.1 EKF-based altitude estimation Methods

In ArduPilot, the EKF-based altitude estimation has a similar model as the 2D position

estimation. Specifically, in EKF-based altitude estimation,

𝑓 (x(𝑡 − 1)) = x(𝑡 − 1),

ℎ(x−(𝑡)) = x−(𝑡).
(4.15)

For the anomaly detection algorithm, it checks if the following condition is true:

𝑖𝑛𝑛2 ≤ 𝑣𝑎𝑟𝑖𝑛𝑛 · 𝜏, (4.16)

Here the innovation 𝑖𝑛𝑛 = z(𝑡) − ℎ(x−(𝑡)). Similarly, we can consider 𝑣𝑎𝑟𝑖𝑛𝑛 as a constant

in a steady state. Then, eq. (4.16) can be simplified as the following:

|z(𝑡) − ℎ(x−(𝑡)) | ≤ _, (4.17)

where _ =
√
𝑣𝑎𝑟𝑖𝑛𝑛 · 𝜏 is a constant parameter.

Due to the similarities between the models for EKF-based 2D position and altitude

estimation , we can use the same attack schemes presented in Sec. 4.1 to quantitatively

control EKF-based altitude estimation. For details, please check Sec. 4.1.

30

4.2.1.2 Altitude Estimation based on Accurate Sensor Noise Models

In [76], the authors provide a novel direction for altitude estimation when the altitude

of a vehicle does not change dramatically, e.g., in a cruise control mode, or on a flat plane,

or on a gentle slope. One advantage of the proposed approach is that it improves estima-

tion accuracy and provides tighter confidence bounds from GPS and barometer sensors,

without the need for calibration. Their approach is based on the knowledge of relatively

accurate noise models of GPS and barometer readings. In particular, the noises of altitude

data from GPS and barometers have totally different characteristics: GPS readings usually

provide more accurate information on the absolute altitude, while barometer measurements

are more accurate on relative altitude changes. The GPS altitude measurement 𝑔 usually

follows a normal distribution: 𝑔 ∼ N(𝑎, 𝜎2
𝑔), where 𝑎 is the true value of altitude; while

the barometric altitude can be modeled as: 𝑏 ∼ N(𝑎 + Δ, 𝜎2
𝑏
), where Δ is the unknown

constant bias of barometer measurements. 𝜎2
𝑔 can be directly obtained from GPS readings,

while 𝜎2
𝑏

is not provided by the barometer. In addition, 𝜎2
𝑏

is much smaller than 𝜎2
𝑔 . The

details of this estimation method is presented in the following.

Assume all GPS and barometer measurements are sampled at fixed intervals. To esti-

mate the parameters of 𝑔, they use MLE, based on the last 𝑛 GPS samples. The sample

index is in a reserved order: 1 is the current time interval, such that we have a slide window

of size 𝑛 with the current interval as interval 1. The pooled variance and the sample mean

at time step 𝑖 are:

𝑠2𝑔 [𝑖] =
1
𝑛

𝑖∑︁
𝑗=𝑖−𝑛+1

𝜎2
𝑔 [𝑗], (4.18)

`𝑔 [𝑖] =
1
𝑛

𝑖∑︁
𝑗=𝑖−𝑛+1

𝑔[𝑗], (4.19)

where 𝑔[𝑗] is the 𝑗 th altitude sample, and 𝜎2
𝑔 [𝑗] is the 𝑗 th standard deviation sample. The

31

mean follows the normal distribution: `𝑔 [𝑖] ∼ N (𝑎,
𝑠2𝑔 [𝑖]
𝑛
).

Next, they estimate the parameters of 𝑏 (for barometer) based on the last 𝑚 barometer

samples. The sample mean and the sample variance (biased) are

`𝑏 [𝑖] =
1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

𝑏[𝑗], (4.20)

𝑠2𝑏 [𝑖] =
1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

(𝑏[𝑗] − `𝑏 [𝑖])2, (4.21)

where 𝑏[𝑗] is the 𝑗 th altitude sample. Here we assume𝑚 ≥ 𝑛, since barometer readings are

always available, but GPS readings may be not. The mean follows: `𝑏 [𝑖] ∼ N (𝑎+Δ,
𝑠2
𝑏
[𝑖]
𝑚
).

The bias Δ[𝑖] can be estimated as

Δ̂[𝑖] = `𝑏 [𝑖] − `𝑔 [𝑖] . (4.22)

Because Δ̂[𝑖] ∼ N (Δ, 𝑠
2
𝑏
[𝑖]
𝑚
+ 𝑠2𝑔 [𝑖]

𝑛
), we can get the estimation for sample 𝑖 as:

�̂�[𝑖] = 𝑏[𝑖] − Δ̂[𝑖], (4.23)

and

�̂�[𝑖] ∼ N (`𝑏 [𝑖] − Δ, 𝑠2𝑏 [𝑖] +
𝑠2
𝑏
[𝑖]
𝑚
+
𝑠2𝑔 [𝑖]
𝑛
). (4.24)

For Gaussian distributed variables, the tolerance interval is measured by the number of

standard deviations, 𝐷. The probability that a value is within a region around the mean with

a width of 2𝐷 standard deviations is 𝑒𝑟 𝑓 (𝐷√
2
), where 𝑒𝑟 𝑓 is the error function encountered

in integrating normal distributions. Since 𝑠2𝑔 [𝑖] is usually much greater than 𝑠2
𝑏
[𝑖], this

method shrinks the tolerance intervals, compared to the estimation based solely on GPS

32

data.

4.2.1.3 First-order Low-pass Filter Model for Altitude Estimation

In [70], the authors utilize a naive first-order low-pass filter to get a coarse altitude

estimation from barometer readings, since its noise is at a high frequency. In particular,

they use the following equation to estimate the altitude:

x(𝑡) = Gx(𝑡 − 1) + (1 −G)x𝑏 (𝑡), (4.25)

where x(𝑡) is the state, x𝑏 (𝑡) is the barometer reading, and G is the gain which is set to be

a constant as 0.9.

4.2.2 Countermeasures to EKF-based Altitude Estimation

As the attack methods for EKF-based altitude estimation are the same as the ones for

EKF-based 2D position estimation presented in Sec. 4.1.1, here we only discuss the corre-

sponding countermeasures.

As we showed before, the implemented anomaly detection algorithm in the ArduPilot

flight control system cannot detect the proposed FDI attacks on the EKF-based altitude es-

timation. In Sec. 4.1.3, we have designed a detector that can effectively detect the proposed

FDI attacks with low computational costs. In this subsection, we propose a novel detector

exclusively for EKF-based altitude estimation, which utilizes the characteristics of the two

sensors - GPS and barometers.

On ArduPilot, the flight control system usually estimates the altitude from either barom-

eter or GPS measurements. That is, only one of the two sensors is used for altitude esti-

mation. Then the adversaries only need to compromise the single sensor that accounts for

the altitude estimation. From the above analysis, we can see that the altitude estimation

33

will be far away from the true value, when under attack. That means, the compromised

estimation will also be far away from the measurement from the other sensor. Based on

this observation, we design this detector.

Without loss of generality, assume the flight control system choose barometer read-

ings for the KF-based altitude estimation. The system should further check whether the

following condition is true:

|z𝑏𝑎𝑟𝑜 (𝑡) − z𝐺𝑃𝑆 (𝑡) | ≤ 𝜏 ·
√︃
𝜎2
𝑔 + 𝜎2

𝑏
+ |𝜖 | , (4.26)

where z𝑏𝑎𝑟𝑜 (𝑡) and z𝐺𝑃𝑆 (𝑡) are barometer and GPS measurements, respectively; |𝜖 | is the

upbound of the absolute value of the barometric reading bias; 𝜏 is a pre-set threshold.

𝜎2
𝑏

and 𝜎2
𝑔 are the variances of barometer and GPS readings, respectively. 𝜎2

𝑔 can be

directly obtained from GPS inputs, and 𝜎2
𝑏

can be estimated using the method described in

Sec. 4.2.1.2. |𝜖 | should be estimated beforehand or set empirically. The detector is designed

based on the following fact [76]:

z𝑏𝑎𝑟𝑜 (𝑡) ∼ N (𝑎 + Δ, 𝜎2
𝑏);

z𝐺𝑃𝑆 (𝑡) ∼ N (𝑎, 𝜎2
𝑔).

In addition, z𝑏𝑎𝑟𝑜 (𝑡) and z𝐺𝑃𝑆 (𝑡) are independent. Therefore,

z𝑏𝑎𝑟𝑜 (𝑡) − z𝐺𝑃𝑆 (𝑡) ∼ N (Δ, 𝜎2
𝑔 + 𝜎2

𝑏). (4.27)

34

4.2.3 Attacking Accurate Sensor Noise Models based Altitude Estima-

tion

In this method, the authors use MLE to estimate the altitude �̂�[𝑖]. A credible estimation

of �̂�[𝑖] depends on the accurate estimations of other parameters. Base on this observation,

we proposed the following attacks.

4.2.3.1 Attacks by Modifying Barometer Readings

In this attack, we assume that we are able to manipulate barometric readings. We are

presenting the theoretical results under this assumption in the following. Specifically, we

first use an example to show that altitude estimation can be influenced by the manipula-

tion of barometer readings. Then we investigate the optimal attack strategy under certain

assumptions.

Depending on our ability to manipulate the barometer, many different bad data injec-

tions can be performed. For example, a straightforward attack is as follows. We let the

malicious barometer reading samples as:

𝑏′[𝑖] = 𝑏[𝑖] + 𝑖 · 𝑐, (4.28)

where 𝑖 · 𝑐 is the injected value on the 𝑖th sample, and 𝑐 is a constant. Then

`′𝑏 [𝑖] =
1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

𝑏′[𝑗],

=
1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

(𝑏[𝑗] + 𝑗 · 𝑐),

=
1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

𝑏[𝑗] + 1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

𝑗 · 𝑐,

=`𝑏 [𝑖] +
2𝑖 − 𝑚 + 1

2
· 𝑐,

(4.29)

35

Δ′[𝑖] will be estimated as

Δ̂′[𝑖] =`′𝑏 [𝑖] − `𝑔 [𝑖],

=`𝑏 [𝑖] +
2𝑖 − 𝑚 + 1

2
· 𝑐 − `𝑔 [𝑖],

=Δ̂[𝑖] + 2𝑖 − 𝑚 + 1
2

· 𝑐.

(4.30)

Then we can get the compromised estimation for sample 𝑖 as:

�̂�′[𝑖] =𝑏′[𝑖] − Δ̂′[𝑖],

=𝑏[𝑖] + 𝑖 · 𝑐 − Δ̂ − 2𝑖 − 𝑚 + 1
2

· 𝑐,

=�̂�[𝑖] + 𝑚 − 1
2
· 𝑐,

(4.31)

which means a constant bias will be added to the estimated altitude after the proposed

attack. The amplitude of the bias is proportional to 𝑚 − 1 and 𝑐.

The above example shows that the altitude estimation can be seriously affected by mod-

ifying barometer data. In the following, we will explore how to maximize the attack conse-

quences. Assume that the altitude estimation process will end at time step 𝑘 . At time step

𝑖 ∈ {1, 2, 3, . . . , 𝑘}, the attackers can set the malicious barometer reading 𝑏′[𝑖] = 𝑏[𝑖]+𝑐[𝑖],

where 𝑐[𝑖] ∈ [−𝜏𝑏𝑎𝑟𝑜, 𝜏𝑏𝑎𝑟𝑜] is called the attack injection. In addition, we choose the MSE

to measure the attack consequences. That is, our goal is to maximize the following term:

𝐸 (
𝑘∑︁
𝑖=𝑚

(�̂�′[𝑖] − 𝑎)2). (4.32)

Now, we can first rewrite eq. (4.32) as:

36

𝐸 (
𝑘∑︁
𝑖=𝑚

(�̂�′[𝑖] − 𝑎)2) =𝐸 (
𝑘∑︁
𝑖=𝑚

(𝑏[𝑖] + 𝑐[𝑖] − Δ̂′[𝑖] − 𝑎)2),

=𝐸 (
𝑘∑︁
𝑖=𝑚

(𝑏[𝑖] + 𝑐[𝑖] − (`′𝑏 [𝑖] − `𝑔 [𝑖]) − 𝑎)
2),

=𝐸 (
𝑘∑︁
𝑖=𝑚

(𝑏[𝑖] + `𝑔 [𝑖] − 𝑎 + 𝑐[𝑖]−

1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

(𝑏[𝑗] + 𝑐[𝑗]))2),

(4.33)

In eq. (4.33), 𝑏[𝑖], `𝑔 [𝑖] and 𝑎 are given, then the only term we can control is 𝑐[𝑖] ∈

[−𝜏𝑏𝑎𝑟𝑜, 𝜏𝑏𝑎𝑟𝑜]. Then the optimal attack injection sequences are:

argmax
𝑐[1],𝑐[2],...,𝑐[𝑘]∈[−𝜏𝑏𝑎𝑟𝑜,𝜏𝑏𝑎𝑟𝑜]

𝑓 (𝑥), (4.34)

where 𝑓 (𝑥) = 𝐸 (∑𝑘
𝑖=𝑚 (𝑏[𝑖] + `𝑔 [𝑖] − 𝑎 + 𝑐[𝑖] − 1

𝑚

∑𝑖
𝑗=𝑖−𝑚+1(𝑏[𝑗] + 𝑐[𝑗]))2). Eq. (4.34)

can be further simplified as:

argmax
𝑐[1],𝑐[2],...,𝑐[𝑘]∈[−𝜏𝑏𝑎𝑟𝑜,𝜏𝑏𝑎𝑟𝑜]

𝑘∑︁
𝑖=𝑚

©«𝑐[𝑖] − 1
𝑚

𝑖∑︁
𝑗=𝑖−𝑚+1

𝑐[𝑖]ª®¬
2

. (4.35)

How to solve eq. (4.35) will be our future work.

4.2.3.2 Attacks by Blocking GPS

Unlike a barometer, GPS signals are weak and may be easily affected. If we disable the

GPS readings in most of the sample time, the number of valid GPS samples will be very

small. Since the altitude estimation is obtained by

�̂�[𝑖] ∼ N (`𝑏 [𝑖] − Δ, 𝑠2𝑏 [𝑖] +
𝑠2
𝑏
[𝑖]
𝑚
+
𝑠2𝑔 [𝑖]
𝑛
). (4.36)

37

a decrease of 𝑛 will result in an increase of 𝑠2
𝑏
[𝑖] + 𝑠2

𝑏
[𝑖]
𝑚
+ 𝑠2𝑔 [𝑖]

𝑛
, which will expand the

tolerance interval of �̂�[𝑖].

4.2.4 First-order Low-pass Filter

This method uses a naive first-order low-pass filter to estimate the altitude, which can be

easily attacked: since the gain for the barometer readings is non-negligible, we can simply

inject values on the barometer readings, which will influence the accuracy of the estimation

significantly. In particular, since

x(𝑡) = Gx(𝑡 − 1) + (1 −G)x𝑏 (𝑡). (4.37)

Then
x(𝑡) = Gx(𝑡 − 1) + (1 −G)x𝑏 (𝑡),

= G2x(𝑡 − 2) + (1 −G)x𝑏 (𝑡) +G(1 −G)x𝑏 (𝑡 − 1),

. . .

≈ (1 −G) ·
𝑡∑︁
𝑙=1

G𝑡−𝑙x𝑏 (𝑙).

(4.38)

Now let the malicious barometer readings x𝑏′ (𝑡) be

x𝑏
′ (𝑡) = x𝑏 (𝑡) + c, (4.39)

38

then

x
′ (𝑡) = Gx

′ (𝑡 − 1) + (1 −G)x𝑏′ (𝑡),

= Gx
′ (𝑡 − 1) + (1 −G) (x𝑏 (𝑡) + c),

= G2x
′ (𝑡 − 2) + (1 −G) (x𝑏 (𝑡) + c) +G(1 −G) (x𝑏 (𝑡 − 1) + c),

. . .

≈ (1 −G) ·
𝑡∑︁
𝑙=1

G𝑡−𝑙x𝑏𝑙 + c,

= x(𝑡) + c,

(4.40)

which means a constant injection on the barometer reading over time will result in the same

injection on the altitude estimation.

4.2.5 Performance Evaluation for Altitude Estimation

In this section, we use simulations of real-world altitude estimation algorithms to eval-

uate the proposed attacks on EKF-based and sensor-model-based altitude estimation meth-

ods.

4.2.5.1 Attacks on EKF-based Altitude Estimation

Simulation Settings The simulations are based on the altitude estimation algorithm of

the ArduPilot project [55]. We mainly compare the altitude estimations before and after

the proposed attacks.

Our simulations are performed on TestLog3 data given in [55]. In the experiments,

without loss of generality, we perform the maximum FDI attack to make the attack effects

more legible. The default threshold 𝜏 in the ArduPilot code is pre-set to be 5. In addition,

all the sensors remain operational except the airspeed module, which is disabled manually

39

time (sec)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

100

200

300

A
lt
it
u
d
e
 (

m
) Estimation

Reference

Figure 4.1: Altitude estimation before attack.time (sec)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

1

2

3

A
lt
it
u
d
e
 (

m
)

 10
5

Estimation

Reference

Figure 4.2: Altitude estimation after attack.

to show the attack effects.

In this simulation, we force the flight control system to perform altitude estimation at

each time interval. (Under default settings, the estimation may not proceed at certain time

steps if some measurements are missing.) In the simulations, we performed the attacks

through the entire estimation process.

Simulation Results Fig. 4.1 and Fig. 4.2 depict the altitude estimations before and after

the maximum FDI attack, respectively. The x-axis shows the simulation time and the y-axis

shows the actual altitude and the altitude estimation (Note that the scales of the two y-axes

in Fig. 4.1 and Fig. 4.2 are very different). In the figures, the blue line shows the estimations

of altitude while the red line represents the actual values. In Fig. 4.1, without attacks, two

lines mostly overlap. However, in Fig. 4.2, with the attacks, the estimation of altitude

surges. In addition, the compromised estimations increase almost linearly. Furthermore,

we can also validate the effectiveness of our attack from the altitude innovation data. From

Fig. 4.3 and Fig. 4.4, we can see that the innovation of the altitude remains constant during

the entire estimation process when under attack, which is as expected.

40

time (sec)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-10

-5

0

5

10

a
lt
it
u
d
e
 (

m
)

Figure 4.3: Innovation before attack.time (sec)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

10

20

30

a
lt
it
u
d
e
 (

m
)

Figure 4.4: Innovation after attack.

4.2.5.2 Attacks on Sensor-model-based Altitude Estimation

Simulation Settings In this simulation, we evaluate the attack under the manipulation of

barometer readings. We mainly focus on the results of the attack described in Sec. 4.2.3.1.

All the test data are generated in MATLAB. In particular, there are 50 GPS and barometer

samples that are available for altitude estimation. We assume 𝑚 = 𝑛 = 5, i.e., all the

parameters are estimated based on the last 5 samples. The drone is set to keep its altitude

at 100 𝑚 at all time. The GPS altitude measurement 𝑔 follows a normal distribution: 𝑔 ∼

N(100, 102); and the barometer readings follow: 𝑏 ∼ N(110, 0.52), with a bias of 10 𝑚.

In the attack, we let the adversaries modify the barometer samples as:

𝑏′[𝑖] = 𝑏[𝑖] + 𝑖 · 5. (4.41)

Simulation Results Figure 4.5 illustrates the altitude estimations before and after the

attack. We find that there are non-negligible constant differences between the altitude esti-

mations before and after the attack, as expected.

41

5 10 15 20 25 30 35 40 45 50
The ith estimation record

90

95

100

105

110

115

120

A
lti

tu
de

 (
m

)

Sensor-model-based Altitude Estimation Before and After Attack

Reference
Before Attack
After Attack

Figure 4.5: The altitude estimations before and after the attack (Sensor-model-based Alti-
tude Estimation).

4.3 Proposed Attacks for Magnetic State Estimation

In this section we propose two FDI attacks - maximum FDI attack and generic FDI

attack against EKF-based magnetic state estimation, just as the ones against 2D position

estimation. In the attack schemes, we assume that we can access real-time EKF-based

estimated state and several related parameters for theoretical analysis. The proposed attacks

have great impacts on rotation motions (roll, yaw, pitch), which may result in significant

consequences on the drone navigation, stability, and power consumption, among others,

and could eventually jeopardize the flight mission of the drone.

4.3.1 EKF-based magnetic estimation Methods

In the ArduPilot EKF model, x is a 24-state vector. gyro bias offsets (X, Y, Z), gyro

scale factors (X, Y, Z), Z accelerator bias, earth magnetic field (North, East, Down), body

magnetic field (X, Y, Z), and wind velocity (North, East). Here we focus on the magnetic

states, where x16, x17, x18 are earth magnetic field (North, East, Down): 𝑀𝑎𝑔𝑁 , 𝑀𝑎𝑔𝐸 ,

𝑀𝑎𝑔𝐷, and x19, x20, x21 are biases of body magnetic field: 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 , 𝑀𝑎𝑔𝑍 . Let

42

x𝑖: 𝑗 represent the entries in vector x from index 𝑖 to index 𝑗 , then x0:3, which defines the

rotation quaternion q = x0 + x1i + x2j + x3k, represents the rotations of a drone. Here our

attacks only focus on x19, x20, x21 - 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 , 𝑀𝑎𝑔𝑍 . In the next, we will use the

term x and x19:21 interchangeably.

For x19, x20, x21, 𝑓 (x) = x and F = I (identity matrix). Then the Prediction step

becomes

Prediction:
x−(𝑡) = x(𝑡 − 1),

P−(𝑡) = P(𝑡 − 1) +Q(𝑡 − 1).
(4.42)

In addition, ℎ(x−(𝑡)) is defined as follows:

ℎ(x−𝑘) = 𝑇𝑛𝑏 ∗ x−16:18 + x−19:21, (4.43)

where the Tnb matrix converts the earth fixed magnetic field in the NED coordinates to

the XYZ body coordinates after the rotation, and has the following form:

©«
x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 + x0x3) 2(x1x3 − x0x2)

2(x1x2 − x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 + x0x1)

2(x1x3 + x0x2) 2(x2x3 − x0x1) x2
0 − x2

1 − x2
2 + x2

3

ª®®®®®¬
(4.44)

The bad data detector for magnetic states checks if the following condition is true:

𝑖𝑛𝑛2
𝑖 ≤ 𝑣𝑎𝑟𝑖𝑛𝑛𝑖 · 𝜏, (4.45)

for 𝑖 = 1, 2, 3 (which represents three dimensions of measurement data of a magnetometer).

Here the 𝑖𝑛𝑛𝑖 is defined as follows:

𝑖𝑛𝑛𝑖 = z𝑖 (𝑡) − ℎ(x−𝑖 (𝑡)), (4.46)

43

Similarly, we can consider 𝑣𝑎𝑟𝑖𝑛𝑛
𝑖

as a constant in a steady state. Then Eq. (4.45)

becomes

��z𝑖 (𝑡) − ℎ(x−𝑖 (𝑡))�� ≤ _𝑖, (4.47)

where

_𝑖 =

√︃
𝑣𝑎𝑟𝑖𝑛𝑛

𝑖
· 𝜏, (4.48)

for 𝑖 = 1, 2, 3.

4.3.2 Attack Methods

The attack methods for magnetic states are the same as the ones for 2D position esti-

mation and altitude estimation. In particular, for maximum FDI attack, at every time cycle

𝑘 , the malicious measurement z′𝑘 should be set as

z′𝑖 (𝑡) = ℎ(x−𝑖 (𝑡)) + _𝑖 . (4.49)

where _𝑖 is defined in eq. 4.48. Then in the maximum FDI attack, according to Eqs. (3.10),

(4.42) and (4.49), we have

x19:21(𝑡) = x19:21(𝑡 − 1) +

©«
K19(𝑡)_1

K20(𝑡)_2

K21(𝑡)_3

ª®®®®®¬
, (4.50)

which means that the differences between two adjacent estimations of 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌

and 𝑀𝑎𝑔𝑍 is

©«
K19(𝑡)_1

K20(𝑡)_2

K21(𝑡)_3

ª®®®®®¬
. Since we know that K19:21(𝑡) and

©«
_1

_2

_3

ª®®®®®¬
are roughly constants, it

is expected that the estimation of x19:21(𝑡) will increase linearly after a short time. In the

44

following, we just simplify the notation x19:21(𝑡) as x(𝑡), and

©«
K19(𝑡)_1

K20(𝑡)_2

K21(𝑡)_3

ª®®®®®¬
as [K_].

Similarly, the linearity of the maximum FDI attack results accordingly inspires the

generic FDI attack. To set x𝑖 (𝑡0 + 𝑛) to be the specific value b at time 𝑡0 + 𝑛, a simple

way is to divide b − x𝑖 (𝑡0) into 𝑛 equal small values b−x𝑖 (𝑡0)
𝑛

and allocate this value to each

attack cycle. In particular, if b ∈ [x𝑖 (𝑡0) − 𝑛[K_]𝑖, x𝑖 (𝑡0) + 𝑛[K_]𝑖], we set the malicious

measurement as:

z′𝑖 (𝑡) = ℎ(x−𝑖 (𝑡)) +
b − x𝑖 (𝑡0)
𝑛K𝑖

, (4.51)

for 𝑡 = 𝑡0+1, 𝑡0+2, . . . , 𝑡0+𝑛. We note that, using this method, an attack cannot be achieved

if the attack requires b to be outside the range [x𝑖 (𝑡0) − 𝑛[K_]𝑖, x𝑖 (𝑡0) + 𝑛[K_]𝑖].

4.3.3 Realistic Attack Scenarios

FDI attacks on magnetic state estimation will greatly affect the navigation system of a

drone. A drone under these FDI attacks may experience rapid and random rotations. These

rotations may cause significant consequences in terms of attacking real drones. We propose

two scenarios as examples to examine the consequences of the proposed attacks on drones:

• Scenario 1: A drone is going to take high-quality photos and videos at the restricted

area, which requires a high level of stability.

• Scenario 2: A drone is scheduled for a relatively long mission, which is limited by

its battery life. However, frequent and unnecessary rotations will quickly reduce the

battery life.

A good criterion to measure the rotation of drones is the 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data. For

Scenario 1, we measure the stability of drone according to the variances and accelerations

45

of the 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data. For Scenario 2, we would like to estimate the power

consumption of the drone in terms of the following aspects:

• Sum of rotation angles: We will calculate the total rotation angles of the drone in

terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤, which is assumed to be proportionally related to the

power consumption;

• Total number of switching times: A switch event occurs when the values of 𝑟𝑜𝑙𝑙,

𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 switch from a negative value to a positive value (or from positive

to negative). In general, a higher switching frequency will result in faster power

consumption.

We will evaluate the effects of FDI attacks in the two scenarios in Section 4.3.4.

4.3.4 Simulation Studies for Magnetic State Estimation

4.3.4.1 Simulation Settings

In this section we evaluate the proposed FDI attacks through simulations based on the

Matlab code used to derive the C++ code of the EKF-based state estimation algorithm of

the ArduPilot project [55]. We are mainly interested in the attack results on the estima-

tion of magnetometer data as well as the attack effects in the two scenarios described in

Section 4.3.3.

Our simulations are mainly performed on TestLog3 data given in the Matlab code.

In all experiments, without loss of generality, we simulated the maximum FDI attack to

evaluate the effectiveness of the attack scheme. In particular, in the first experiment in

Section 4.3.4.2, we compare the differences between the original and compromised esti-

mations of 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 and 𝑀𝑎𝑔𝑍 . In the second experiment in Section 4.3.4.3, we

evaluate the impact of Maximum FDI attacks on the 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data of drone.

46

Then in Section 4.3.4.4, we use the 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data to measure the stability and

power consumption in the two attack scenarios.

The default threshold 𝜏 in the ArduPilot Matlab code is pre-set to be 52. However, in

simulations for attack scenarios 1 and 2, even though we can get meaningful attack results

with 𝜏 = 52, it cannot be easily seen from the figure. To make the attack effects more

legible, we change the threshold 𝜏 into 502 for attack scenarios 1 and 2, which will result

in a much larger magnitude of injection value on the magnetometer data. Note that in our

simulations, the airspeed module is disabled. All the other sensors, unless otherwise stated,

function correctly. In addition, the wind velocity is set to be 0. For all estimation processes,

they start from alignTime around 200s, and will end at a pre-set time—approximately

1525s. The attacks are performed through the whole estimation processes.

4.3.4.2 Estimation of Magnetometer Data

Figs.4.6a and 4.6b show the estimations for 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 and 𝑀𝑎𝑔𝑍 before and after

the maximum FDI attack, respectively. From the figure, we can see that compared to

the original estimation, the compromised magnetometer data increased significantly (from

several hundred miligauss (mG) to around 5000 mG). In addition, it is easy to see that the

compromised estimations of 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 and 𝑀𝑎𝑔𝑍 increase linearly as expected.

4.3.4.3 Estimations of 𝑅𝑜𝑙𝑙, 𝑃𝑖𝑡𝑐ℎ and 𝑌𝑎𝑤

Fig.4.7 shows the influence of our FDI attack on the 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤 of drones.

From Fig.4.7b we can easily see that compromised magnetometer data caused by the attack

can result in different estimations of rotation motions.

47

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-190

-185

-180

-175

X
 F

lu
x

(m
ga

us
s)

XYZ Magnetic Field

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

20

40
Y

 F
lu

x
(m

ga
us

s)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

110

120

130

140

Z
 F

lu
x

(m
ga

us
s)

(a) The original estimations for 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 , and 𝑀𝑎𝑔𝑍 .

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-5000

0

5000

X
 F

lu
x

(m
ga

us
s)

XYZ Magnetic Field

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

2000

4000

6000

Y
 F

lu
x

(m
ga

us
s)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

2000

4000

6000

Z
 F

lu
x

(m
ga

us
s)

(b) The compromised estimations for 𝑀𝑎𝑔𝑋 , 𝑀𝑎𝑔𝑌 , and
𝑀𝑎𝑔𝑍 .

Figure 4.6: Attack results in terms of estimations of magnetometer data.

48

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

ro
ll

(d
eg

)

Euler Angle Estimates

Estimations
References

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

pi
tc

h
(d

eg
)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

ya
w

 (
de

g)

(a) The original estimations for 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤.

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

ro
ll

(d
eg

)

Euler Angle Estimates

Estimations
References

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

pi
tc

h
(d

eg
)

0 200 400 600 800 1000 1200 1400 1600

time (sec)

-200

0

200

ya
w

 (
de

g)

(b) The compromised estimations for 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤.

Figure 4.7: Attack results in terms of estimations of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤.

49

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

50

100

150

200

ro
ll

Amplifications of Variance Averages of Euler Angle Estimates

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

50

100

150

pi
tc

h

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

50

100

150

200

ya
w

Figure 4.8: The amplification of variances in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 after attack.

4.3.4.4 Attack Results in Realistic Scenarios

In this subsection we evaluate the effects of our attack scheme in the two realistic sce-

narios outlined in Section 4.3.3.

For Scenario 1, we evaluate the stability of drones under our FDI attacks using the

criterion of variances of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data. Fig. 4.8 shows the amplification ratios

of variance averages in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 data after attack. From the figure

we can see that the variances in all three axes has increased by approximately 100 times in

the end, which shows that the attack can destabilize the drone intensely. Similarly, Fig. 4.9

displays the total rotation angles in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤. From the figure we can

see that the drones get much more rotations in all three axes after an attack, which suggests

that our attack schemes will drain power from the battery of drone much faster.

We also provide another criterion to measure the stability and power consumption,

which considers the number of switching in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 (see Sec. 4.3.3).

Fig. 4.10 shows that the number of switching of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤 all experience a surge

after an attack, which again confirms the effectiveness of our attack schemes on destabiliz-

ing a drone and consuming drone battery power.

50

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

2

4

ro
ll-

su
m

 (
de

g)

�106 Total Euler Angles

Before attack
After attack

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

10

20

pi
tc

h-
su

m
 (

de
g)

�105

0 200 400 600 800 1000 1200 1400 1600

time (sec)

0

5

10

ya
w

-s
um

 (
de

g)

�106

Figure 4.9: The total rotation angles in terms of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 before and after
attack.

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

2000

4000

6000

ro
ll

Total Switch times in terms of Roll, Pitch, and Yaw

Before attack
After attack

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

2000

4000

6000

pi
tc

h

0 200 400 600 800 1000 1200 1400 1600
time (sec)

0

2000

4000

6000

ya
w

Figure 4.10: The number of switching times of 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤 before and after
attack.

51

4.4 Conclusion

In this chapter, we have carefully investigated popular state estimation algorithms for

2D position, altitude, and magnetic states, and identified potential attacks to compromise

estimation of these states. We have proposed a maximum FDI attack and a generic FDI

attack on the EKF-based 2D position, altitude, and magnetic state estimation. For altitude,

we have also proposed two attacks on the model-based estimation. We have evaluated the

proposed attacks with simulations. The simulation results have shown that the proposed

attacks can significantly affect the state estimation and cause serious control issues for

drones. Note that the attack schemes proposed in this chapter are only theoretical. In actual

flight, to achieve the same goal, the procedure of the attacks could be different.

52

CHAPTER 5
MANIPULATION OF DRONES’ PHYSICAL POSITION

With the help of GPS spoofing techniques and FDI attacks against EKF-based state

estimation presented in Chapter 4, in this chapter we propose two third-level attack schemes

- basic Drone Position Manipulation (bDPM) and Practical Measurement-based Drone

Position Manipulation (mDPM), which are able to accurately manipulate a drone’s physical

position and guide it to a desired location. For both schemes, we first introduce several

important propositions, which are the theoretical foundations of the proposed attacks. Then

we presents the attack algorithms in detail. We also analyze the feasible ranges of redirected

destination under attack. In addition, we validate the DPM on ArduPilot, arguably the most

popular opensource flight control system, to show its effectiveness in practical settings.

5.1 Basic DPM (bDPM) Attack

In this section, we will introduce the basic Drone Position Manipulation (bDPM) at-

tack. To achieve the attack goal, we need to craft well-designed spoofed GPS inputs to

the flight control algorithms based on the redirected destination and other parameters. For

bDPM, it directly uses the estimated position states of a drone to craft spoofed GPS posi-

tions. Although obtaining EKF states is impractical on a real system, this method helps us

better understand the proposed attack on a complicated control system and build a baseline

analysis model of the attack. To further develop a practical solution, in the next section, we

will introduce the measurement-based Drone Position Manipulation (mDPM) attack that

uses measured drone positions to craft spoofed GPS positions.

In the following, we will present the bDPM attack and then illustrate its capability by

formally analyzing its maximum feasible redirection range for a given original destination.

53

5.1.1 Theoretical Foundation of bDPM

Let us first present the theoretical foundation of bDPM, consisting of three important

propositions.

Notations. We first define related notations for our discussion, as shown in Table 5.1.

Because we focus on the drone position in a horizontal 2D plane, we consider the drone’s

real velocity as a 2D vector 𝑉𝑟 = (𝑉𝑟
𝑁
, 𝑉𝑟

𝐸
), with a sub-component to the North, 𝑉𝑟

𝑁
me-

ter/second (m/s), and a sub-component to the East, 𝑉𝑟
𝐸

m/s. For example, when a drone

moves at 4 m/s to the Northeast, we observe a velocity vector 𝑉𝑟 as (2.81, 2.81) m/s. In

bDPM, for each GPS cycle, we build the spoofed GPS position inputs by first obtaining

the estimated position state and then adding an injection to it with an injection vector of

𝐼 = (𝐼𝑁 , 𝐼𝐸) m/s ((0.1 · 𝐼𝑁 , 0.1 · 𝐼𝐸) m/GPS cycle), which has a sub-component to the

North 𝐼𝑁 , and a sub-component to the East 𝐼𝐸 . Now when applying 𝐼 = (0, 10) m/s ((0, 1)

m/GPS cycle) to a drone flying to the Northeast, i.e., injecting 0 m/s (0 m/GPS cycle) to

the GPS position in the North direction and 10 m/s (1 m/GPS cycle) to the GPS position in

the East, we observe that the drone’s real position drifts away from its position estimation

(perceived position) at a stable velocity at (0, -0.44) m/s, i.e., the drone’s real position drifts

to the West compared to its position estimation at 0.44 m/s as the result of the injections.

We call this velocity as the drift velocity 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

. With these notations, we introduce the

following propositions:

Table 5.1: Notations in the bDPM. Each notation may have a subscript 𝑁 or 𝐸 representing
its North or East component.

𝐾 (𝑡) Kalman gain
𝐶𝑎 Attack coefficient
𝑉𝑟 Real drone velocity when under attack
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

Drone drift velocity
𝑉𝐸𝐾𝐹 Drone velocity estimation
𝐼 (𝑡) Position injection rate at cycle t

𝑃𝐸𝐾𝐹 (𝑡) Drone position estimation at cycle 𝑡
𝑃𝐺𝑃𝑆 (𝑡) GPS position input at cycle 𝑡

54

Proposition 1. Drift velocity 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

is proportional to injection rate 𝐼 under a bDPM attack

with an attack coefficient 𝐶𝑎 defined as follows:

𝐶𝑎 = (𝐶𝑎𝑁 , 𝐶
𝑎
𝐸) = (

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

𝐼𝑁
,
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

𝐼𝐸
) (5.1)

for 𝐼𝑁 ≠ 0 and 𝐼𝐸 ≠ 0. If 𝐼𝑁 (or 𝐼𝐸) == 0, 𝐶𝑎
𝑁

(or 𝐶𝑎
𝐸
) = 0.

Proposition 2. For attacks on the same drone in the same environment, 𝐶𝑎 remains un-

changed for any proper injection size in any direction.

Propositions 1 and 2 are corollaries of the results in Chapter 4. In the bDPM, we

choose the injection rate 𝐼 as a fixed value in each GPS cycle, which results in nearly fixed

innovations (the differences between the crafted GPS position input and the drone position

estimation) in each EKF position estimation cycle, denoted as Δ (because 𝐼 ≈ Δ). Since

the Kalman gain 𝐾 (𝑡) usually quickly becomes a constant in a steady state, the deviation of

position estimation 𝑉𝐸𝐾𝐹
𝑑𝑟𝑖 𝑓 𝑡

= 𝐾 (𝑡) · Δ becomes constant. Because the deviation of position

estimation will be corrected in each cycle, i.e., the position estimation will move towards

the flight track by −𝑉𝐸𝐾𝐹
𝑑𝑟𝑖 𝑓 𝑡

to correct this deviation in each cycle, the real position will also

move by 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

= −𝑉𝐸𝐾𝐹
𝑑𝑟𝑖 𝑓 𝑡

in each cycle, which is a constant as well. Therefore, 𝐶𝑎 =

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

𝐼
≈
−𝑉𝐸𝐾𝐹

𝑑𝑟𝑖 𝑓 𝑡

Δ
= −𝐾 (𝑡), which can be regarded as the same constant for attacks on the

same drone in the same environment.

We have further validated these propositions with ArduPilot SITL simulations. Fig-

ure 5.1 shows the relationship between the injection rate and the drift velocity observed

during bDPM attacks on SITL. With the injection rate (x-axis) increasing from 4 m/s to

40 m/s, we observe that the drift velocity (y-axis) decreases proportionally to the injection

rate with coefficient 𝐶𝑎. Furthermore, we have validated that Propositions 1 and 2 hold

for injections in any direction in the 2D plane, when we apply a feasible constant injection

rate. We measured that 𝐶𝑎
𝐸
≈ −0.0455 and 𝐶𝑎

𝑁
≈ −0.0491 in these simulations.

55

Proposition 3. When we apply a 2D injection rate 𝐼 = (𝐼𝑁 , 𝐼𝐸), the effect is equivalent to

the combined effects of attacking only in the North direction with 𝐼1 = (𝐼𝑁 , 0) and attacking

only the East direction with 𝐼2 = (0, 𝐼𝐸).

Proposition 3 (Decomposition Proposition) holds because the drone state estimation

algorithms usually decompose the 3D positions and velocities into North, East, and Down

sub-components [3]. Based on Propositions 2 and 3, we can simplify the analysis of the

attack result under an injection rate 𝐼 in any direction in the 2D plane, by decomposing

the injection rate 𝐼 = (𝐼𝑁 , 𝐼𝐸) into 𝐼1 = (𝐼𝑁 , 0) and 𝐼2 = (0, 𝐼𝐸). Using measured attack

coefficients 𝐶𝑎
𝐸

and 𝐶𝑎
𝑁

, we can find the drift velocities of the drone in the North and East

directions: 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

= 𝐼𝑁 ·𝐶𝑎𝑁 and 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

= 𝐼𝐸 ·𝐶𝑎𝐸 ; then we can find the attack result with

the injection rate 𝐼 by combining the drift velocities in the two directions.

5.1.2 bDPM Attack

We illustrate how the bDPM attack redirects a drone to a specific redirected destination

in a 2D plane, as shown in Figure 5.2. Given the redirected destination 𝑅 = (𝑅𝑁 , 𝑅𝐸),

where we would like to guide the drone to reach, we define a redirection vector DR =

(𝐷𝑅𝑁 , 𝐷𝑅𝐸) as ((𝑅𝑁 , 𝑅𝐸) − (𝐷𝑁 , 𝐷𝐸)), the vector difference between the redirected des-

tination (𝑅𝑁 , 𝑅𝐸) and the original destination (𝐷𝑁 , 𝐷𝐸). Assume we perform a FDI attack

on a drone’s position for 𝑛 cycles to achieve DR; we evenly distribute the required injec-

tion in each cycle, i.e., in cycle 𝑡, we apply an injection 𝐼 (𝑡) = (𝐷𝑅𝑁
𝑛·𝐶𝑎

𝑁

,
𝐷𝑅𝐸
𝑛·𝐶𝑎

𝐸

) on the current

position state 𝑃(𝑡) to build its position input 𝑃′(𝑡), 0 ≤ 𝑡 < 𝑛. As a result, the naviga-

tion algorithm observes that the drone had drifted away from the track, and it will make

an adjustment to move it back to the track. After the adjustment, the system considers the

drone has returned to the track at 𝑃(𝑡 + 1), but its real position is actually at 𝑃𝑟 (𝑡 + 1). In

this example, we only need 5 injection cycles to achieve the required redirection; after 5

56

Figure 5.1: Relationship between the drift velocity and the injection rate. As the injec-
tion rate increases, we can see the drift velocity increases proportionally, and the attack
coefficient 𝐶𝑎 stays roughly constant.

P(5)P(4)P(2) P(3)P(1)Source O Original
Destination D

Pr(1)

Redirected
Destination R

Redirection Vector DR

Original TrackPr(0) = P(0)

Pr(3)

Pr(2)

Pr(5)
Pr(4)

Pr(6)

P’(1)

Pr(t) : drone’s real position at t
P(t) : drone’s position estimation at t
P’(t) : drone’s position input at t

: position estimation deviation in a cycle
: Scheduled path in a cycle
: adjustment in a cycle
: drone’s real path in a cycle

P’(3) P’(4)P’(2)

P(6)

P’(0)

Figure 5.2: Illustration for the bDPM attack.

57

cycles, we stop injections and the drone will fly towards the redirected destination in a path

parallel to the original track.

Similar to the above illustration, we introduce the main steps of bDPM in Algorithm 1.

Given the flight track of a drone, a redirected destination, and drone position states, the

attack builds a position injection in each cycle in order to lead the drone away from its

original track to achieve the redirection, as explained in the above. The maximum injection

rate 𝐼𝑚𝑎𝑥 = (𝐼𝑚𝑎𝑥
𝑁

, 𝐼𝑚𝑎𝑥
𝐸
) per cycle can be determined based on the parameters associated

with the bad-data detector in theory and it also can be measured in practice. Attack co-

efficient 𝐶𝑎 = (𝐶𝑎
𝑁
, 𝐶𝑎

𝐸
) is defined in Proposition 1, and can be measured in advance. A

video demonstration of a bDPM attack on ArduPilot SITL is at Youtube [17], and we will

evaluate the accuracy and feasible redirection range of bDPM in Section 5.3.

Algorithm 1: bDPM Attack Algorithm.
input: Original track from (𝑂𝑁 , 𝑂𝐸) to (𝐷𝑁 , 𝐷𝐸);

Redirected destination (𝑅𝑁 , 𝑅𝐸);
Drone position state estimation 𝑃𝐸𝐾𝐹 (𝑡).

1 Initialization: {𝐼 (𝑡)} ←− ∅, 𝑡 ←− 0;
2 𝑛0 = the remaining number of cycles on the original track;
3 DR = (𝐷𝑅𝑁 , 𝐷𝑅𝐸) ←− (𝑅𝑁 − 𝐷𝑁 , 𝑅𝐸 − 𝐷𝐸);
4 𝑛←− 𝑚𝑎𝑥(d 𝐷𝑅𝑁

𝐼𝑚𝑎𝑥
𝑁
·𝐶𝑎

𝑁

e, d 𝐷𝑅𝐸

𝐼𝑚𝑎𝑥
𝐸
·𝐶𝑎

𝐸

e); find the total no. of injection cycles;

5 while 𝑡 ≤ 𝑛0 do
6 if 𝑡 < 𝑛 then
7 𝐼 (𝑡) ←− (𝐷𝑅𝑁

𝑛·𝐶𝑎
𝑁

,
𝐷𝑅𝐸

𝑛·𝐶𝑎
𝐸

); injecting until 𝑡 ≥ 𝑛;

8 𝑃𝐺𝑃𝑆 (𝑡) = 𝐼 (𝑡) + 𝑃𝐸𝐾𝐹 (𝑡); build fake position inputs;

9 else
10 𝑃𝐺𝑃𝑆 (𝑡) = 𝑃𝐸𝐾𝐹 (𝑡); fly towards 𝑅, no injection;

11 send 𝑃𝐺𝑃𝑆 (𝑡) as position input;
12 𝑡 ←− 𝑡 + 1;

5.1.3 Feasible Range of Redirected Destination

Obviously, the above attack cannot redirect a drone to an arbitrary redirected destina-

tion without being detected, because the maximum physical position deviation per cycle is

58

constrained by the bad data detector. Therefore, we need to further figure out if a target

redirected destination is feasible for a limited attack time under bDPM. In the following, we

will analyze such a feasible range of redirected destinations to show the overall capability

of bDPM, which can help us determine if a redirected destination is reachable or not.

Eq. 4.2 is the bad data detector for EKF-based 2D horizontal position estimation.

(𝑣𝑎𝑟𝑖𝑛𝑛
𝑁
+ 𝑣𝑎𝑟𝑖𝑛𝑛

𝐸
) · 𝜏 can be regarded as a constant _ in a steady state, and 𝑖𝑛𝑛𝑁 and 𝑖𝑛𝑛𝐸 are

roughly equal to 𝐼𝑁 and 𝐼𝐸 . Plugging them into Eq. 4.2, for the boundary of the feasible

range, we have

𝐼2𝑁 + 𝐼2𝐸 = _. (5.2)

Then, based on Eq. 5.1, we have

(
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

𝐶𝑎
𝑁

)2 + (
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

𝐶𝑎
𝐸

)2 = _, (5.3)

or

(𝑉𝑟𝑑𝑟𝑖 𝑓 𝑡,𝑁)
2 + (

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

𝐶𝑎
𝐸
/𝐶𝑎

𝑁

)2 = _ · (𝐶𝑎𝑁)
2. (5.4)

Eq. 5.4 shows the feasible range of the redirected destination for one injection cycle is

an ellipse with its center at the original destination and eccentricity
√︂

1 − (𝐶
𝑎
𝐸
)2

(𝐶𝑎
𝑁
)2 (close to

0 in practice), as shown in Figure 5.3. After 𝑛 injection cycles, the feasible range of the

redirected destination will be

(𝑅𝑥 − 𝐷𝑥

𝐶𝑎
𝑁

)2 + (
𝑅𝑦 − 𝐷𝑦

𝐶𝑎
𝐸

)2 = 𝑛2 · _, (5.5)

or

59

(𝑅𝑥 − 𝐷𝑥)2 + (
𝑅𝑦 − 𝐷𝑦

𝐶𝑎
𝐸
/𝐶𝑎

𝑁

)2 = 𝑛2 · _ · (𝐶𝑎𝑁)
2. (5.6)

We will show concrete feasible ranges in Section 5.3.

P(t) Original Track

: Injection in this cycle
: feasible scope

Compromised
Position Pr(t+1)

P(t+1)

Figure 5.3: Feasible Range of the redirected position in one cycle.

5.2 Practical Measurement-based DPM (mDPM)

Although using the bDPM attack can help us define the previous analysis model, it is

impractical because it is very hard to obtain the position estimation from a drone not under

our control. Therefore, in this section, we further develop the mDPM attack that builds the

GPS position inputs based on measured drone positions. In practice, many methods are

available to measure the position and velocity of a drone from a distance [34], e.g., using

radar or other localization methods. In a restricted area, we can deploy measurement tools

to obtain drone positions and velocities, and use such measurements to build spoofed GPS

inputs. In this research, we obtain the measured drone positions and velocities from the

SITL simulator for our tests.

60

5.2.1 Identifying a Practical Injection Method

We first show why the previous constant injection method does not work well in the

new practical setting. As shown in Fig. 5.4, the thick blue line in the middle is the drone’s

original track. When the drone’s real position is at 𝑃𝑟 (𝑡), we feed the drone with a com-

promised position input by applying a position injection to the East, such that the autopilot

system believes that the drone deviates from the track to the East at 𝑃𝐺𝑃𝑆 (𝑡). Conse-

quently, the control algorithm will compensate the difference by moving the drone to the

West, which makes the drone’s real position moves further to the West at 𝑃𝑟 (𝑡 + 1) in the

next cycle. However, if we still use the same injection size to build the next position in-

put: 𝑃𝐺𝑃𝑆 (𝑡 + 1) is equal to the real position 𝑃𝑟 (𝑡 + 1) plus the constant injection as in

the bDPM, 𝑃𝐺𝑃𝑆 (𝑡 + 1) will also move to the West, which makes it closer to the drone’s

position estimation 𝑃𝐸𝐾𝐹 (𝑡 + 1) in this cycle. In the next cycle, the smaller difference be-

tween 𝑃𝐺𝑃𝑆 (𝑡 +1) and 𝑃𝐸𝐾𝐹 (𝑡 +1) leads to a shorter West drift of the drone’s real position;

and the following GPS position inputs crafted with the same method will continue to move

towards the drone EKF position estimation, as the drone’s real position moves to the West.

After some 𝑛 cycles, the difference between the crafted GPS position input 𝑃𝐺𝑃𝑆 (𝑡 + 𝑛)

and the drone position estimation 𝑃𝐸𝐾𝐹 (𝑡 + 𝑛) will be close to 0. In the following, the

Figure 5.4: Crafting GPS position inputs based on measured drone positions with constant
injection sizes.

61

drone’s physical position will hardly drift, and the drone will move on a track parallel to

the original track at a fixed distance (equal to the injection size).

We have also validated the above process in the simulation. When the injection rate

is constant, the drone’s real position will first start to drift, and then quickly stabilize, i.e.,

the difference between its real position and its drone position estimation keeps unchanged.

The drone flies parallel to the original track as we discussed in the above.

Table 5.2: Notations in mDPM.

𝑃𝑟 (𝑡) Drone’s real position at cycle 𝑡
𝑃𝐺𝑃𝑆 (𝑡) Compromised GPS position input at cycle 𝑡
𝑃𝐸𝐾𝐹 (𝑡) Drone position estimation at cycle 𝑡
Δ(𝑡) Innovation between position input 𝑃𝐺𝑃𝑆 (𝑡) and

drone position estimation 𝑃𝐸𝐾𝐹 (𝑡)

We analyze the details of this process in the following. We denote the difference be-

tween the crafted GPS position input and the drone position estimation (i.e., the innovation

in drone state estimation) at cycle 𝑡 as Δ(𝑡) = (Δ𝑁 (𝑡),Δ𝐸 (𝑡)); we denote the constant injec-

tion to the East on the position inputs as 𝐼 = (0, 𝐼𝐸). In time cycle 0, Δ(0) = (0, 𝐼𝐸), since

the real position and the drone position estimation are the same at the beginning. In cycle 1,

because the drone’s real position moves by (0,−𝐾𝐸 (𝑡)Δ𝐸 (0)) due to the innovation, (where

𝐾𝐸 (𝑡) is the steady-state Kalman Gain in the East), the position input will also move by

(0,−𝐾𝐸 (𝑡)Δ𝐸 (0)), then Δ𝐸 (1) = Δ𝐸 (0) − 𝐾𝐸 (𝑡) · Δ𝐸 (0) = (1 − 𝐾𝐸 (𝑡)) · Δ𝐸 (0). Similarly,

Δ𝐸 (2) = (1 − 𝐾𝐸 (𝑡)) · Δ𝐸 (1), . . . ; then, we have Δ𝐸 (𝑡) = (1 − 𝐾𝐸 (𝑡))𝑡 · 𝐼𝐸 . Furthermore,

because 0 < 𝐾𝐸 (𝑡) < 1, we then have

lim
𝑡→∞

Δ𝐸 (𝑡) = lim
𝑡→∞
(1 − 𝐾𝐸 (𝑡))𝑡 · 𝐼𝐸 → 0. (5.7)

This analysis shows us that the crafted GPS position input and the drone EKF position

estimation will eventually converge. Since the difference between the GPS position input

and the drone real position is the constant injection, the difference between the drone’s real

62

position and the drone EKF position estimation will also stabilize.

New Attack Strategy. The above analysis shows that the previous constant injection

method will have limited effects in this setting, because the maximum drift distance is lim-

ited by the injection size. However, as the injection size must be smaller than a threshold

determined by the bad data detector, the drift distance is limited by the threshold. There-

fore, we must explore a different attack strategy in mDPM.

After carefully analysis and testing, we propose to increase the injection rate in our

attack linearly over time. In particular, assume the injection rate applied to the GPS position

input is: 𝐼 = 𝐼0 + 𝑋 𝐼 · 𝑡, i.e.,

𝐼 = (𝐼𝑁 , 𝐼𝐸) = (𝐼0𝑁 + 𝑋
𝐼
𝑁 · 𝑡, 𝐼0𝐸 + 𝑋

𝐼
𝐸 · 𝑡) (5.8)

where the base injection rate 𝐼0 is a constant determined based on the drift velocity that we

like to induce on the the drone, 𝑋 𝐼 is the increase of injection in each cycle, and 𝑡 indicates

the 𝑡-th attack cycle. We will introduce how to determine 𝐼0 in Section 5.2.2. Under this

attack strategy, we have the following propositions:

Proposition 4. Drift velocity𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

is proportional to injection increase rate 𝑋 𝐼 in a mDPM

attack with an attack coefficient �̂�𝑎 defined as follows:

�̂�𝑎 = (�̂�𝑎𝑁 , �̂�
𝑎
𝐸) = (

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

𝑋 𝐼
𝑁

,
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

𝑋 𝐼
𝐸

) (5.9)

for 𝑋 𝐼
𝑁
≠ 0 and 𝑋 𝐼

𝐸
≠ 0; if 𝑋 𝐼

𝑁
= 0, �̂�𝑎

𝑁
= 0; if 𝑋 𝐼

𝐸
= 0, �̂�𝑎

𝐸
= 0.

Proposition 5. For attacks on the same drone in the same environment, attack coefficient

�̂�𝑎 remains unchanged for any valid injection size in any direction.

Proposition 6. When applying an injection rate 𝐼 = (𝐼𝑁 , 𝐼𝐸), the effect is equivalent to the

combined effects of attacking only in the North direction with 𝐼1 = (𝐼𝑁 , 0) and attacking

63

only the East direction with 𝐼2 = (0, 𝐼𝐸), respectively.

Propositions 4 to 6 are similar to the results in the bDPM scheme due to the drone

control algorithms. In the following, we further explore the unique requirement of mDPM

and discover interesting results about how the injection size should be increased.

Although there are many potential methods to build the compromised position inputs,

most of them will not be effective due to the specific setting of drone control and bad-data

detection. For example, simply increasing the injection rate may not work in mDPM. (For

simplicity, we omit the subscripts indicating the directions in the following paragraph. The

following analysis works for any direction.) In particular, when 𝐼 (𝑡+1)−𝐼 (𝑡) monotonically

increases, we have lim
𝑡→∞
(𝐼 (𝑡 + 1) − 𝐼 (𝑡)) → ∞; 𝑉 𝑑𝑟𝑖 𝑓 𝑡𝑟 will also increase over time. When

𝐼 (𝑡) increases but 𝐼 (𝑡+1) − 𝐼 (𝑡) monotonically decreases, and lim
𝑡→∞
(𝐼 (𝑡+1) − 𝐼 (𝑡)) → 0, the

innovation will converge to 0, which results in the similar results as the constant injection

case. Therefore, we have

Proposition 7. To successfully perform the mDPM attack, the injection rate should in-

crease at least linearly, and the increase amount per cycle should have a finite upper bound.

Proof: we denote the innovation, i.e., the difference between the GPS input and the

EKF position estimation at cycle 𝑡 as Δ(𝑡), and the position injection on the GPS input at

cycle 𝑡 as 𝐼 (𝑡). Then, at cycle 𝑡 + 1, with Kalman gain 𝐾 (𝑡) we have:

Δ(𝑡 + 1) = Δ(𝑡) − Δ(𝑡) · 𝐾 (𝑡) + 𝐼 (𝑡 + 1) − 𝐼 (𝑡), (5.10)

Eq. 5.10 is based on the following facts. First, we find the change of Δ in cycle (𝑡 + 1)

as Δ(𝑡 + 1) − Δ(𝑡). Since such a change cannot be directly obtained, we can decompose it

into two components: (1) the change of the difference between the real position of a drone

and its estimated position; (2) the change of the difference between the GPS position input

64

and the drone’s real position. The first component is equal to Δ(𝑡) · 𝐾 (𝑡) because the real

position moves away from the position estimation by Δ(𝑡) · 𝐾 (𝑡), due to the innovation

Δ(𝑡) at the last cycle. The second component is 𝐼 (𝑡 + 1) − 𝐼 (𝑡) due to the change of the

injection. Adding them up, we have the difference between Δ(𝑡 + 1) and Δ(𝑡), which leads

to Eq. 5.10.

Based on Eq. 5.10, we analyzed the following three types of injection methods:

1. If 𝐼 (𝑡) increases linearly, i.e., 𝐼 (𝑡) = 𝐼0 + 𝑋 𝐼 · 𝑡, 𝐼 (𝑡 + 1) − 𝐼 (𝑡) = 𝑋 𝐼 . We have

Δ(𝑡 + 1) = Δ(𝑡) − Δ(𝑡) · 𝐾 (𝑡) + 𝑋 𝐼 .

If −Δ(𝑡) ·𝐾 (𝑡)+𝑋 𝐼 > 0, then Δ(𝑡+1) will continue increase until −Δ(𝑡) ·𝐾 (𝑡)+𝑋 𝐼 = 0.

Otherwise, if −Δ(𝑡) · 𝐾 (𝑡) + 𝑋 𝐼 < 0, then Δ(𝑡 + 1) will continue decrease until

−Δ(𝑡) · 𝐾 (𝑡) + 𝑋 𝐼 = 0. In either case, Δ(𝑡 + 1) will be finally equal to Δ(𝑡). Then,

Δ(𝑡 + 1) will keep unchanged afterwards. Because Δ(𝑡 + 1) keeps unchanged but

the injection increases linearly, the real drone position moves away from the GPS

position input with a constant 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡

.

2. If (𝐼 (𝑡 +1) − 𝐼 (𝑡)) monotonically decreases, and lim
𝑡→∞
(𝐼 (𝑡 +1) − 𝐼 (𝑡)) → 0, we denote

𝐼 (𝑡 + 1) − 𝐼 (𝑡) as 𝐴(𝑡 + 1). Therefore,

Δ(𝑡 + 1) = Δ(𝑡) · (1 − 𝐾 (𝑡)) + 𝐴(𝑡 + 1).

Now given a time 𝑇 (𝑇 » 0), we define another series

𝐵(𝑡) =

Δ(𝑡) t<T

Δ𝑇−1 · (1 − ¯𝐾 (𝑡)) + 𝐴𝑇 t=T

𝐵𝑡−1 · (1 − ¯𝐾 (𝑡)) + 𝐴𝑇 t>T

65

where the ¯𝐾 (𝑡) is the upper bound of 𝐾 (𝑡) for 𝑡 ≥ 𝑇 , 𝐴𝑇 = 𝐼 (𝑇 + 1) − 𝐼 (𝑇), then we

have

𝐵(𝑡) − 𝐴𝑇
¯𝐾 (𝑡)

= (1 − ¯𝐾 (𝑡)) · (𝐵𝑡−1 −
𝐴𝑇
¯𝐾 (𝑡)
)

and

𝐵(𝑡) − 𝐴𝑇
¯𝐾 (𝑡)

= (1 − ¯𝐾 (𝑡))𝑡−𝑇+1 · (𝐵𝑇−1 −
𝐴𝑇
¯𝐾 (𝑡)
)

for 𝑡 > 𝑇 .

Since 0 < ¯𝐾 (𝑡) < 1, then

lim
𝑡→∞

𝐵(𝑡) − 𝐴𝑇
¯𝐾 (𝑡)
→ 0,

and

lim
𝑡→∞

𝐵(𝑡) → 𝐴𝑇
¯𝐾 (𝑡)
.

Because

lim
𝑇→∞

𝐴𝑇 → 0,

then

lim
𝑡→∞

𝐵(𝑡) → 0.

As Δ(𝑡) ≤ 𝐵(𝑡), and Δ(𝑡) > 0,

66

lim
𝑡→∞

Δ(𝑡) → 0.

3. If (𝐼 (𝑡 + 1) − 𝐼 (𝑡)) monotonically increases, and lim
𝑡→∞
(𝐼 (𝑡 + 1) − 𝐼 (𝑡)) → +∞, from

Eq. 5.10, we know Δ(𝑡 + 1) > 𝐼 (𝑡 + 1) − 𝐼 (𝑡). Therefore lim
𝑡→∞

Δ(𝑡) → +∞. In

practice, the system will be alerted by the bad data detector after the innovation is

over a threshold, which leads to the attack failure.

Based on the analysis above, we can conclude that to successfully perform the attack,

the injection rate should increase at least linearly, and the increase step per cycle should

have a finite upper bound.

In summary, we need to carefully determine a proper increasing injection to move the

drone away from its original track and not being detected. Although more complicated

injection methods could be developed, we must carefully monitor the innovations caused

by the injections, which is another complicated problem to be further explored in the future.

5.2.2 mDPM Attack

A mDPM attack has the similar procedure as the bDPM attack, but with the spoofed

GPS position inputs constructed based on measured drone positions. The main steps of

mDPM is shown in Algorithm 2. Based on the above analysis, we construct the spoofed

GPS position inputs with a linearly-increased injection rate for mDPM attacks. Assume that

we know the flight track of a drone in advance, we can build shifted GPS positions based on

the drone’s original destination, a redirected destination, and the maximum injection rate

(which is determined by the bad-data detector and specific parameters of a drone and can

also be measured). The vector difference between the redirected destination (𝑅𝑁 , 𝑅𝐸) and

the original destination (𝐷𝑁 , 𝐷𝐸) is defined as DR. We first find the total number of attack

cycles 𝑛 for achieving this redirection vector. We determine 𝐼0 = (𝐼0
𝑁
, 𝐼0
𝐸
) as 𝐼0

𝑁
=

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝑁

𝐶𝑎
𝑁

67

Algorithm 2: mDPM Attack Algorithm.
input: Original destination (𝐷𝑁 , 𝐷𝐸);

Redirected destination (𝑅𝑁 , 𝑅𝐸);
Drone position measurements 𝑃𝑚 (𝑡).

1 Initialization: {𝐼 (𝑡)} ←− ∅, 𝑡 ←− 0;
2 𝑛0 = the remaining number of cycles on the original track;
3 DR = (𝐷𝑅𝑁 , 𝐷𝑅𝐸) ←− (𝑅𝑁 − 𝐷𝑁 , 𝑅𝐸 − 𝐷𝐸);
4 𝑛←− 𝑚𝑎𝑥(d 𝐷𝑅𝑁

𝐼𝑚𝑎𝑥
𝑁
·𝐶𝑎

𝑁

e, d 𝐷𝑅𝐸

𝐼𝑚𝑎𝑥
𝐸
·𝐶𝑎

𝐸

e);
5 while 𝑡 ≤ 𝑛0 do
6 if 𝑡 < 𝑛 then
7 𝐼 (𝑡) ←− (𝐷𝑅𝑁

𝑛·�̂�𝑎
𝑁

· 𝑡 + 𝐼0
𝑁
,
𝐷𝑅𝐸

𝑛·�̂�𝑎
𝐸

· 𝑡 + 𝐼0
𝐸
); injecting until 𝑡 ≥ 𝑛;

8 𝑃𝐺𝑃𝑆 (𝑡) = 𝐼 (𝑡) + 𝑃𝑚 (𝑡); build fake position inputs;

9 else
10 𝑃𝐺𝑃𝑆 (𝑡) = 𝐼 (𝑛 − 1) + 𝑃𝑚 (𝑡); fly towards to 𝑅, injection size not increasing any more;

11 send 𝑃𝐺𝑃𝑆 (𝑡) as position input;
12 𝑡 ←− 𝑡 + 1;

and 𝐼0
𝐸
=
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

𝐶𝑎
𝐸

, where (𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

, 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

) is the drift velocity that we like to achieve, and

the attack coefficient 𝐶𝑎 is defined in Proposition 1. Under this setting of 𝐼0, the innovation

between the GPS input and EKF position estimation in the initial attack cycle will stabilize

at this value and result in the drift velocity (𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

, 𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

) immediately. By simulation

we find that even if we set 𝐼0 to different values (e.g., 0), the innovation will still converge

to the previous setting values 𝐼0
𝑁
=

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝑁

𝐶𝑎
𝑁

and 𝐼0
𝐸
=

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡 ,𝐸

𝐶𝑎
𝐸

very quickly. In each attack

cycle 𝑡, 0 ≤ 𝑡 < 𝑛, we apply an injection 𝐼 (𝑡) = (𝐷𝑅𝑁
𝑛·�̂�𝑎

𝑁

· 𝑡 + 𝐼0
𝑁
,
𝐷𝑅𝐸

𝑛·�̂�𝑎
𝐸

· 𝑡 + 𝐼0
𝐸
) to the measured

position. Attack coefficient �̂�𝑎 = (�̂�𝑎
𝑁
, �̂�𝑎

𝐸
) is defined in Proposition 4 and can be measured

in advance.

5.2.3 Feasible Range of Compromised Destination

Similarly, to figure out if the mDPM attack can guide a drone to a target redirected

destination in a limited time, we further analyze the feasible range of redirected destinations

for a given attack time to show the overall capability of mDPM. According to Eq. 5.2, we

have the feasible range of redirected destination under one injection cycle:

68

(
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝑁

�̂�𝑎
𝑁

)2 + (
𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

�̂�𝑎
𝐸

)2 = _, (5.11)

or

(𝑉𝑟𝑑𝑟𝑖 𝑓 𝑡,𝑁)
2 + (

𝑉𝑟
𝑑𝑟𝑖 𝑓 𝑡,𝐸

�̂�𝑎
𝐸
/�̂�𝑎

𝑁

)2 = _ · (�̂�𝑎𝑁)
2. (5.12)

After 𝑛 injection cycles, the feasible range of the redirected destination will be

(𝑅𝑥 − 𝐷𝑥

�̂�𝑎
𝑁

)2 + (
𝑅𝑦 − 𝐷𝑦

�̂�𝑎
𝐸

)2 = 𝑛2 · _, (5.13)

or

(𝑅𝑥 − 𝐷𝑥)2 + (
𝑅𝑦 − 𝐷𝑦

�̂�𝑎
𝐸
/�̂�𝑎

𝑁

)2 = 𝑛2 · _ · (�̂�𝑎𝑁)
2. (5.14)

We will present the evaluation of mDPM capability in Section 5.3.

5.3 System Instrumentation and Performance Evaluation

As our goal is to develop a practical solution, different from existing methods, we

focused on the broadly-deployed open-source system ArduPilot. In the following, we will

first introduce our system instrumentation which not only helps us understand the critical

issues in the system but also allows us to evaluate different practical attacks.

5.3.1 System Instrumentation

We have conducted extensive analysis and testing of ArduPilot Copter code to under-

stand the state estimation and navigation control algorithms. For system control, the SITL

module runs the same code as a real firmware to simulate a flight with a large set of common

69

parameters. Although ArduPilot has a powerful logging scheme that enables debugging for

many states [2], for our research, we need to look into specific states (such as examining

the adjustment parameters in each fast loop, which are not supported by the logging facil-

ity), in order to better learn system dynamics and capture real-time states. So we enhanced

the system log facility of ArduPilot [4] by instrumenting the source code of its control

algorithms (including the key control loops, EKF state estimation algorithms, and naviga-

tion control algorithms), such that we were able to save more related system states into

its Dataflash logs for our analysis, and observe every state variable associated with control

algorithms in each cycle. As a result, we were able to capture all key variables (such as all

sensor readings, state estimation variables, control parameters, and system states). Mean-

while, we also utilize the default MAVLink interface to obtain common states such as the

simulated position of a drone (i.e., its “physical position” in the simulated world) and its

position estimation in each GPS cycle for us to build spoofed GPS inputs in real-time.

(a) Before attack. (b) Under attack. (c) Reached Destination.

Figure 5.5: bDPM Demo in ArduPilot SITL.

As a SITL drone runs in the same way as a real drone, it can take different types of GPS

input formats, e.g., popular UBLOX and NMEA formats [5]. In its default setting, it simply

uses the simulated (physical) position of a drone as its GPS position input. So, we can

perform a covert GPS spoofing by switching its GPS input to take MAVLink𝐺𝑃𝑆_𝐼𝑁𝑃𝑈𝑇

70

messages [43], in the same way as it receives GPS messages from a GPS-capable device.

We then built a mission control program with the DroneKit Developer tools [26] to obtain

drone real-time states, craft 𝐺𝑃𝑆_𝐼𝑁𝑃𝑈𝑇 messages per GPS cycle, and send them to the

drone via MAVProxy [7], same as a common ground control station (QGroundControl [53])

communicates with a real drone. We further installed a callback listener to receive position

state updates in our control program.

We uploaded a video of a covert bDPM attack on the above platform at Youtube [17].

With the source location as (0, 0), the drone’s destination is set to the waypoint of (500

meters, 500 meters) in the Northeast with a velocity of 4 meter/second. Waiting for 20

seconds into the mission after the system entered a steady state, we started to covertly

spoof GPS inputs with an injection of 4.07 meter/per GPS cycle to the North. (It takes less

than 20 seconds for the drone to enter a steady state.) As shown in Figure 5.5.(b), we then

saw that the drone state (shown as the top drone icon) is still on its original track (in pink)

to the Northeast; but its real position (shown as the bottom drone icon) is shifted down to

the South, below its original track. The drone continued with its mission, without noticing

its real position is gradually away from its original track. When the drone position state is

close to the original destination, the real drone position is about 100 meters South to the

original destination, as shown in Figure 5.5.(c).

With significant efforts in the past years, we were able to build this in-depth instru-

mentation platform for examining the control algorithms and the proposed attacks in great

details, which also facilitated the evaluation presented in the following.

71

5.3.2 Evaluation of basic DPM (bDPM)

5.3.2.1 Simulation Settings

In each attack simulation, to show the pure attack effect, we did not launch the attack

until the system entered a steady state, i.e., we waited for 20 seconds after it reaches the

takeoff altitude and begins to fly to a preset waypoint. We used the common settings of

consumer drones as key parameters in the evaluation, e.g., a GPS update cycle is set to 0.1

second; the horizontal position accuracy of GPS input is 0.1 meter; the velocity accuracy

of GPS input is 0.1 meter/second; a default drone starting velocity is 4 meter/second. We

have repeated the simulations many times to observe and measure the coefficients for our

basic model presented in Section 5.1: for example, we used linear regression to find the

attack coefficients 𝐶𝑁𝑎 = −0.0491, and 𝐶𝐸𝑎 = −0.0455.

5.3.2.2 Accuracy of bDPM

As our goal is to divert a drone to a redirected destination, we first evaluated the ac-

curacy of bDPM, i.e., the difference between the expected redirected destination and the

actual destination. For easy illustration, we first set the injection direction to the East and

the total attack duration to 50 seconds. Consider the home position as the original point (0,

0), the original destination was set to (500 meters, 500 meters) in the Northeast in a local

frame. To evaluate the accuracy under different attack sizes, we varied the size of DR (the

vector difference between the redirected destination (𝑅𝑥 , 𝑅𝑦) and the original destination

(𝐷𝑥 , 𝐷𝑦)) from 20 to 100 meters. Table 5.3 shows the attack error rates under different

injection rates. The 1st row shows the size of intended redirection vector from 20 to 100

meters. The 2nd row is the corresponding injection size derived based on the size of redi-

rection vector using Algorithm I. The 3rd row is the size of the actual redirection vector

obtained from the simulation. In the 4th row, we can see that: for different redirection sizes,

72

the bDPM attack achieved very small errors (under 1.5%), i.e., it can accurately redirect a

drone to the intended destination.

Table 5.3: bDPM Attack error under different Injection rates.

expected DR size (m) 20 40 60 80 100
Injection (m/GPS-cycle) 0.88 1.76 2.64 3.52 4.40

Actual DR size (m) 20.22 39.81 60.01 81.14 100.36
Error Rate 1.10% -0.475% 0.017% 1.425% 0.36%

Next, keeping the same source and destination as the above, we evaluated the bDPM’s

accuracy in eight directions: North, Northeast, East, Southeast, South, Southwest, West,

Northwest. The total attack duration is set to 50 seconds as the above, and the redirection

vector is set to 100 meters. In Table 5.4 and Table 5.5, the 1st row shows the injection

direction; the 2nd and the 3rd row show the injection sub-components in the North and the

East directions; the 4th and the 5th row show the errors in the North and the East directions;

the 6th and 7th row show the error rates in the North and the East directions. We can see the

attack errors for these cases are still very small (under 0.9% in a sub-component), which

shows the bDPM attack can accurately redirect the drone to different directions.

Table 5.4: bDPM Attack error under different attack directions (1).

Injection direction E W N S
Injection: North (m/GPS-cycle) 0 0 5 -5
Injection: East (m/GPS-cycle) 5 -5 0 0

Error: North (m) / / -0.23 -0.29
Error: East (m) 0.06 -0.13 / /

Error Rate: North / / -0.19% -0.24%
Error Rate: East 0.053% -0.11% / /

5.3.2.3 Injection limitation and Feasible range

Although we have shown that the bDPM can redirect a drone to any direction with

high accuracy, the maximum size of the redirection is limited by the maximum injection

73

Table 5.5: bDPM Attack error under different attack directions (2).

Injection direction NE NW SE SW
Injection: North (m/GPS-cycle) 5 5 -5 -5
Injection: East (m/GPS-cycle) 5 -5 5 -5

Error: North (m) 0.16 0.02 -1.1 -0.59
Error: East (m) 0.62 0.14 0.23 -0.05

Error Rate: North 0.13% 0.016% -0.90% -0.48%
Error Rate: East 0.55% 0.12% 0.20% -0.044%

allowed in each cycle that is limited by the bad data detector of the drone. To find the

maximum injection rate allowed in a direction, we gradually increased the injection rate

until the system detects the large error term and raises GPS-fail alarms. We repeated these

simulations to confirm the maximum injection rate for bDPM in each direction, which will

then give us the largest redirection size DR for a given attack duration in the direction. Then

we can combine the maximum redirection size in all directions to outline the feasible range

of the bDPM attack, i.e., we can redirect the drone to any point within this range under this

attack duration. In Table 5.6 and Table 5.7, the attack duration was 50 seconds, and we

tested in 8 directions to outline the feasible redirection range for attacking 50 seconds. The

1st row shows the redirection directions; the 2nd row shows the maximum injection rate in

a direction; the 3rd row shows the maximum size of redirection. The maximum injection

rate for each direction varies from 7.09 to 7.65 meter/GPS cycle; the maximum redirection

size in each direction varies from 169.28 meters to 177.03 meters for the attack duration of

50 seconds.

Furthermore, to show the feasible ranges of redirected destinations under different at-

tack duration, we varied the attack duration from 20 to 100 seconds, and determined the

corresponding maximum redirection sizes in 8 directions. We then outlined the feasible

ranges under different attack durations in Figure 5.6. In this 2D plane, the center location

(0, 0) is the original destination; the smallest circle-like range is the feasible range under

an attack duration of 20 seconds; the largest circle-like range is the feasible range under an

74

Table 5.6: bDPM Maximum Redirection Size (1).

Injection Direction E W N S
Max Injection (m/GPS-cycle) 7.56 7.6. 7.09 7.14

Max DR size (m) 171.58 173.32 171.32 173.00

Table 5.7: bDPM Maximum Redirection Size (2).

Injection Direction NE NW SE SW
Max Injection (m/GPS-cycle) 7.24 7.48 7.50 7.37

Max DR size (m) 169.28 176.77 177.03 173.28

attack duration of 100 seconds. It is easy to see that the attack feasible range expands as

the attack duration increases.

5.3.3 Evaluation of Measurement-based DPM (mDPM)

5.3.3.1 Settings

The basic simulation settings for mDPM is the same as bDPM. We have conducted

extensive simulations to measure the attack coefficients for our mDPM model presented in

Section 5.2: we used linear regression to identify the measurement-based attack coefficients

�̂�𝑎
𝑁

= −1.00, and �̂�𝑎
𝐸

= −0.933; we further determine the parameters of this model as

𝐼0
𝑁
=
�̂�𝑎
𝑁

𝐶𝑎
𝑁

· 𝑋 𝐼
𝑁
= 20.37 · 𝑋 𝐼

𝑁
, 𝐼0
𝐸
=
�̂�𝑎
𝐸

𝐶𝑎
𝐸

· 𝑋 𝐼
𝐸
= 20.51 · 𝑋 𝐼

𝐸
.

5.3.3.2 Accuracy of mDPM

To evaluate the accuracy of the mDPM attack, as shown in the 1st row of Table 5.8,

we varied the injection increment velocity 𝑋 𝐼 from 0.5 to 2.5 meter/𝑠𝑒𝑐𝑜𝑛𝑑2 to examine

the difference between the expected redirected destination and the actual destination. The

2nd row shows the expected redirection size; the 3rd row shows the actual redirection size;

and the 4th row shows the attack error rates under different 𝑋 𝐼 . Here we set the injection

direction to the East and the total attack duration to 100 seconds. Consider the home

75

Figure 5.6: Feasible ranges of redirected destinations under different attack durations in
bDPM.

Table 5.8: mDPM Attack error rate under different 𝑋 𝐼 .

𝑋 𝐼 (𝑚/𝑠2) 0.5 1 1.5 2 2.5
Exp. DR size (m) 46.65 93.3 139.95 186.6 233.25
Act. DR size (m) 46.76 93.34 139.84 186.54 232.96

Error Rate 0.24% 0.043% -0.079% -0.032% -0.12%

position as location (0, 0), the original destination was set to (500 meters, 500 meters)

in the Northeast in a local frame. We can see that: for these 𝑋 𝐼’s, the mDPM attack

shows very small errors (under 0.45%), i.e., it can precisely divert a drone to our redirected

destinations.

Furthermore, we tested the attack accuracy in 8 directions as shown in Table 5.9 and

Table 5.10. The 1st row represents the redirection direction. The 2nd and 3rd row show

the sub-component of 𝑋 𝐼’s in the North and East directions. The 4th and 5th row show

76

the actual redirection sizes in the North and East. The 6th and 7th row show the errors

between the expected DR and the actual DR. The 8th and 9th row show the error rates in

the North and East. For all cases, the mDPM showed a very small error rates (under 0.45%

in a sub-component).

Table 5.9: mDPM Attack error rate under different attack directions (1).

Injection direction E W N S
𝑋 𝐼
𝑁

(𝑚/𝑠2) 0 0 1 -1
𝑋 𝐼
𝐸

(𝑚/𝑠2) 1 -1 0 0
Act. DR size-North (m) / / 100.13 99.72
Act. DR size -East (m) 93.34 92.88 / /

Error-North (m) / / 0.13 -0.28
Error - East (m) 0.04 -0.42 / /

Error Rate - North / / 0.13% -0.28%
Error Rate - East 0.043% -0.45% / /

Table 5.10: mDPM Attack error rate under different attack directions (2).

Injection direction NE NW SE SW
𝑋 𝐼
𝑁

(𝑚/𝑠2) 1 1 -1 -1
𝑋 𝐼
𝐸

(𝑚/𝑠2) 1 -1 1 -1
Act. DR size-North (m) 100.10 100.18 99.65 99.75
Act. DR size -East (m) 93.29 92.91 93.40 92.91

Error-North (m) 0.10 0.18 -0.35 -0.25
Error-East (m) -0.01 -0.39 0.10 -0.39

Error Rate - North 0.10% 0.18% -0.35% -0.25%
Error Rate - East -0.011% -0.42% -0.11% -0.42%

Table 5.11: mDPM Max Redirection Sizes for different directions (1).

Injection Direction E W N S
Max 𝑋 𝐼 (𝑚/𝑠2) 3.6 3.4 3.4 3.2

Max DR size (m) 167.77 158.09 170.10 159.77

77

Table 5.12: mDPM Max Redirection Sizes for different directions (2).

Injection Direction NE NW SE SW
Max 𝑋 𝐼 (𝑚/𝑠2) 3.25 3.39 3.39 3.25

Max DR size (m) 157.36 163.89 163.88 156.80

5.3.3.3 Injection limitation and Feasible Range

Because the maximum redirection size is determined by the maximum 𝑋 𝐼 , we gradually

increased 𝑋 𝐼 to find its maximum value allowed until the bad data detector is triggered. We

repeated these simulations to confirm the maximum 𝑋 𝐼 for mDPM in each direction, which

will give us the maximum redirection size in the direction for a given attack duration. We

then combined these maximum redirection sizes to outline the feasible range of redirected

destinations under the mDPM attack, i.e., we can redirect the drone to any point within this

range. The attack duration was set to 50 seconds, and we tested in 8 directions to outline

the range. As shown in Table 5.11 and Table 5.12, the maximum 𝑋 𝐼 for each direction

varies from 3.2 to 3.6 𝑚𝑒𝑡𝑒𝑟/𝑠𝑒𝑐𝑜𝑛𝑑2; the maximum redirection size in each direction

varies from 156.80 to 170.10 meters.

Furthermore, we varied the attack duration from 20 to 100 seconds, and determined the

corresponding maximum redirection sizes in 8 directions. Based on the maximum redi-

rection sizes under different attack durations, we outlined the feasible ranges of redirected

destinations in Figure 5.7. In this 2D plane, the center location (0, 0) is the original des-

tination; the smallest circle-like range is the feasible range under an attack duration of

20 seconds; the largest circle-like range is the feasible range under an attack duration of

100 seconds. It is easy to see that the attack feasible range expands as the attack duration

increases.

78

Figure 5.7: Feasible ranges of redirected destinations under different attack durations in
mDPM.

5.4 Conclusion

In this chapter, we have developed the third-level DPM attack that can help us accu-

rately manipulate a drone’s physical position. We have evaluated the attack on the SITL

module of the ArduPilot, which shows that DPM can redirect a drone to a desired location

with very small errors. We have also analyzed the maximum feasible range of redirected

destination for a given original destination under DPM. Because the weaknesses exploited

here are common in many autonomous systems, this work can be applied to these systems.

79

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In this research, we have first examined the entire stack of guidance sensing, state esti-

mation, and navigation in the control loop of consumer drones; we have then identified the

vulnerabilities at each level of the stack: sensor measurements, state estimation, and navi-

gation control, and developed the second-level FDI attacks and third-level DPM attack. Our

analysis and evaluation have shown that the proposed attacks can accurately manipulate a

drone’s state estimation and eventually guide it to a redirected location for safe handling.

We believe this is the first work that is able to redirect a consumer drone accurately to a

desired destination.

Although FDI and DPM are developed on common consumer drones, the idea of ex-

ploring the vulnerabilities of sensing, state estimation, and navigation control in a holistic

method is applicable to many other existing and emerging autonomous system. Identifying

and exploring such a sequence of vulnerabilities could be a generic attack to many con-

trol systems. To stop such an attack, we need to address the vulnerability at each step.

First, there have been various proposals to detect GPS spoofing [21, 38, 73]. However, to

implement these enhancements on consumer drones may still have a long way to go [34].

Second, we can improve the EKF’s anomaly detection algorithm to detect attacks such as

FDI and DPM. We have briefly discussed the general idea of how to improve the detector

in Chapter 4.1.3 and 4.2.2, and we will further investigate countermeasures based on phys-

ical properties of drones. Third, we will look into secure navigation algorithms to detect

position/velocity manipulations. Many other important and interesting research problems

still need to be explored on consumer drones, such as how to compromise physical altitude

control, or how to defeat various optical flow solutions.

80

BIBLIOGRAPHY

[1] ArduPilot. ArduPilot Autopilot Suite. http://ardupilot.org/ardupilot/.

[2] ArduPilot. Diagnosing problems using Logs. https://ardupilot.org/copter/

docs/common-diagnosing-problems-using-logs.html, 2020.

[3] ArduPilot. Extended Kalman Filter Navigation Overview and Tuning. http://

ardupilot.org/dev/docs/extended-kalman-filter.html, 2020.

[4] ArduPilot. Adding a New Log Message, Dec. 18, 2019. https://ardupilot.

org/dev/docs/code-overview-adding-a-new-log-message.html?

highlight=log.

[5] ArduPilot. ArduPilot AP GPS, Dec. 18, 2019. https://github.com/

ArduPilot/ardupilot/blob/master/libraries/AP_GPS/AP_GPS.h.

[6] ArduPilot. SkyRocketToys Source Code, Dec. 18, 2019. https://github.com/

SkyRocketToys/ardupilot.

[7] ArduPilot. A UAV ground station software package for MAVLink based systems,

Dec. 18, 2019. https://ardupilot.org/mavproxy/.

[8] Battelle. Drone defender. https://www.battelle.

org/government-offerings/national-security/

tactical-systems-vehicles/tactical-equipment/

counter-UAS-technologies, 2016.

[9] Minas Benyamin and Geoffrey Goldman. Acoustic Detection and Tracking of a Class

I UAS with a Small Tetrahedral Microphone Array. Technical Report ARL-TR-7086,

ARL, September 2014.

81

http://ardupilot.org/ardupilot/
https://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html
https://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html
http://ardupilot.org/dev/docs/extended-kalman-filter.html
http://ardupilot.org/dev/docs/extended-kalman-filter.html
https://ardupilot.org/dev/docs/code-overview-adding-a-new-log-message.html?highlight=log
https://ardupilot.org/dev/docs/code-overview-adding-a-new-log-message.html?highlight=log
https://ardupilot.org/dev/docs/code-overview-adding-a-new-log-message.html?highlight=log
https://github.com/ArduPilot/ardupilot/blob/master/libraries/AP_GPS/AP_GPS.h
https://github.com/ArduPilot/ardupilot/blob/master/libraries/AP_GPS/AP_GPS.h
https://github.com/SkyRocketToys/ardupilot
https://github.com/SkyRocketToys/ardupilot
https://ardupilot.org/mavproxy/
https://www.battelle.org/government-offerings/national-security/tactical-systems-vehicles/tactical-equipment/counter-UAS-technologies
https://www.battelle.org/government-offerings/national-security/tactical-systems-vehicles/tactical-equipment/counter-UAS-technologies
https://www.battelle.org/government-offerings/national-security/tactical-systems-vehicles/tactical-equipment/counter-UAS-technologies
https://www.battelle.org/government-offerings/national-security/tactical-systems-vehicles/tactical-equipment/counter-UAS-technologies

[10] Suzhi Bi and Ying Jun Zhang. Defending mechanisms against false-data injection

attacks in the power system state estimation. In IEEE GLOBECOM Workshops (GC

Wkshps), pages 1162–1167, 2011.

[11] Rakesh B Bobba, Katherine M Rogers, Qiyan Wang, Himanshu Khurana, Klara

Nahrstedt, and Thomas J Overbye. Detecting false data injection attacks on dc state

estimation. In Preprints of the First Workshop on Secure Control Systems, CPSWEEK,

volume 2010, 2010.

[12] Jianqiu Cao. Practical GPS spoofing attacks on consumer drones. Master’s

thesis, University of Hawaii, https://scholarspace.manoa.hawaii.edu/

bitstream/10125/73336/Cao_hawii_0085O_10909.pdf, December 2020.

[13] Simon Castro, Robert Dean, Grant Roth, George T Flowers, and Brian Grantham.

Influence of acoustic noise on the dynamic performance of MEMS gyroscopes. In

ASME 2007 International Mechanical Engineering Congress and Exposition, pages

1825–1831. American Society of Mechanical Engineers, 2007.

[14] W. Chen, Y. Dong, and Z. Duan. Manipulating Drone Dynamic State Estimation to

Compromise Navigation. In 2018 IEEE Conference on Communications and Network

Security (CNS), pages 1–9, May 2018.

[15] W. Chen, Y. Dong, and Z. Duan. Manipulating Drone Position Control. In in Proc. of

IEEE Conference on Communications and Network Security(CNS), pages 1–9, June

2019.

[16] Wenxin Chen, Yingfei Dong, and Zhenhai Duan. Compromising Flight Paths of Au-

topiloted Drones. In 2019 International Conference on Unmanned Aircraft Systems

(ICUAS), pages 1316–1325. IEEE, 2019.

82

https://scholarspace.manoa.hawaii.edu/bitstream/10125/73336/Cao_hawii_0085O_10909.pdf
https://scholarspace.manoa.hawaii.edu/bitstream/10125/73336/Cao_hawii_0085O_10909.pdf

[17] Wenxin Chen, Yingfei Dong, and Zhenhai Duan. A Video Demo of Drone Position

Manipulation Attack, Feb 16, 2021. https://youtu.be/kE0T4sFJZ7o.

[18] Wenxin Chen, Zhenhai Duan, and Yingfei Dong. False Data Injection on EKF-based

Navigation Control. In International Conference on Unmanned Aircraft Systems

(ICUAS) 2017, pages 1608–1617, 2017.

[19] AM Leite Da Silva, MB Do Coutto Filho, and JF De Queiroz. State forecasting

in electric power systems. In IEE Proceedings C (Generation, Transmission and

Distribution), volume 130, pages 237–244, 1983.

[20] P. Dash, M. Karimibiuki, and K. Pattabiraman. Out of control: stealthy attacks against

robotic vehicles protected by control-based techniques. In ACSAC ’19: Proceedings

of the 35th Annual Computer Security Applications Conference, Dec. 2019.

[21] D. S. De Lorenzo, J. Gautier, J. Rife, P. Enge, and D. Akos. Adaptive array processing

for GPS interference rejection. In In Proceedings of the ION GNSS Meeting, Long

Beach, CA. Institute of Navigation., 2005.

[22] Robert N Dean, George T Flowers, A Scotte Hodel, Grant Roth, Simon Castro, Ran

Zhou, Alfonso Moreira, Anwar Ahmed, Rifki Rifki, Brian E Grantham, et al. On the

degradation of MEMS gyroscope performance in the presence of high power acoustic

noise. In Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on,

pages 1435–1440. IEEE, 2007.

[23] Robert Neal Dean, Simon Thomas Castro, George T Flowers, Grant Roth, Anwar

Ahmed, Alan Scottedward Hodel, Brian Eugene Grantham, David Allen Bittle, and

James P Brunsch. A characterization of the performance of a MEMS gyroscope

in acoustically harsh environments. IEEE Transactions on Industrial Electronics,

58(7):2591–2596, 2011.

83

https://youtu.be/kE0T4sFJZ7o

[24] DeDrone. Secure your airspace now. http://www.dedrone.com/en/

dronetracker/drone-protection-software, 2016.

[25] Eddy Deligne. Ardrone corruption. Journal of Computer Virology, vol.8, pp.15-27,

2012.

[26] DroneKit. DroneKit Python Development Tools, Dec. 18, 2019. https://github.

com/dronekit/dronekit-python.

[27] Damien Eynard, Pascal Vasseur, Cedric Demonceaux, and Vincent Fremont. Real

time UAV altitude, attitude and motion estimation from hybrid stereovision. Au-

tonomous Robots, 33(1-2):157–172, 2012.

[28] Kenneth Gade. The seven ways to find heading. The Journal of Navigation, vol.69,

pp.955-970, 2016.

[29] Przemyslaw Gasior, Stanislaw Gardecki, Jaroslaw Goslinski, and Wojciech Gier-

nacki. Estimation of altitude and vertical velocity for multirotor aerial vehicle using

Kalman filter. In Recent Advances in Automation, Robotics and Measuring Tech-

niques, pages 377–385. Springer, 2014.

[30] Esmaeil Ghahremani and Innocent Kamwa. Dynamic state estimation in power sys-

tem by applying the extended Kalman filter with unknown inputs to phasor measure-

ments. IEEE Transactions on Power Systems, 26(4):2556–2566, 2011.

[31] Paul D. Groves. Principles of GNSS, Inertial, and Multisensor integrated Navigation

Systems. Artech House, 2008.

[32] Chingiz Hajiyev and Sitki Yenal Vural. LQR controller with Kalman estimator ap-

plied to UAV longitudinal dynamics. Positioning, 4(1):36, 2013.

84

http://www.dedrone.com/en/dronetracker/drone-protection-software
http://www.dedrone.com/en/dronetracker/drone-protection-software
https://github.com/dronekit/dronekit-python
https://github.com/dronekit/dronekit-python

[33] Li Jiang. SENSOR FAULT DETECTION AND ISOLATION USING SYSTEM DY-

NAMICS IDENTIFICATION TECHNIQUES. PhD thesis, University of Michigan,

2011.

[34] Andrew J Kerns, Daniel P Shepard, Jahshan A Bhatti, and Todd E Humphreys. Un-

manned aircraft capture and control via GPS spoofing. Journal of Field Robotics,

31(4):617–636, 2014.

[35] A. Kim, B. Wampler, J. Goppert, and I. Hwang. Cyber attack vulnerabilities analysis

for unmanned aerial vehicles. Infotech at Aerospace, 2012.

[36] Tung T Kim and H Vincent Poor. Strategic protection against data injection attacks

on power grids. IEEE Transactions on Smart Grid, 2(2):326–333, 2011.

[37] Drone Labs. Drone detector. http://www.dronedetector.com/

how-drone-detection-works/, 2016.

[38] B. M. Ledvina, W. J. Bencze, and I. Galusha, B.and Miller. An in-line anti-spoofing

module for legacy civil GPS receivers. In In Proc. of the ION ITM, San Diego, CA.

Institute of Navigation, 2010.

[39] Xusheng Lei and Jingjing Li. An adaptive altitude information fusion method

for autonomous landing processes of small unmanned aerial rotorcraft. Sensors,

12(10):13212–13224, 2012.

[40] Yao Liu, Peng Ning, and Michael K. Reiter. False Data Injection Attacks Against

State Estimation in Electric Power Grids. In Proceedings of the 16th ACM Conference

on Computer and Communications Security, CCS ’09, pages 21–32, New York, NY,

USA, 2009. ACM.

85

http://www.dronedetector.com/how-drone-detection-works/
http://www.dronedetector.com/how-drone-detection-works/

[41] JK Mandal, AK Sinha, and L Roy. Incorporating nonlinearities of measurement func-

tion in power system dynamic state estimation. IEE Proceedings-Generation, Trans-

mission and Distribution, 142(3):289–296, 1995.

[42] MAVLink. MAVLink Developer Guide, Dec. 18, 2019. https://mavlink.io/

en/.

[43] MAVLink. MAVLink GPS_INPUT Command, Dec. 18, 2019. https://mavlink.

io/en/messages/common.html#GPS_INPUT.

[44] A.H. Michel and D. Gettinger. Analysis of new drone incident reports, May 8, 2017.

http://dronecenter.bard.edu/analysis-3-25-faa-incidents/.

[45] Mike Monnik. Hacking the Parrot AR.Drone 2.0. https://dronesec.com/

blogs/articles/hacking-the-parrot-ar-drone-2-0, 2019.

[46] K Nishiya, J Hasegawa, and T Koike. Dynamic state estimation including anomaly

detection and identification for power systems. In IEE Proceedings C (Generation,

Transmission and Distribution), volume 129, pages 192–198, 1982.

[47] Ruixin Niu and Lauren Huie. System state estimation in the presence of false infor-

mation injection. In Statistical Signal Processing Workshop (SSP), 2012 IEEE, pages

385–388. IEEE, 2012.

[48] Juhwan Noh, Yujin Kwon, Yunmok Son, Hocheol Shin, Dohyun Kim, Jaeyeong Choi,

and Yongdae Kim. Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive

GPS Spoofing. ACM Transactions on Privacy and Security (TOPS), 22(2):12, April

2019.

[49] OpenPilot. DIY Drones: The Leading Community for Personal UAVs. https:

//diydrones.com/page/openpilot-1, 2021.

86

https://mavlink.io/en/
https://mavlink.io/en/
https://mavlink.io/en/messages/common.html#GPS_INPUT
https://mavlink.io/en/messages/common.html#GPS_INPUT
http://dronecenter.bard.edu/analysis-3-25-faa-incidents/
https://dronesec.com/blogs/articles/hacking-the-parrot-ar-drone-2-0
https://dronesec.com/blogs/articles/hacking-the-parrot-ar-drone-2-0
https://diydrones.com/page/openpilot-1
https://diydrones.com/page/openpilot-1

[50] Paparazzi. Paparazzi: The Free Autopilot. http://wiki.paparazziuav.org/

wiki/Main_Page, 2003.

[51] Fabio Pasqualetti, Ruggero Carli, and Francesco Bullo. A distributed method for state

estimation and false data detection in power networks. In IEEE International Confer-

ence on Smart Grid Communications (SmartGridComm), pages 469–474, 2011.

[52] Scott Peterson and Payam Faramarzi. Exclusive: Iran hijacked US drone, says Iranian

engineer. https://www.csmonitor.com/World/Middle-East/2011/1215/

Exclusive-Iran-hijacked-US-drone-says-Iranian-engineer, 2011.

[53] QGroundControl. Intuitive and Powerful Ground Control Station for the MAVLink

protocol, Dec. 18, 2019. http://qgroundcontrol.com/.

[54] P. Riseborough. Application of Data Fusion to Aerial Robotics. In in Proc. of Em-

bedded Linux Conference, Mar. 14, 2015.

[55] Paul Riseborough. Inertial Navigation Filter. https://github.com/

priseborough/InertialNav.

[56] Fred Samland, Jana Fruth, Mariso Hildebrandt, Tobias Hoppe, and Jana Dittmann.

AR. drone: Security threat analysis and exemplary attack to track persons. Proceed-

ings of the SPIE, 8301, 2012.

[57] Henrik Sandberg, André Teixeira, and Karl H Johansson. On security indices for state

estimators in power networks. In First Workshop on Secure Control Systems (SCS),

Stockholm, 2010.

[58] M. Schmidt and M. Shear. A Drone, Too Small for Radar to Detect, Rattles the

White House. New York Times, https://www.nytimes.com/2015/01/27/us/

white-house-drone.html, Jan. 26, 2015.

87

http://wiki.paparazziuav.org/wiki/Main_Page
http://wiki.paparazziuav.org/wiki/Main_Page
https://www.csmonitor.com/World/Middle-East/2011/1215/Exclusive-Iran-hijacked-US-drone-says-Iranian-engineer
https://www.csmonitor.com/World/Middle-East/2011/1215/Exclusive-Iran-hijacked-US-drone-says-Iranian-engineer
http://qgroundcontrol.com/
https://github.com/priseborough/InertialNav
https://github.com/priseborough/InertialNav
https://www.nytimes.com/2015/01/27/us/white-house-drone.html
https://www.nytimes.com/2015/01/27/us/white-house-drone.html

[59] Andrew M. Shull. Analysis of cyberattacks on unmmaned aerial systems. Master’s

thesis, Purdue University, 2013.

[60] K. M. Smalling and K. W. Eure. A Short Tutorial on Inertial Navigation System and

Global Positioning System Integration. Technical Report NASA/TM–2015-218803,

NASA, September 2015.

[61] Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh, Kibum

Choi, Jungwoo Choi, and Yongdae Kim. Rocking Drones with Intentional Sound

Noise on Gyroscopic Sensors. In 24th USENIX Security Symposium (USENIX Secu-

rity 15), pages 881–896, Washington, D.C., August 2015. USENIX Association.

[62] INC SRC. Silent Archer counter-UAS system. http://www.srcinc.com/

what-we-do/ew/silent-archer-counter-uas.html, 2016.

[63] P. B. Sujit, Srikanth Saripalli, and Joao Borges Sousa. Unmanned aerial vehicle path

following: A survey and analysis of algorithms for fixed-wing unmanned aerial ve-

hicles. IEEE Control Systems, 34(1):42–59, February 2014. Copyright: Copyright

2014 Elsevier B.V., All rights reserved.

[64] Blighter Surveillance Systems. AUDS Anti-UAV Defence System. http://www.

blighter.com/products/auds-anti-uav-defence-system.html, 2016.

[65] Nils Ole Tippenhauer, Christina Popper, Kasper Bonne Rasmussen, and Srdjan Cap-

kun. On the requirements for successful GPS spoofing attacks. In Proceedings of

the 18th ACM conference on Computer and communications security, pages 75–86,

2011.

[66] Timothy Trippel, Ofir Weisse, Wenyuan Xu, Peter Honeyman, and Kevin Fu. WAL-

NUT: Waging doubt on the integrity of MEMS accelerometers with acoustic injec-

88

http://www.srcinc.com/what-we-do/ew/silent-archer-counter-uas.html
http://www.srcinc.com/what-we-do/ew/silent-archer-counter-uas.html
http://www.blighter.com/products/auds-anti-uav-defence-system.html
http://www.blighter.com/products/auds-anti-uav-defence-system.html

tion attacks. In 2017 IEEE European symposium on security and privacy (EuroS&P),

pages 3–18. IEEE, 2017.

[67] Gustavo Valverde and Vladimir Terzija. Unscented Kalman filter for power system

dynamic state estimation. IET generation, transmission & distribution, 5(1):29–37,

2011.

[68] Rudolph Van Der Merwe, Eric Wan, and Simon Julier. Sigma-point Kalman filters

for nonlinear estimation and sensor-fusion: Applications to integrated navigation. In

AIAA Guidance, Navigation, and Control Conference and Exhibit, page 5120, 2004.

[69] J. Vanian. Drone registrations are still soaring. Fortune, http://fortune.com/

2017/01/06/drones-registrations-soaring-faa/, Jan. 06, 2017.

[70] JL Verboom, Sjoerd Tijmons, C De Wagter, B Remes, Robert Babuska, and

Guido CHE de Croon. Attitude and altitude estimation and control on board a flapping

wing micro air vehicle. In Robotics and Automation (ICRA), 2015 IEEE International

Conference on, pages 5846–5851. IEEE, 2015.

[71] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for nonlinear

estimation. In IEEE Adaptive Systems for Signal Processing, Communications, and

Control Symposium (AS-SPCC), pages 153–158, 2000.

[72] G. Welch and G. Bishop. An Introduction to the Kalman Filter. University of North

Carolina at Chapel Hill, Chapel Hill, NC, 1995.

[73] K. D. Wesson, B. L. Evans, and T. Humphreys. A combined symmetric difference

and power monitoring GNSS anti-spoofing technique. In In Proceedings of the IEEE

Global Conference on Signal and Information Processing, Austin, TX., 2013.

89

http://fortune.com/2017/01/06/drones-registrations-soaring-faa/
http://fortune.com/2017/01/06/drones-registrations-soaring-faa/

[74] Oliver J. Woodman. An introduction to inertial navigation. Technical Report UCAM-

CL-TR-696, University of Cambridge, Computer Laboratory, August 2007.

[75] Le Xie, Yilin Mo, and Bruno Sinopoli. False data injection attacks in electricity

markets. In First IEEE International Conference on Smart Grid Communications

(SmartGridComm), pages 226–231, 2010.

[76] Vadim Zaliva and Franz Franchetti. Barometric and GPS altitude sensor fusion. In

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Confer-

ence on, pages 7525–7529. IEEE, 2014.

90

