
1

User Experience Design in Software Product Lines

Nikolay Harutyunyan

Computer Science Department

Friedrich-Alexander University Erlangen Nürnberg

nikolay.harutyunyan@fau.de

Dirk Riehle

Computer Science Department

Friedrich-Alexander University Erlangen Nürnberg

dirk@riehle.org

Abstract

User experience design is an important part of software

product development, and yet software product line engi-

neering has largely ignored this topic. This paper presents

a set of industry best practices for user experience design

in software product lines. We conducted multiple-case

case study research using two different product lines with-

in the multinational company Siemens AG: in a healthcare

software division and in an industrial automation software

division. We performed a preliminary exploratory study

that will serve as a baseline for future research in the de-

sign, implementation, and management of user experience

design in the context of software product lines. Practition-

ers can use our findings and the resulting best practices to

improve their user experience design, particularly within

healthcare and industrial automation software product

lines.

Keywords

User experience design, user interface design, software

product lines, UXD, SPL, engineering best practices,

handbook method, case study research

1. Introduction

In the last decade, research into user experience design

(UXD) has become an important part of the field of hu-

man-computer interaction (HCI) and interaction design

[10]. An increasing number of companies realize the im-

portance of UXD in their products, as well as the im-

portance of UXD as an essential part of software engineer-

ing. While the functional aspects of software products

have traditionally been the center of attention, user experi-

ence design is now also coming into focus of the industry.

UXD includes studying how users interact with and utilize

a product’s features, which can arguably make the differ-

ence between successful and unsuccessful products [6].
User experience is a multidimensional concept and a

commonly accepted definition is still lacking [2]. Hassen-

zahl and Tractinsky [10] suggest that the concept of user

experience attempts to go beyond the task-oriented ap-

proach of traditional HCI by bringing out aspects such as

beauty, fun, pleasure, and personal growth that satisfy

general human needs, but have little instrumental value.

User experience is about the technology that fulfills more

than just instrumental needs in a way that acknowledges its

use as a subjective, situated, complex, and dynamic en-

counter. To achieve a good user experience of their prod-

ucts, companies must establish processes and teams re-

sponsible for user experience design.
UXD is the central concept of this paper. The term has

no commonly accepted definition in academic literature.

Therefore, for this paper we use our own definition:
UXD is the collection of practices, processes, and peo-

ple used in and responsible for defining, implementing and

managing user experience features, components and plat-

forms of products.
In the scope of this paper we only discuss UXD of

software products that are part of software product lines

(SPLs). We study this specific subject because it lacks

academic research, and yet carries significant industrial

interest.

We use the general SPL definition by of CMU’s Soft-

ware Engineering Institute (SEI)1 coined by Clements and

Northrop [4]:
“A software product line is a set of software-intensive

systems that share a common, managed set of features

satisfying the specific needs of a particular market seg-

ment or mission and that are developed from a common

set of core assets in a prescribed way.”
We also use the SPL Engineering definition by Pohl et

al. [18]:
“Software product line engineering is a paradigm to

develop software applications (software-intensive systems

and software products) using platforms and mass customi-

zation.”
SPLs have special engineering requirements due to

their distributed nature. Based on centralized software

platforms [18], SPLs can include hundreds or thousands of

applications or products that have both common and indi-

vidual features, highly coupled functional interdependen-

cies, and common end-users. In such a context, the need

for a common, yet expandable UXD is imperative for an

SPL’s success [2]. Designing user experience for SPLs can

be more challenging, complex, and costly compared to

UXD for individual products. SPLs have distributed prod-

ucts and development teams, often organizationally far

apart and decoupled.
Industry has not and does not commonly follow ac-

cepted best practices for UXD in SPLs. This further moti-

vates the paper, for which we analyzed the successful

1 Software Engineering Institute at Carnegie Mellon University -
http://www.sei.cmu.edu/productlines/

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60187
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7503

http://www.sei.cmu.edu/productlines/

2

UXD practices of two SPLs and proposed derived best

practices for other software companies to follow, as well

as for researchers to validate and build upon.
We performed and now present exploratory research

into UXD in SPLs. The goal was to derive a preliminary

theory consisting of a set of industry best practices that can

be applied to software product lines wanting to establish or

improve their user experience design. Hence, the overarch-

ing research question was:
How should companies perform user experience de-

sign in software product lines based on existent indus-

try best practices?
We broke down this question into subquestions fo-

cused on UXD definition, implementation, and manage-

ment. These are the major aspects of UXD in SPLs identi-

fied through our initial literature review and confirmed in

our expert interviews:
 How should companies define UXD in SPLs?
 How should companies implement UXD in SPLs?
 How should companies manage UXD in SPLs?
To answer these questions, we performed exploratory

multi-case case study research. We derived a set of best

practices of UXD definition, implementation and man-

agement. These best practices synthesize case study

knowledge into actionable advice for software product

lines.
We performed case study research of two independent

product lines at separate company divisions of Siemens

AG operating in the domains of healthcare and industry

automation. We conducted three semi-structured inter-

views with UXD experts in similar roles within each SPL.

We then employed qualitative data analysis (QDA) to ana-

lyze the data collected during the case studies, which en-

sured traceability between data and our findings. We then

summarized the abstract findings of our research, while

presenting some of the key findings in form of best prac-

tices. Our best practices are presented as patterns [5] with

a Context-Problem-Solution structure at the core.
We deliberately made the choice to use a pattern struc-

ture, as opposed to a process-oriented best practices struc-

ture, because our findings do not focus on the process of

UXD, but rather on individual best practices employed at

distinct stages of UXD. We therefore define a best practice

as the abstraction from a common solution to a recurring

design problem in a given context. This form enables prac-

titioners to benefit from our research, as argued in our pre-

vious work on benefits of using design patterns in an in-

dustry context [19].
Our contribution is a preliminary and partial theory of

UXD in SPLs based on the knowledge synthesis from two

case studies with different contexts and product lines, con-

sisting of common industry best practices, including:
 6 best practices of UXD definition
 6 best practices of UXD implementation
 9 best practices of UXD management.
In section 2, we present related work and literature

about the topic, while identifying gaps and open questions.

In section 3, we present our research approach and meth-

odology, including case study preparation, case context,

data collection, analysis methods and quality assurance. In

section 4, we present the research findings as a discussion

of our user experience design theory in software product

lines. We present the summarized results, as well as illus-

trative best practices of our theory. We do not present eve-

ry single best practice of the theory in detail, but rather one

best practice from each high-level category: UXD defini-

tion, implementation and management. In section 5, we

discuss research limitations, including threats to external

validity and internal validity. In section 6, we conclude the

paper.

2. Related work

We found little existing research about user experience

design in software product lines. Therefore, we review

general UXD research literature and compare and contrast

it with our contributions to UXD in SPLs.
UXD does not have a commonly accepted definition,

because it is an evolving concept in literature. UXD is

rooted in the broader concept of Human-Computer Interac-

tion (HCI) and usability research. Two decades ago, given

the limited computing capacities, HCI was limited in its

functionality and the focus was on enriching usability,

rather than user experience [1]. We addressed this in our

own definition of UXD presented in the Introduction sec-

tion of this paper.
Along with the industry adaptation of UXD, papers

emerged trying to establish a shared understanding of

UXD, its characteristics and research basis. As there is no

commonly accepted framework for the study of UXD in

software product lines, we derived our own theoretical

framework based on the conducted case studies. The theo-

retical framework consists of the three main categories

derived from our data: UXD definition, UXD implementa-

tion and UXD management. These categories are also

among the key UXD concepts highlighted across research

papers and books [2, 6, 8, 10].
Bergaus was one of the few researchers that studied the

interdisciplinary field of UXD in SPLs in a 2015 book on

UXD design issues for service delivery platforms, where

he focused on the study of individual user needs as the

basis for a platform’s UXD [2]. In line with Bergaus’ find-

ings, our theory recognizes user needs as the central topic

of UXD definition in SPLs. Our best practices UXD-DEF-

4 and UXD-DEF-5 suggest focusing on user needs and

feedback when defining the UXD of an SPL. Bergaus fo-

cused on services and service platforms, using SPICE

(Service Platform for an Innovative Communication Envi-

ronment) specifications as a major input for his grounded

theory research. In contrast, we don’t focus on any given

specification as a starting point, but instead discover only

those best practices that we can trace back to the collected

data.

Page 7504

3

Researchers highlight that UXD characteristics go be-

yond the instrumental functionality of products. According

to Gaver and Martin [7], diversion and intimacy are im-

portant aspects of user experience design. Our theory does

not confirm this claim as a UXD best practice for SPLs.

Instead, according to our data, users of the studied SPLs

gave higher priority to the functional UXD aspects rather

than non-functional aspects like diversion and intimacy.

Our initial theory encompasses the UXD definition best

practice UXD-DEF-4 that focuses on the high-priority

functional UXD aspects of an SPL. The practice suggests

using SPL customer needs as the main input for UXD def-

inition requirements, while matching them to an SPL’s

UXD competences.
Emotional aspects of UXD are considered to be its in-

tegral part. Several authors argue that future HCI must

consider emotional aspects like stimulation, identification

and evocation as part of UXD [9, 14]. The emotional state

of the user is hard to research because the rigorous re-

search methodologies (such as study of brain responses to

different experiences) is complex. However, there are at-

tempts to develop more accessible, yet rigorous methods

of evaluating digital user interfaces (UI), which are part of

UXD [15]. Our research results indicate that evaluation of

UIs is an essential part of the UXD implementation pro-

cess. However, advanced methodologies, such as evalua-

tion of brain responses, are not widely used for software

product lines. Instead a key UXD implementation best

practice we found is customer evaluation of the UI and

UX. Our best practice UXD-IMP-4 focuses on SPL-wide

usability and UXD tests as the main evaluation technique,

while the best practice UXD-IMP-5 focuses on the exter-

nal evaluation of SPL’s products or complete SPLs.
SPL engineering fundamentally suggests a high initial

investment in developing a set of products with certain

commonalities, followed by systematic and efficient deri-

vation of products. In this context, Pleuss et al. suggest and

test an approach based on using techniques from model-

driven development, in order to automatically derive con-

crete products from a given configuration (e.g. selection of

features) without the traditionally recognized drawback of

lacking UXD in such setting [17]. Our data confirms the

common use of feature configurations within an SPL to

derive individual products, while not focusing on the au-

tomation of this process. This may have been caused by

the specifics of our cases, which are long-established SPLs

where such product configurations are done manually.
Like Pleuss et al., Kramer et al. also focus on automat-

ed UXD configurations for SPL products, suggesting a

theory and a practical method for automated graphical user

interface (GUI) generation at compile time [13]. While no

specific best practice in our theory focuses on this aspect

of UXD in SPLs, our best practice UXD-IMP-1 recom-

mends establishing a common development platform for

consistent UXD implementation in all products of an SPL.

This includes UI implementation as a key UXD compo-

nent. The implementation is automated whenever possible

to increase efficiency and consistency.
Another important aspect of user experience design in

software product lines is its economic valuation by the

company, which is a task of an SPL’s UXD management

team. According to our case study partners, UXD compo-

nents are measured by their economic value before inclu-

sion into the software. Such economic valuation can be

realized by ranking various UXD components based on

their perceived value to the user [21]. Our findings con-

firm this statement, while adding additional valuation pa-

rameters – the development effort and risk of the given

UXD component. This is expressed in the UXD-MGM-6

best practice suggesting effort-value mapping for UXD

requirements and its specifics.
Sottet et al. studied another aspect of UXD manage-

ment suggesting a variability management approach inte-

grated into a UX prototyping process, which involves the

combination of Model-Driven Engineering and SPLs.

Their theory is based on the separation of concerns

through multi-step partial configuration of UX features

enabling each stakeholder of the UXD process to define

the variability of the assets she manages [20]. Our theory

suggests a best practice that in part addresses the issue of

variability management and internal collaboration. The

best practice UXD-MGM-4 suggests encouraging close

internal collaboration on UXD variability across an SPL

with clearly defined UXD stakeholder roles, responsibili-

ties and assets.
The non-UXD aspects of SPL engineering have been

researched more extensively. For example, Henard et al.

studied test configurations for large SPLs suggesting au-

tomated generation and prioritization of product configura-

tions [11]. Our findings do not confirm or reject the re-

quirement of automated test configurations for UXD com-

ponent implementation. Out of scope for this paper, this

can be the subject of further research.

3. Research method

3.1. Case study methodology

We studied two independent software product lines at

Siemens AG using qualitative, exploratory multiple-case

case study research informed by Yin [22]. We followed

Yin in preparing for the case studies, in defining the ex-

pectations from the research, in selecting the cases, in

choosing of data collection methods, in collecting data,

and in analysis and deriving the results.

The first step was to prepare for the case studies, which

included the creation of case study protocol. Using a tem-

plate for the case study protocol based on the guidelines by

Yin [22] enabled us to specify the process of answering

research questions in detail [3]. Following the protocol

also ensured the consistency and the predefined structure

of the research approach. For our case study protocol, we

used the template suggested by Brereton et al. [3]. The

Page 7505

4

case study protocol addressed case study research back-

ground, design, case selection, case study procedures, data

collection, analysis, validity plan, study limitations, report-

ing and schedule.
To ensure internal construct validity of the results, we

employed Höst’s and Runeson’s Checklist for Software

Engineering Case Study Research [12], which included

key questions on case study design, preparation for data

collection, collecting evidence, analysis of collected data

and reporting.
We chose the product lines for our cases from the list

of our industry partners. The main dimension for our case

selection was the diversity of SPL domains. We selected

an SPL in the industry automation software domain and

another one in the healthcare software domain. We refer to

the industry automation division as Case 1, and to the

healthcare division as Case 2.
As the main data collection method, we chose semi-

structured interviews. We conducted six expert interviews

with employees holding different UXD-related roles at two

distinct SPLs:

 For UXD definition questions
o senior product manager, Case 1
o senior usability product manager, Case 2

 For UXD implementation questions
o software architect, Case 1
o software developer, Case 2

 For UXD management questions
o head of the UXD team, Case 1
o project lead of the user interface, Case 2.

Data collection also included observation of style

guidelines (guidebook of fonts, colors and other key UXD

components that are common within product lines) and

other UXD-related documentation. According to our case

study partners, such guidelines serve as the main point of

reference for developing consistent UXD for their SPLs.
The following data was collected:

 6 expert interviews, notes and follow-up discus-

sions
o 2 interviews with UXD definition experts
o 2 interviews with UXD implementation ex-

perts
o 2 interviews with UXD management experts

 materials that document UXD practices
o UXD definition style guidelines
o UXD implementation style guidebook

 other information on case product lines and their

context (e.g. SPL and product information from

Case 1 and Case 2 websites, their marketing mate-

rials etc.).
The interviews with the individuals responsible for

UXD helped us understand various stages of user experi-

ence design at Siemens. The perspective of the UXD defi-

nition team was a high-level one, as they oversaw UXD as

a whole. As presented in the related work, UXD currently

goes beyond usability and functionality aspects of a prod-

uct, while focusing also on interactions, user time and con-

texts etc. This became especially apparent from interviews

with UXD definition experts.
The UXD managers provided perspective on product

management in their product lines. They oversaw the

cross-product use of central UXD components, such as

common UI interfaces, sets of fonts, buttons, and their

expected functionalities within an SPL. These managers

were also responsible for making the decisions on modifi-

cation or addition of new features and their UXD solu-

tions. Furthermore, they prioritized the new functionality

of upcoming versions of the software and provided a con-

sistency check for UXD within a product line.
The interviewees from the UXD implementation teams

illustrated the perspective of developers and software ar-

chitects who were mainly involved in the implementation

of new functional requirements and their UXD aspects, as

well as to some extent the UXD testing and evaluation

with the customers. This provided low-level and technical

insights relevant for the UXD implementation best practic-

es.
Data collection was performed parallel to qualitative

data analysis (QDA) thereof. QDA consisted of coding the

interviews using an external tool (MAXQDA 12) and a

tool under development by at our research group (QDAci-

ty2). First, we developed a codebook for the interview

analysis. This helped us identify and categorize key UXD

concepts, as well as to abstract from our data and to con-

solidate the basis for the resulting best practices. We im-

proved our codebook iteratively by including newly identi-

fied UXD concepts from the expert interviews and by re-

moving unused codes. The final codebook included 3 code

categories and 28 codes, where the code categories corre-

sponded to UXD definition, implementation and manage-

ment, and the individual codes served as building blocks

for the final best practices of our theory.
As a quality assurance measure for our QDA, we had

more than 40 of our students recode our data using the

original codebook in 2017. This resulted in intercoder /

interrater agreement of between 0.3 (30%) and 0.4 (40%).

Students performed the recoding and the agreement was

automatically calculated (as the harmonic mean of coding

precision and recall) using our tool – QDAcity. The inter-

coder agreement between original and student coding con-

firmed the acceptable and reproducible quality of our

analysis [16]. More importantly, it helped us improve our

code system and review controversial codings for the final

QDA and theory building phase, as we analyzed the cases

where our coding deviated from student code applications.

3.2. Case context

We conducted Case 1 in a healthcare software product

line of Siemens. The SPL included more than ten business

lines (BL) and the core platform team. Different business

2 QDAcity - https://qdacity.com/

Page 7506

https://qdacity.com/

5

lines specialized in developing various healthcare scanner

products, as well as software applications for these scan-

ners based on the common platform developed by the SPL

team. This core SPL team developed the basic applications

used by different BLs, as well as the platform used by the

BLs to develop more advanced applications. Through the

centralized platform, the SPL had to support 65-70 appli-

cation-specific tasks and 100 workflows consisting of

these tasks. To achieve this, this product line had a central-

ized UXD team responsible for the core usability and for

UXD components that were available for SPL products.

These components ensured the consistent user experience

for the user.
Case 2 was realized in an industry automation software

product line at Siemens. While Case 1 had one SPL with

many products in it, Case 2 had an SPL that itself consist-

ed of 20 product lines, which then had individual products

or so-called plug-ins that would connect to the central

product and enable the user to centrally configure and

monitor the automated hardware connected to the system.

Similar to Case 1’s UXD team for the central platform,

Case 2 had a core team responsible for the software solu-

tion / platform connecting the automation hardware, cen-

tral software system and individual plug-ins. The main

approach was to have a centralized team responsible for

core UXD building blocks such as tables, trees or text

boxes with predefined UI and set functionalities. These

components could then be applied by each product / plug-

in team. While there were centrally defined UI aspects,

such as the properties of the plug-in windows and their

interactions, the semantics of each plug-in had an inde-

pendently developed UXD by each product team.
Both cases separated the SPL-wide central (platform)

UXD team from other UXD teams working on individual

products of the SPL. This organizational structure was a

result of the internal evolution and iterative refinement of

the UXD approach. Thus, many best practices were affect-

ed by this structure, including the need for central man-

agement of UXD components and UXD testing, as well as

the centrally planned and aligned implementation of UXD

components.

4. Results

Through our data analysis three overarching high-level

categories of UXD best practices emerged and structured

our baseline, preliminary theory: UXD definition, imple-

mentation and management. Here we will present the ma-

jor best practices and their relationships derived from the

QDA of the collected data from Case 1 and Case 2.

4.1. Overview

Our preliminary findings suggest that for companies

with new SPLs, the first step should be to establish an

overall strategy for the given SPL’s UXD definition, im-

plementation, and management. The company also should

define the corresponding UXD roles, responsibilities, and

guidelines for the SPL. Companies should consider sepa-

rate teams for UXD definition and implementation work-

ing under a management team. Each team should have

clear cut responsibilities but coordinate with the other

teams. This best practice was expressed, in one instance, in

our interview with the usability product manager from

Case 2 who manages a team that manages UXD definition

and implementation. He briefly explained how their SPLs

evolution shaped this separation of UXD responsibilities

and his current role:
“I am responsible for the usability perspective of

product management. So, in the evolution of the product

we have clear goals - product management and develop-

ment. Between product management, which is formulating

the requirements, and the development, who implements

the requirements, there was a need to have some type of

[SPL-wide] glue regarding the usability. Somebody, who

is taking care of the UXD from the customer perspective,

but at the same time joins the development process. That's

exactly my role [as head of usability product management

team].” [Case 2, Interview 2]
Our data yields that companies with established SPLs

usually have existing teams working on user experience

design. Such companies can use our best practices to im-

prove their UXD processes. This includes clear separation

of common and product-specific UXD components during

definition and implementation phases. These SPLs need to

establish detailed guidelines and handbooks of UXD, in-

cluding definition and implementation style guides with

key UXD principles and rules. Both the SPLs of Case 1

and Case 2 had such guides. Here is a quote (an example

trace) from Case 2’s project lead of the user interface talk-

ing about the specifics of an implementation style guide,

which was coded using the “style guide” code in UXD

implementation code category:
“We have different levels of contribution [by the cen-

tral platform and by each plug-in / product]. You say [as a

plug-in UXD developer], "I have a plug-in, I have a soft-

ware component. What interfaces [to the central platform]

do I have to use?" This is described in the internal wikis.

The style guide is the wiki documentation of all these

common [UXD] interfaces you have to use. You have best

practice samples. You can see how certain functionality

has to be realized, if you are a beginner. The style guide

only has the rules for your [SPL] plug-in. …. there are

[plug-in specific] guidelines if you have to use [a specific

UXD component]. It's more of documentation of [UXD

implementation] best practices of how you should do it

inside of the plug-in. The role of the style guide is to help

you do things similar inside of the plug-ins.” [Case 2, In-

terview 1]
Companies with advanced UXD processes in their

SPLs should work on optimizing UXD management, ac-

cording to our expert interviews. Some best practices here

are to establish channels for UXD information exchange

between product teams in an SPL. This would proposedly

Page 7507

6

reduce redundancy of developing a similar UXD compo-

nent for two or more products. Instead, such components

can be incorporated into the core platform of the SPL.
Another management-related industry best practice is

to define value-effort mapping for UXD. This could range

from simply calculating the cost of development and the

customer’s perceived value to a more elaborate value

evaluation model, considering the possibility of having a

pilot customer and then using the solutions across the

SPLs. For example, the best practice of value-effort map-

ping for UXD (evaluating the economic value of a UX

component as compared to the effort and costs needed to

develop the component) can be traced back in part to our

interview with the software architect from Case 1:
“As for the usability, we [SPL’s central platform UXD

implementation team] are the guys who implement what

people [SPL’s central platform UXD definition team] en-

visioned. Of course, in this phase, we see some issues that

might have been overseen. Here we start a collaborative

approach with the guys from the usability [definition] de-

partment. This becomes a dialogue in order to get their

feedback and to tell them what’s possible and what’s

cheaper [for what perceived user value].” [Case 1, Inter-

view 2]
Our findings suggest that, for many industry experts,

distinguishing between core and product-specific UXD is a

key best practice. According to our data, the UXD defini-

tion team is responsible for defining the boundaries of a

core platform for SPL engineering and product-specific

engineering. Core and product-specific UXD components

need to be treated separately and defined using different

rules. Core components must include the UXD of SPL-

wide functionality, such as saving or closing a document.

They need to have a consistent and simple format that does

not contradict the layout of specific products. Their UXD

implementation should also be done separately from that

of product-specific UXD development. Thus, the resulting

best practice is to set up a core UXD implementation team

that is responsible for the core platform used across an

SPL, while each product division has a team for UXD im-

plementation of the product-specific components. The

UXD management team is responsible for deciding which

components are to be part of the common core and which

ones should be part of specific products. Some of our in-

terview partners argued that UXD components can often

be developed within one product, but can eventually be

adapted into SPL’s common core. This can happen when a

functionality and its UXD component are required for sev-

eral products. For the latter best practice, here is an exam-

ple trace from our interview with the software architect

from Case 1:
“Interviewee: [Answering to whether the SPL has ex-

perience with centrally reusing UXD components devel-

oped by individual product teams] Yes, this is a practice

we use here. When you [UXD implementation engineer in

an individual SPL product] integrate something like this,

you need to ensure that it is a commonality for everyone

[in the central SPL platform]. Sometimes one department

develops something, but the others need it a little different-

ly. In this case, we need to integrate it in a commonly ac-

ceptable way [into the central SPL platform]. Usually if it

[the UXD component developed by a product team] works

[for the central SPL platform], we reuse it. We try to fetch

it.” [Case 1, Interview 2]
UXD documentation is another essential best practice,

derived from industry interviews, for consistent and effi-

cient design. Our interview partners highlighted the im-

portance of having documented guidelines for all respon-

sible teams including UXD definition, implementation and

management guidelines. For example, UXD definition

guidelines are broad UXD principles, but give the overall

direction of the user experience design and some useful

techniques.
The rest of the best practices are specific to various as-

pects of UXD presented in the following subsections.

There we answer our research question of how companies

should perform UXD in SPLs by addressing three key sub-

questions identified in the research question section: UXD

definition, implementation and management.

4.2. UXD definition

The definition of user experience components is the

first phase of applying UXD to a software product line. In

this phase, a team of experts conceptualize new user expe-

rience components.
Our industry-derived best practices on UXD definition

suggest creating a unified UXD definition process within a

product line that is used for capturing customer needs and

deriving corresponding UXD concepts specific to the SPL,

as a special consideration only applicable to UXD in SPLs.

Industry experts suggest using consistent templates across

product lines to define and communicate new UXD con-

cepts. Another proposed best practice encourages the es-

tablishment of a common UXD glossary for a product line.

Among other best practices, we propose SPLs to separate

their UXD definition for the core (platform) components

and product-specific ones.
This section is mostly based on our interview data from

Case 1, Interview 1 (a product manager), Case 1, Interview

3 (a head of a UXD team), and Case 2, Interview 1 (a pro-

ject lead of the user interface).
Our analysis suggests the following key best practices

companies should use:
 UXD-DEF-1: During SPL creation, develop UXD

definition guidelines and reinforcement mechanisms

for these guidelines.
 UXD-DEF-2: Develop SPL-wide templates for new

UXD concept definition, improve them over time and

use them consistently.
 UXD-DEF-3: Distinguish between UXD for core

functionalities of the SPL and product-specific ones.

Create separate teams and processes for each.

Page 7508

7

 UXD-DEF-4: Focus on customers by suggesting

UXD definitions that correspond to their needs, while

matching SPL’s competences in UXD.
 UXD-DEF-5: Link UXD definition to the customer

needs and collected customer requirements. Keep

track of requirement-UXD solution pairs across the

product line.
 UXD-DEF-6: Define common user scenarios for most

SPL products. Based on user scenarios and needs, de-

fine UXD modes (beginner mode, professional mode)

for the SPL’s core functionality.
Let’s consider UXD-DEF-2. UXD definition templates

include well-defined text fonts, colors and sizes for differ-

ent functions in a software product, common and expected

triggers and UI reposes (e.g. mouse clicks, shortcuts). For

example, a warning message across all SPL products could

be defined as a pop-up window in the middle of the work-

ing space with RGB (255,0,0) red 12-point text. Such

components should be defined in a clear and detailed way

to ensure efficient communication between customers and

UXD implementation team. For the necessary level of

detail and consistency in the UXD definition phase, com-

panies should define and use concept templates for new

UXD component definitions. We suggest a best practice

for this problem in Table 1.

Table 1. Example UXD definition best practice

ID: UXD-DEF-2

Name: Develop SPL-wide templates for new UXD concept

definitions, improve them over time and use them consistently.

Problem: How to create and formulate new UXD concepts in a

detailed, consistent and efficient way across an SPL?

Context: UXD definition is considered a creative process, so

definition teams often don’t have templates for suggesting new

UXD components. Each UXD engineer in the SPL uses the

tools he prefers to create UXD concepts and mock-ups, for

example PowerPoint presentations. However, often there is a

need to compare various UXD concepts in the SPL, which can

be difficult, if presentation formats and levels of detail are very

different.

Solution: Even though templates are often considered as crea-

tivity killers, according to our case studies, if well designed,

they can improve the creative process, by stimulating it and

putting the necessary limitation and technical constraints in

place. The best practice is the development of templates for

UXD concepts that would include the technical details of the

concepts, its mock-ups and description consistent across the

SPL. These templates need to be evaluated and improved con-

tinuously to ensure that they are a stimulating tool for the con-

cept development and not another documentation step that is

perceived unnecessary and time consuming. The SPL-wide

usage of such templates ensures that they evolve and lead to

better UXD design. In an SPL such templates will ensure a

common approach to the conception of new features and a

common UXD definition. Templates save time by avoiding

redesigning the basic concept structure every time. This can be

a significant benefit. However, the use of the templates for

UXD concepts should not eliminate the use of more sophisti-

cated prototypes in the further phases of development. Beyond

the UXD concept, there is a need for prototypes, static or dy-

namic. For these instances, our data suggest a freer approach in

terms of the toolset used to formulate the UXD. In these stages

the use of templates is not recommended.

Traces in our data: [Case 1, Interview 3] [Case 2, Interview 1]

Example trace in our data: The head of UXD team from Case

1 explains the practice: “So we have a template for concept

definitions. Basically, all UXD changes are done with use of

these concepts. Not only do we define concepts, but there are

also some technical aspects to be clarified and there is basical-

ly a template that explains what the contents are on the infor-

mation that needs to be gathered.” [Case 1, Interview 3]

4.3. UXD implementation

The implementation of user experience components

follows the UXD definition of a software product line. In

this phase a team of developers and UXD engineers im-

plement the predefined UXD components for functionali-

ties in either SPL-wide (product agnostic central platform)

or product-specific components.
According to the analysis of our expert interviews, one

crucial best practice of UXD implementation is to estab-

lish a commonly accepted style guide that details how

UXD definitions should be implemented by software de-

velopment teams. This includes technical details, such as

development tools and environments preferred across an

SPL, as well as common testing practices, guidance on

prototyping, and usage of customer feedback. Another best

practice highlights the use of an external evaluation of an

SPL’s products and their UXD. This could potentially be

best achieved by developing early prototypes or working

with pilot clients.
This section is mostly based on our interview data from

Case 1, Interview 2 (a software architect), Case 2, Inter-

view 1 (a project lead of the user interface), and Case 2,

Interview 3 (a software developer). Our analysis suggests

the following key best practices companies should use:
 UXD-IMP-1: Establish a common development plat-

form for consistent UXD implementation in all prod-

ucts of an SPL.
 UXD-IMP-2: Independently implement UXD com-

ponents for core functionalities of an SPL and prod-

uct-specific ones. Create separate teams and processes

for each. Use a centralized development platform for

core UXD components. Define easy to use interfaces

for product-specific component integration into the

core platform.
 UXD-IMP-3: Define and regularly update an SPL-

wide UXD implementation style guide, including pre-

cise solutions to common implementation problems,

common user scenarios, corresponding UXD solu-

tions, and references to previously developed UXD

components linked to their requirements. Within the

style guide, encourage simple and direct interactions,

whenever possible.

Page 7509

8

 UXD-IMP-4: Develop a central repository for UXD

tests across the product line to reduce redundancy and

enable internal collaboration.
 UXD-IMP-5: Have an external evaluation of an

SPL’s key products or of the complete SPL, collect

feedback from customers and systematically analyze

issues caused by poor UX.
 UXD-IMP-6: To realize external evaluation, use

mock-ups for simple UXD components and dynamic

prototypes for complex or critical UXD components.

Develop and share knowledge on prototyping and ex-

ternal evaluation across the product line.
The most essential UXD implementation best practice

is to distinguish between implementation of core (central /

common) and product-specific UXD components. Compa-

nies should develop a core platform in an SPL with core

UXD components. Single products must be connected to

the common core through interfaces, shared databases and

integrated processes. There should not be a possibility for

specific product teams to change the core UXD compo-

nents, but there should be a possibility to suggest inclusion

of some product-specific UXD components into the com-

mon core. This is demonstrated in Table 2.

Table 2. Example implementation best practice

ID: UXD-IMP-1

Name: Establish a common development platform for

consistent UXD implementation in all products of an SPL.

Problem: How to organize an efficient UXD implementation of

SPL’s core platform?

Context: There are many approaches to UXD development in

products. For an individual product, this problem is often not

essential, as the implementation team can use any development

tool or language to achieve their UXD goals. However, in case

of a product line with many products it can be redundant and

challenging to have many different UXD implementation prac-

tices and environments. This can result in inconsistencies and

incompatibilities across the SPL.

Solution: The solution is to have a common development plat-

form for all the products of a product line. Having a common

development platform and environment for UXD implementa-

tion means having the same framework and the same develop-

ment toolset that would ensure the UXD commonality for all

the products. Moreover, this means to make a common imple-

mentation and debugging system available across the SPL. Ac-

cording to our data, such a platform is to be set up initially,

when the product line is created. It is then utilized for develop-

ing the SPL’s common core and software products within a

common framework. At the same time, a common platform

including tools, such as easily passing data from one application

to another, are a feature required by customers. Having a com-

mon development platform can ensure that easy data passing

can be implemented in each software application. Once the

common platform is established, developers can work on build-

ing modules following the style guide. Such modular develop-

ment pattern can be used by any software product line in case of

a well-established development platform. The centralized plat-

form ensures that the core UXD components are similarly im-

plemented throughout the whole product line. One tool to

achieve this could be the use of so called contracts (interface

requirements) that each product must fulfill, when implement-

ing a core UXD component.

Traces in our data: [Case 1, Interview 2] [Case 2, Interview 1]

[Case 2, Interview 3]

Example trace in our data: A product manager from Case 2

explains: “If you have central functionalities, you have to fulfill

contracts, so that your plug-in can contribute to the central

functionality. For example, if you open and close the project, or

go online, you must fulfill the contracts so that your plug-in

works. If user says "Store" then all the data must be stored ac-

cording to this contract.” [Case 2, Interview 1]

4.4. UXD management

The management of user experience design includes

coordination between UXD definition and implementation,

as well as management of customers. This category also

covers decision making about the economic value of UXD

components.
Our analysis of the gathered case study data suggests

that one best practice of UXD management is to establish

a designated UXD team within a product line. This team

coordinates user experience design definition and imple-

mentation teams, as well as allocates SPL’s resources and

control the UXD quality. Such a team uses its crosscutting

structure in an SPL to harmonize UXD across products

and to reuse successful practices. Among other proposed

best practices, industry experts suggest models for value-

effort mapping when deciding on development of certain

UXD components.
This section is mostly based on our interview data from

Case 1, Interview 3 (a head of the UXD team), and Case 2,

Interview 2 (a usability product manager).
Our analysis suggests the following key best practices:

 UXD-MGM-1: Establish a clear decision-making

mechanism and define which UXD related issues

should be handled at which level in an SPL. Clearly

separate responsibilities of UXD definition and im-

plementation teams.
 UXD-MGM-2: Establish a dedicated UXD team that

manages and oversees user experience design in a

product line. This ensures UXD consistency, efficient

use of resources, and productive internal collabora-

tion.
 UXD-MGM-3: Give UXD management team a final

say in UXD-related decisions across an SPL. If no de-

cision is made on UXD definition or implementation

levels, the issue should be escalated and solved on the

level of UXD management.
 UXD-MGM-4: Encourage internal collaboration on

UXD across an SPL. Create collaboration channels,

tools, and opportunities for UXD definition and im-

plementation teams, such as centralized shared code

repositories, knowledge sharing documentation, and

SPL-wide meetings and discussions.

Page 7510

9

 UXD-MGM-5: Ensure responsive and proactive ex-

ternal communication with potential and existing cus-

tomers focusing on UXD solutions and use cases the

SPL offers. Start pilot projects, create channels for

feedback, and show that this feedback is being used in

an SPL.
 UXD-MGM-6: Create a framework for value-effort

mapping for designing UXD components. Communi-

cate common principles for value-effort mapping

across an SPL and define decision making model

based on the economic value.
 UXD-MGM-7: Offer customer training for your SPL

focusing on UXD components and how to make best

of the UI. Offer training together with purchase, if

possible.
 UXD-MGM-8: Allocate 20% of an UXD expert’s

work time for new UXD concepts and tools explora-

tion. This ensures innovation and employee satisfac-

tion.
 UXD-MGM-9: Benchmark UXD solutions of an SPL

with those of the competitors. Analyze competitors’

UXD solutions and their value to the customers. Fo-

cus especially on SPL-wide UXD components corre-

sponding to customer needs.
UXD management should focus on internal and exter-

nal issues. Internal ones include defining responsibilities

and collaboration between UXD definition and implemen-

tation teams, as well as assigning UXD component owner-

ship in an SPL. Other internal aspects include managing

internal suppliers, using wikis and other tools for

knowledge sharing and realizing economic evaluation of

UXD components. On the other hand, external aspects of

UXD management include communication with existing

customers and the market. It also includes initiation of

pilot projects that encompass various products of an SPL,

as well as customer training. One best practice on how to

manage user experience designer’s time is presented in

Table 3.

Table 3. Example management best practice

ID: UXD-MGM-8

Name: Allocate 20% of a UXD expert’s work time for new

UXD concepts and tools exploration. This ensures innovation

and employee satisfaction.

Problem: How much time should UXD experts have for learn-

ing new UXD concepts, practices, and tools?

Context: UXD is a relatively new domain in software devel-

opment and it is becoming more and more widespread quickly.

This means that a lot of new concepts and tools are being con-

stantly developed, thus driving the demand for innovative UXD

by clients. This means that UXD experts in product lines cannot

spend all their time only improving the existing UXD compo-

nents. They need to spend some time learning new UXD con-

cepts and tools.

Solution: Based on our data we suggest allocating 20% of

UXD expert’s work time to learning new UXD concepts and

acquiring new skills. This is both motivating for the employees

and useful for the company that keeps up-to-date with current

UXD developments. UXD management should also create an

internal platform to share this knowledge across an SPL, and to

use innovative ideas and tools in pilot projects or prototypes.

Building skills and experience in modern UXD techniques en-

sures the competitive advantage of the whole SPL and the satis-

faction of customers.

Traces in our data: [Case 1, Interview 3] [Case 2, Interview 2]

Example trace in our data: A usability product management

from Case 2 says: “Everybody should have 20% time to see

other things, to experience and try other things. So, everybody

goes that way and then one comes and says I saw this solution,

it's not bad, let's see.” [Case 2, Interview 2]

5. Limitations

External validity. The main limitation of our research

is the study of only two cases. As a threat to external valid-

ity, this limits the generalizability of our theory. However,

in future research we intend to add more cases and apply

our exploratory theory in real-life settings to evaluate it.
Another limitation is that our theory, presented as a set

of industry best practices, is still under development and in

its preliminary state, while being a valuable baseline study.
Internal validity. One limitation to the internal validi-

ty of our research can be the use of only qualitative data

analysis as our research method alongside case study re-

search method for extracting the theory from our data. We

addressed this limitation by introducing a quality assur-

ance measure for our QDA. We had more than 40 students

of our research course recode our data using the original

codebook in 2017, after teaching them QDA techniques

and its use in research.

6. Conclusions

We performed two-case case study research on user

experience design (UXD) in software product lines (SPL).

Our results confirm that like in general UXD, UXD for

SPL can be split into three main aspects: definition, im-

plementation and management. We describe the resulting

(preliminary) theory and provide examples of best practic-

es, which we derived from the theory to provide actionable

advice to our case study partners.
Our work is the first to use an established presentation

format, best practice descriptions derived from the patterns

community, to present the results of theory development

using case studies in software product line research.
This work is the first to combine user experience de-

sign with software product lines. In future research we

plan to add more case studies to our exploratory studies in

order to extend the scope and detail of our findings. We

then plan to evaluate our theory of UXD in SPLs though

confirmatory case studies at other companies evaluating

and adjusting the proposed best practices.

Page 7511

10

To conclude, this paper serves as a baseline for future

more in-depth research in the design, implementation, and

management of user experience design in the context of

software product lines. We identified that future research

should extend the scope of the study by adding further

case studies and subdomains related to the above men-

tioned overarching topics. Furthermore, we identified the

need for practical implementation and validation of our

proposed best practices through case studies informed by

Yin [22] or through hypothesis testing for select best prac-

tices.

7. Acknowledgments

We would like to acknowledge our case study partners

for their collaboration. We would like to acknowledge

Michael Dorner, Shushanik Hakobyan and the anonymous

reviewers for their valuable feedback that helped us im-

prove the paper significantly.

8. References

[1] L. Alben. Defining the criteria for effective interaction

design. Interactions, 3(3), 11-15. 1996.

[2] M. Bergaus. Design Issues for Service Delivery

Platforms: Incorporate User Experience: A Grounded

Theory Study of Individual User Needs. Springer

Vieweg. 2015.

[3] P. Brereton, B. Kitchenham, D. Budgen and Z. Li. Using

a protocol template for case study planning. In

Proceedings of the 12th International Conference on

Evaluation and Assessment in Software Engineering.

2008.

[4] P. C. Clements and L. Northrop. Software Product Lines:

Practices and Patterns. Addison-Wesley, 2001.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns. Addison Wesley, 1995.

[6] J. J. Garrett. The Elements of User Experience: User-

Centered Design for the Web and Beyond. Pearson

Education, 2010.

[7] B. Gaver and H. Martin. Alternatives: exploring

information appliances through conceptual design

proposals. In Proceedings of the SIGCHI conference on

Human Factors in Computing Systems, 209-216. ACM.

2000.

[8] R. Hartson and P. S. Pyla. The UXD Book: Process and

guidelines for ensuring a quality User Experience.

Elsevier. 2012.

[9] M. Hassenzahl. The thing and I: understanding the

relationship between user and product. In Funology, 31-

42. Springer. 2005.

[10] M. Hassenzahl and N. Tractinsky. User Experience – a

research agenda. Behaviour & information technology,

25(2): 91-97, 2006.

[11] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P.

Heymans and Y. Le Traon. Bypassing the combinatorial

explosion: Using similarity to generate and prioritize t-

wise test configurations for software product lines. IEEE

Transactions on Software Engineering, 40(7), 650-670.

2014.

[12] M. Höst and P. Runeson. Checklists for Software

Engineering Case Study Research. In ESEM, 479-481.

2007.

[13] D. Kramer, S. Oussena, P. Komisarczuk and T. Clark.

Using document-oriented GUIs in dynamic software

product lines. In ACM SIGPLAN Notices, vol. 49, no. 3,

85-94. 2013.

[14] R. J. Logan, S. Augaitis and T. Renk. Design of

simplified television remote controls: a case for

behavioral and emotional usability. In Proceedings of the

Human Factors and Ergonomics Society Annual

Meeting, 38(5): 365-369. SAGE Publications. 1994.

[15] L. Longo and B. Kane. A novel methodology for

evaluating user interfaces in health care. In IEEE

Computer-Based Medical Systems (CBMS), 24th

International Symposium, 1-6. 2011.

[16] J. F. Marques and C. McCall. The application of

interrater reliability as a solidification instrument in a

phenomenological study. The Qualitative Report, 10.3:

439-462, 2005.

[17] A. Pleuss, B. Hauptmann, D. Dhungana and G.

Botterweck. User interface engineering for software

product lines: the dilemma between automation and

usability. In Proceedings of the 4th ACM SIGCHI

symposium on Engineering interactive computing

systems, 25-34. 2012.

[18] K. Pohl, G. Böckle, & F. J. van Der Linden. Software

product line engineering: foundations, principles and

techniques. Springer Science & Business Media. 2005.

[19] D. Riehle. Lessons learned from using design patterns in

industry projects. Transactions on pattern languages of

programming II. Springer, 1-15, 2011.

[20] J.-S. Sottet, A. Vagner and A. G. Frey. Model

transformation configuration and variability management

for user interface design. In International Conference on

Model-Driven Engineering and Software Development.

Springer, 390-404. 2015.

[21] K. M. Sheldon, A. J. Elliot, Y. Kim and T. Kasser. What

is satisfying about satisfying events? Testing 10

candidate psychological needs. Journal of personality

and social psychology, 80(2): 325. 2001.

[22] R. K. Yin. Case study research: Design and methods.

Sage publications, 2013.

Page 7512

